L^p norms via geodesic beams

Joint work with Y. Canzani

10-15-2019 Jeffrey Galkowski

 \bullet (M^n, g) compact, smooth, no boundary.

 \bullet (M^n,g) compact, smooth, no boundary. $\Delta_g u := \frac{1}{\sqrt{\det g}} \partial_i (g^{ij} \sqrt{\det g} \partial_j u)$

•
$$
(M^n, g)
$$
 compact, smooth, no boundary. $\Delta_g u := \frac{1}{\sqrt{\det g}} \partial_i (g^{ij} \sqrt{\det g} \partial_j u)$

•
$$
-\Delta_g \phi_{\lambda_j} = \lambda_j^2 \phi_{\lambda_j}
$$
, $||\phi_{\lambda_j}||_{L^2(M)} = 1$, $|\phi_{\lambda_j}(x)|^2 = \mathbb{P}(\text{particle of energy } \lambda_j^2 \text{ is at } x)$

•
$$
(M^n, g)
$$
 compact, smooth, no boundary. $\Delta_g u := \frac{1}{\sqrt{\det g}} \partial_i (g^{ij} \sqrt{\det g} \partial_j u)$

$$
\bullet \ \ -\Delta_g \phi_{\lambda_j} = \lambda_j^2 \phi_{\lambda_j}, \qquad \|\phi_{\lambda_j}\|_{L^2(M)} = 1, \qquad |\phi_{\lambda_j}(x)|^2 = \mathbb{P}(\text{particle of energy } \lambda_j^2 \text{ is at } x)
$$

•
$$
(M^n, g)
$$
 compact, smooth, no boundary. $\Delta_g u := \frac{1}{\sqrt{\det g}} \partial_i (g^{ij} \sqrt{\det g} \partial_j u)$

 \bullet $-\Delta_g \phi_{\lambda_j} = \lambda_j^2 \phi_{\lambda_j},$ \qquad $\|\phi_{\lambda_j}\|_{L^2(M)} = 1$, $\qquad |\phi_{\lambda_j}(x)|^2 = \mathbb{P}(\text{particle of energy } \lambda_j^2 \text{ is at } x)$

•
$$
(M^n, g)
$$
 compact, smooth, no boundary. $\Delta_g u := \frac{1}{\sqrt{\det g}} \partial_i (g^{ij} \sqrt{\det g} \partial_j u)$

 \bullet $-\Delta_g \phi_{\lambda_j} = \lambda_j^2 \phi_{\lambda_j},$ \qquad $\|\phi_{\lambda_j}\|_{L^2(M)} = 1$, $\qquad |\phi_{\lambda_j}(x)|^2 = \mathbb{P}(\text{particle of energy } \lambda_j^2 \text{ is at } x)$

Question: How does ϕ_{λ_j} concentrate as $\lambda_j \rightarrow \infty$?

What does concentration of ϕ_{λ_j} in position and momentum say about:

What does concentration of ϕ_{λ_j} in position and momentum say about:

Question 1: Let $x \in M$. What is the behavior of $\lim_{\lambda_j \to \infty} |\phi_{\lambda_j}(\mathbf{x})|$  ? (first part of the talk) What does concentration of ϕ_{λ_j} in position and momentum say about:

Question 1: Let $x \in M$. What is the behavior of $\lim_{\lambda_j \to \infty} |\phi_{\lambda_j}(\mathbf{x})|$  ? (first part of the talk)

Question 2: Let $2 < p \leq \infty$. The behavior of $\lim_{\lambda_j\to\infty}\|\phi_{\lambda_j}\|_{L^p(M)}$? (second part of talk)

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

•
$$
x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})
$$

[Levitan '52, Avakumovic '56, Hörmander '68]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

•
$$
x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})
$$

• vol
$$
(\mathcal{L}_x)
$$
 = 0 \implies $|\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$

[Levitan '52, Avakumovic '56, Hörmander '68]

[Sogge-Zelditch '02, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

•
$$
x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})
$$

• vol
$$
(\mathcal{L}_x)
$$
 = 0 \implies $|\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$

