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What are eigenfunctions and why study concentration?

• (Mn, g) compact, smooth, no boundary.

∆gu :=
1

√
det g

∂i (g
ij
√

det g∂ju)

• −∆gφλj
= λ2

j φλj
, ‖φλj

‖L2(M) = 1, |φλj
(x)|2 = P(particle of energyλ2

j is at x)

Question: How does uλj
concentrate as λj →∞ ?
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Concentration can be measured in many ways

What does concentration of φλj in position and momentum say about:

Question 1: Let x ∈ M. What is the behavior of

lim
λj→∞

∣∣φλj
(x)
∣∣ ? (first part of the talk )

Question 2: Let 2 < p ≤ ∞. The behavior of

lim
λj→∞

∥∥φλj

∥∥
Lp(M)

? (second part of talk)
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connect to y
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dt2 +R(J, γ̇)γ̇ = 0

“no conjugate points” means J 6= 0 at y

Maximum growth:

φλ zonal harmonic =⇒ |φλ(x)| ∼ cλ
n−1

2

Prior results:

• x ∈ M =⇒ |φλ(x)| = O(λ
n−1

2 ) [Levitan ’52, Avakumovic ’56, Hörmander ’68]

• vol(Lx ) = 0 =⇒ |φλ(x)| = o(λ
n−1

2 ) [Sogge–Zelditch ’02, G ’17]

• vol(Rx ) = 0 =⇒ |φλ(x)| = o(λ
n−1

2 ) [Sogge–Toth–Zelditch ’11, G ’17]

• bound on |φλ(x)| from defect measure [G ’17, related to Sogge–Zelditch ’16]

• (M, g) has no conjugate points =⇒ |φλ(x)| = O
(
λ

n−1
2√

log λ

)
[Bérard ’77]



Sup-norms

x

ξ ∈ Lx

x

ξ ∈ Rx

x

ξ ∈ Rx

x

ξ ∈ Rx

x

x y

γ(t)

x y

J(t)

γ(t)

D2J
dt2 +R(J, γ̇)γ̇ = 0

D2J
dt2 +R(J, γ̇)γ̇ = 0

x y

J(t)

γ(t)

Green geodesic
does not

connect to y

D2J
dt2 +R(J, γ̇)γ̇ = 0

“no conjugate points” means J 6= 0 at y

Maximum growth:

φλ zonal harmonic =⇒ |φλ(x)| ∼ cλ
n−1

2

Prior results:

• x ∈ M =⇒ |φλ(x)| = O(λ
n−1

2 ) [Levitan ’52, Avakumovic ’56, Hörmander ’68]
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• vol(Lx ) = 0 =⇒ |φλ(x)| = o(λ
n−1

2 ) [Sogge–Zelditch ’02, G ’17]

• vol(Rx ) = 0 =⇒ |φλ(x)| = o(λ
n−1

2 ) [Sogge–Toth–Zelditch ’11, G ’17]

• bound on |φλ(x)| from defect measure [G ’17, related to Sogge–Zelditch ’16]

• (M, g) has no conjugate points =⇒ |φλ(x)| = O
(
λ

n−1
2√

log λ

)
[Bérard ’77]



Sup-norms

x

ξ ∈ Lx

x

ξ ∈ Rx

x

ξ ∈ Rx

x

ξ ∈ Rx

x

x y

γ(t)

x y

J(t)

γ(t)

D2J
dt2 +R(J, γ̇)γ̇ = 0

D2J
dt2 +R(J, γ̇)γ̇ = 0

x y

J(t)

γ(t)

Green geodesic
does not

connect to y

D2J
dt2 +R(J, γ̇)γ̇ = 0

“no conjugate points” means J 6= 0 at y

Maximum growth:

φλ zonal harmonic =⇒ |φλ(x)| ∼ cλ
n−1

2

Prior results:

• x ∈ M =⇒ |φλ(x)| = O(λ
n−1

2 ) [Levitan ’52, Avakumovic ’56, Hörmander ’68]
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Understanding concentration improves sup-norm bounds

Theorem (G ’ 17)

Suppose x ∈ M is not maximally self-conjugate. Then, for rλ → 0,∥∥φλ∥∥L∞(B(x,rλ))
= o

(
λ

n−1
2

)
.

