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Question: How does ¢,\j concentrate as \; — oo .
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Understanding concentration improves sup-norm bounds

Theorem (G ' 17)

Suppose x € M is not maximally self-conjugate. Then, for ry — 0,

n—1
||¢>‘||L°°(B(x,r)\)) = O()\ : )

Theorem (Canzani-G '18)

Suppose x € M is not uniformly maximally self-conjugate. Then, for ry = A~ with
0<d<i
5

n—1

A 2
H¢>\||L°<>(B(x,q)) = O(\/@)'
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Fine microlocalization - Tubes on S;M

R(2)

tube T;

Note: vol(7;) = R(A)"1
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=l Theorem (Canzani-G '18)

Let x € M and suppose x is not uniformly self-conjugate with maximal multiplicity,

n—1

A 2
e limqeer-n = ()

Green tube
does not
loop back to
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Theorem (Canzani—-G Work in Progress)

Fix p > pc. Suppose that for all (x,y) € U x U, x is not uniformly maximally
conjugate to y. Then,

A8(p;n)

loxllLe(uy < Cﬁll%”ﬁ(m

Theorem (Canzani—-G Work in Progress)

Fix p > pc and let U C M. Suppose that for all (x,y) € U x U, there are G, and 5.,
so that Ujcg,, T; does not loop through y, for log A times. Then, there is N = N(p)
such that

(1—£<)

2) (log \) ) lloxlli2(my

+ sup vol(Ujc T/)

lealloqy < C”("’")<m eu
X,y
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The proof describes concentration of saturating examples

® Part 1: How does LP norm grow at a point? Similar to L*° case: think geodesic
beams.

® Part 2: How do multiple points share [2 mass? Communication between points.

® Output: A single point cannot carry optimally distributed L2 mass and many
points cannot share well distributed L2 mass.

® The ‘enemy’ is finitely many zonal type points scaled by /log A.
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Learning from filtering tubes by mass

® Let Ay be those tubes, 7; € Ay with norm ||x.- ul[;2 ~ 27K ||ul| 2.
J

wyg = Z X U-

Ti€A

1—n n—1
[willeee < h72° R7Z 27 K||u]| 2 min(2%, R'™")

o Let T ~logh 1. When 2¥R™2" > TN or 2kR™> < T-N|u|| 2,

1—n 1—n
lwillee < b2 TN min(1,27%¥R™ 2 TN)|u|l,2,

interpolation and Sogge's LPc estimates are enough
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Local geometry is necessary to extract fine structure

® Cover M with good balls, B, .
® Filter 7; € Ay by with B, they intersect.

T € Apo & Tj € Ay and 7y (T7) N B # 0. +« Ba

® Filter balls B, by L°° norm of wy.

n—1 _1—n
h 2 RZ |lwil o s,,)

B, € Ikiym 2"~
llull 2

’ Uk,m = U Ba

a€ly m

1—n
® |f2m « R2 TN then low L™ and by interpolation, U, ,, does not contribute
significantly.
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Moo = | ee(T7 M) Ef
[t]<1 |
|
—1 I
has large norm: |Ix, w2 > 2”’Rn72*k||u||L2 !
ol
| =~
|
|
|
|

® Theset Sy M C TG M is curved



Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31
t]<1

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

® Theset Sy M C TG M is curved




Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31

[t]<1 I Ve kg

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

~ cd(xa,xg)

- s x
Xox 1

® Theset S M C T M is curved Ax A
X0 X0 B



Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31

[t]<1 I Ve kg

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

~ cd(xa,xg)

- s x
Xox 1

® Theset Sy M C TG M is curved N A

® Uncertainty principle:



Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31

[t]<1 I Ve kg

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

~ cd(xa,xg)

- s x
Xox 1

® Theset Sy M C TG M is curved N

® Uncertainty principle: Second microlocalization to Ax, and to Ay, are
incompatible with uniform estimates when x,, xg are close.



Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31

[t]<1 I Ve kg

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

~ cd(xa,xg)

~<ax
Xox 1

® Theset Sy M C TG M is curved N

® Uncertainty principle: Second microlocalization to Ax, and to Ay, are
incompatible with uniform estimates when x,, xg are close.

® Large norm on many A, implies large L? norm



Local geometry is necessary to extract fine structure

How many balls are in Z ,?

® If a € Iy, there is xo € Bo with large |u(xa )|

® Second microlocalization to

Mo = | ee(T7 M) 31

[t]<1 I Ve kg

—1
has large norm: |Ix, w2 > 2MR™ 27Kl 2
o

~ cd(xa,xg)

~<ax
Xox 1

® Theset Sy M C TG M is curved N

® Uncertainty principle: Second microlocalization to Ax, and to Ay, are
incompatible with uniform estimates when x,, xg are close.

® Large norm on many A, implies large L? norm

~ 22MRR2THKIT el <D g, ullfe < lullf-
a€Zy m
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® Let |Bxy| be the maximal number of looping tubes between a pair (x, y).
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x5 willLoo (v, ) < h

< BT RT By || Tk |22
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® Since the tubes in G are T non-looping implies
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llull 2
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Concentration can be measured in many ways

What does concentration of ¢, in position and momentum say about:

Question 1: Let x € M. What is the behavior of

lim |ox, ()] ? (first part of the talk )
Aj—ro0

Question 2: Let 2 < p < co. The behavior of

. (second part of talk)
Jm oyl 7
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Future directions

® [P estimates for 2 < p < pc

Polynomial improvements in other geometries

® [ ower bounds on L°° given microlocalization information

® Generic quantitative improvements



Thank you!