[Levitan '52, Avakumovic '56, Hörmander '68]

[Sogge-Zelditch '02, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- [Levitan '52, Avakumovic '56, Hörmander '68]
	- ²) [Sogge–Zelditch '02, G '17]
	- [Sogge–Toth–Zelditch '11, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- [Levitan '52, Avakumovic '56, Hörmander '68]
	- ²) [Sogge–Zelditch '02, G '17]
	- [Sogge–Toth–Zelditch '11, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- [Levitan '52, Avakumovic '56, Hörmander '68]
	- ²) [Sogge–Zelditch '02, G '17]
	- [Sogge–Toth–Zelditch '11, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- [Levitan '52, Avakumovic '56, Hörmander '68]
	- ²) [Sogge–Zelditch '02, G '17]
	- [Sogge–Toth–Zelditch '11, G '17]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- [Sogge–Toth–Zelditch '11, G '17]
-

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- [Sogge–Toth–Zelditch '11, G '17]
-
- \bullet (M,g) has no conjugate points \implies $|\phi_{\lambda}(x)| = O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big)$ [Bérard '77]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- [Sogge–Toth–Zelditch '11, G '17]

 \bullet (M,g) has no conjugate points \implies $|\phi_{\lambda}(x)| = O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big)$ [Bérard '77]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- ²) [Sogge–Toth–Zelditch '11, G '17]

 \bullet (M,g) has no conjugate points \implies $|\phi_{\lambda}(x)| = O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big)$ [Bérard '77]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- ²) [Sogge–Toth–Zelditch '11, G '17]

 \bullet (M,g) has no conjugate points \implies $|\phi_{\lambda}(x)| = O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big)$ [Bérard '77]

Maximum growth:

 ϕ_{λ} zonal harmonic $\implies |\phi_{\lambda}(x)| \sim c \lambda^{\frac{n-1}{2}}$

Prior results:

- $x \in M \implies |\phi_{\lambda}(x)| = O(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{L}_x) = 0 \implies |\phi_{\lambda}(x)| = o(\lambda^{\frac{n-1}{2}})$
- vol $(\mathcal{R}_{\times})=0 \;\;\Longrightarrow\;\; |\phi_{\lambda}(\times)|=o(\lambda^{\frac{n-1}{2}})$
- bound on $|\phi_{\lambda}(x)|$ from defect measure [G '17, related to Sogge–Zelditch '16]

[Levitan '52, Avakumovic '56, Hörmander '68]

- ²) [Sogge–Zelditch '02, G '17]
- ²) [Sogge–Toth–Zelditch '11, G '17]

 \bullet (M,g) has no conjugate points \implies $|\phi_{\lambda}(x)| = O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big)$ [Bérard '77]

"no conjugate points" means $J \neq 0$ at y

Theorem (G ' 17)

Suppose $x \in M$ is not maximally self-conjugate. Then, for $r_{\lambda} \to 0$,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,r_{\lambda}))}=o\left(\lambda^{\frac{n-1}{2}}\right).
$$

Theorem (G ' 17)

Suppose $x \in M$ is not maximally self-conjugate. Then, for $r_{\lambda} \to 0$,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,r_{\lambda}))}=o\left(\lambda^{\frac{n-1}{2}}\right).
$$

Theorem (G ' 17)

Suppose $x \in M$ is not maximally self-conjugate. Then, for $r_{\lambda} \to 0$,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,r_{\lambda}))}=o\left(\lambda^{\frac{n-1}{2}}\right).
$$

Theorem (G ' 17)

Suppose $x \in M$ is not maximally self-conjugate. Then, for $r_{\lambda} \to 0$,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,r_{\lambda}))}=o\left(\lambda^{\frac{n-1}{2}}\right).
$$

Theorem (Canzani-G '18)

Suppose $x \in M$ is not uniformly maximally self-conjugate. Then, for $r_{\lambda} = \lambda^{-\delta}$ with $0 < \delta < \frac{1}{2}$

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,r_{\lambda}))}=O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log\lambda}}\Big).
$$

Profile across a geodesic beam

Profile across a geodesic beam

Profile along a geodesic beam

Fine microlocalization - Tubes on $S^*_{\mathsf{x}}M$

Note: $\mathsf{vol}(\mathcal{T}_j) = R(\lambda)^{n-1}$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

 $R(\lambda)$ 1

Theorem (Canzani–G '18 (main estimate, no assumptions!))

j∈G

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

Suppose $\mathcal{I} = \mathcal{B} \cup \mathcal{G}$ and that $\left(\begin{array}{c} \end{array}\right) \mathcal{T}_j$

is non-self looping for $log \lambda$ times.