Not all Jacobi fields vanish here

γ(t)

Not all Jacobi fields vanish here

e −
Ct

Theorem (Canzani-G ’18)

Suppose x ∈ M is not uniformly maximally self-conjugate. Then, for rλ = λ−δ with
0 < δ < 1

2
, ∥∥φλ∥∥L∞(B(x,rλ))

= O
( λ

n−1
2

√
log λ

)
.
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Understanding concentration gives
quantitatively improved sup-norm bounds
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Lp norms - previous work

δ(p, n)

1
p

n−1
2

1
pc

1
pc

Let 2 < p ≤ ∞. What is the behavior of

lim
λ→∞

∥∥φλ∥∥Lp(M)
?

Sogge ‘88

∥∥φλ∥∥Lp(M)
≤ Cλδ(p,n), δ(p, n) :=

{
n−1

2
− n

p
2(n+1)
n−1

=: pc ≤ p
n−1

4
− n−1

2p
2 ≤ p ≤ pc

Hassell–Tacy ’15 M has non-positive curvature,

pc < p,
∥∥φλ∥∥Lp(M)

≤ C
λδ(p,n)

√
log λ

.

Blair–Sogge ‘17, ’18 M has non-positive curvature,

2 < p ≤ pc ,
∥∥φλ∥∥Lp(M)

≤ C
λδ(p,n)

(log λ)σ(p,n)
.
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Understanding concentration gives
logarithmic improvements for high Lp norms

Theorem (Canzani–G Work in Progress)

Fix p > pc . Suppose that for all (x , y) ∈ U × U, x is not uniformly maximally
conjugate to y . Then,

‖φλ‖Lp(U) ≤ C
λδ(p,n)

√
log λ

‖φλ‖L2(M).

Theorem (Canzani–G Work in Progress)

Fix p > pc and let U ⊂ M. Suppose that for all (x , y) ∈ U ×U, there are Gxy and Bxy
so that ∪j∈Gxy Tj does not loop through y , for log λ times. Then, there is N = N(p)
such that

‖φλ‖Lp(U) ≤ Cλδ(p,n)
( 1
√

log λ
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The proof describes concentration of saturating examples

• Part 1: How does Lp norm grow at a point?

Similar to L∞ case: think geodesic
beams.

• Part 2: How do multiple points share L2 mass?

Communication between points.

• Output: A single point cannot carry optimally distributed L2 mass

and many
points cannot share well distributed L2 mass.

• The ‘enemy’ is finitely many zonal type points scaled by
√

log λ.
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Decompositions of the cotangent bundle: h = λ−1

•
{∣∣|ξ|2g − 1

∣∣ > R
}

Standard Sobolev bounds

‖(1− ψ(hD))u‖Lp ≤ Cεh
n( 1

p
− 1

2
)‖(1− ψ(hD))u‖

H
n( 1

2
− 1

p
)+ε

h

= O(h∞).

• Decomposition of S∗M into good geodesic tubes.

• Let H ⊂ S∗M transverse to Hp

and find a good set of balls in H of radius R.

RTj
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Learning from filtering tubes by mass

• Let Ak be those tubes, Tj ∈ Ak with norm ‖χTj u‖L2 ∼ 2−k‖u‖L2 .

wk =
∑
Tj∈Ak

χTj
u.

•
‖wk‖L∞ ≤ h

1−n
2 R

n−1
2 2−k‖u‖L2 min(22k ,R1−n)

• Let T ∼ log h−1. When 2kR
n−1

2 � TN or 2kR
n−1

2 � T−N‖u‖L2 ,

‖wk‖L∞ ≤ h
1−n

2 T−N min(1, 2−kR
1−n

2 TN)‖u‖L2 ,

interpolation and Sogge’s Lpc estimates are enough
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Local geometry is necessary to extract fine structure

• Cover M with good balls, Bα.

• Filter Tj ∈ Ak by with Bα they intersect.

Tj ∈ Ak,α ⇔ Tj ∈ Ak and πM(Tj ) ∩ Bα 6= ∅.

Tj /∈ Ak,α

Tj ∈ Ak,α

Bα

• Filter balls Bα by L∞ norm of wk .

Bα ∈ Ik,m ⇔ 2m ∼
h

n−1
2 R

1−n
2 ‖wk‖L∞(Bα)

‖u‖L2

, Uk,m =
⋃

α∈Ik,m

Bα

• If 2m � R
1−n

2 T−N then low L∞ and by interpolation, Uk,m does not contribute
significantly.
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Local geometry is necessary to extract fine structure

How many balls are in Ik,m?

• If α ∈ Ik,m, there is xα ∈ Bα with large |u(xα)|

• Second microlocalization to

Λxα :=
⋃
|t|≤1

ϕt(T
∗
xαM)

has large norm: ‖χΛxα
wk‖L2 ≥ 2mR

n−1
2 2−k‖u‖L2

• The set S∗x0
M ⊂ T∗x0

M is curved x1

ξ1

Λxα

γxα,xβ

Λxβ

∼ cd(xα, xβ)

• Uncertainty principle:

Second microlocalization to Λxα and to Λxβ are
incompatible with uniform estimates when xα, xβ are close.

• Large norm on many Λxα implies large L2 norm

≈ 22mRn−12−2k |Ik,m|‖u‖2
L2 ≤

∑
α∈Ik,m

‖χΛxα
u‖2

L2 ≤ ‖u‖2
L2 .
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M is curved x1

ξ1

Λxα

γxα,xβ

Λxβ

∼ cd(xα, xβ)

• Uncertainty principle: Second microlocalization to Λxα and to Λxβ are
incompatible with uniform estimates when xα, xβ are close.

• Large norm on many Λxα implies large L2 norm

≈ 22mRn−12−2k |Ik,m|‖u‖2
L2 ≤

∑
α∈Ik,m

‖χΛxα
u‖2

L2 ≤ ‖u‖2
L2 .



Global dynamics are necessary to extract fine structure

How do the global dynamics enter?

• Construct a non-self looping subset of tubes over Uk,m

• Each pair of balls Bα, Bβ in Uk,m has few looping tubes.

• Take all potential loops together −→ the ‘bad’ tubes

• Create a large good non-self looping set – can’t be too many tubes over any
point.
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Using the good and bad decomposition reveals structure.

• Let |Bxy | be the maximal number of looping tubes between a pair (x , y).

•
‖χBwk‖L∞(Uk,m) ≤ h

1−n
2 R

n−1
2 |Bxy ||Ik,m|2−k‖u‖L2

‖χBwk‖L2 ≤ h
1−n

2 R
n−1

2 |Bxy ||Ik,m|22−k‖u‖L2

• Since the tubes in G are T non-looping implies

|G| ≤ 22kT−1

•

‖χGwk‖L2(Uk,m) ≤
‖u‖L2

T
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Concentration can be measured in many ways

What does concentration of φλj in position and momentum say about:

Question 1: Let x ∈ M. What is the behavior of

lim
λj→∞

∣∣φλj
(x)
∣∣ ? (first part of the talk )

Question 2: Let 2 < p ≤ ∞. The behavior of

lim
λj→∞

∥∥φλj

∥∥
Lp(M)

? (second part of talk)



Future directions

• Lp estimates for 2 < p ≤ pc

• Polynomial improvements in other geometries

• Lower bounds on L∞ given microlocalization information

• Generic quantitative improvements
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Thank you!