 $R(\lambda)$ 1

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

Suppose $\mathcal{I} = \mathcal{B} \cup \mathcal{G}$ and that $\left(\begin{array}{c} \end{array}\right) \mathcal{T}_j$ j∈G

is non-self looping for log λ times.

 $R(\lambda)$ 1

Then,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \Big(|\mathcal{B}|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\Big) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

j∈G

Suppose $\mathcal{I} = \mathcal{B} \cup \mathcal{G}$ and that $\bigcup \mathcal{T}_j$ is non-self looping for log λ times.

 $R(\lambda)$ 1

Then,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \left(|B|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\right) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

 $R(\lambda)$ 1

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \left(|B|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\right) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

 $R(\lambda)$ 1

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \Big(|\mathcal{B}|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\Big) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

 $R(\lambda)$ 1

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \left(|B|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\right) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18 (main estimate, no assumptions!))

Let $x \in M$. There exists $C_n > 0$ so that

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n\lambda^{\frac{n-1}{2}}R(\lambda)^{\frac{n-1}{2}}\sum_{j\in\mathcal{I}}\left\|\chi_{\mathcal{T}_j}\phi_{\lambda}\right\|_{L^2(M)}
$$

 $R(\lambda)$ 1

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_n \lambda^{\frac{n-1}{2}} R(\lambda)^{\frac{n-1}{2}} \Big(|\mathcal{B}|^{\frac{1}{2}} + \frac{|\mathcal{G}|^{\frac{1}{2}}}{(\log \lambda)^{\frac{1}{2}}}\Big) \|\phi_{\lambda}\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))}\leq C_{n}\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_{j}\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_{j}\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_{\lambda}\|_{L^{2}(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,R(\lambda)))} \leq C_{n}\lambda^{\frac{n-1}{2}} \left(\text{vol}(\cup_{j\in B} \mathcal{T}_{j})^{\frac{1}{2}} + \frac{\text{vol}(\cup_{j\in\mathcal{G}} \mathcal{T}_{j})^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right) \|\phi_{\lambda}\|_{L^{2}(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

$$
\|\phi_\lambda\|_{L^\infty(B(x,R(\lambda)))}\leq C_n\lambda^{\frac{n-1}{2}}\left(\text{vol}\big(\cup_{j\in\mathcal{B}}\mathcal{T}_j\big)^{\frac{1}{2}}+\frac{\text{vol}\big(\cup_{j\in\mathcal{G}}\mathcal{T}_j\big)^{\frac{1}{2}}}{(\log\lambda)^{\frac{1}{2}}}\right)\|\phi_\lambda\|_{L^2(M)}
$$

Theorem (Canzani–G '18)

Let $x \in M$ and suppose x is not uniformly self-conjugate with maximal multiplicity,

$$
\|\phi_{\lambda}\|_{L^{\infty}(B(x,\lambda^{-\delta}))}=O\Big(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log\lambda}}\Big).
$$

Let $2 < p \leq \infty$. What is the behavior of

$$
\lim_{\lambda \to \infty} \left\| \phi_\lambda \right\|_{L^p(M)}
$$

 $\overline{?}$

Let $2 < p \leq \infty$. What is the behavior of $\lim_{\lambda\to\infty} \|\phi_\lambda\|_{L^p(M)}$?

Sogge '88

$$
\|\phi_{\lambda}\|_{L^p(M)} \leq C\lambda^{\delta(p,n)}, \qquad \delta(p,n) := \begin{cases} \frac{n-1}{2} - \frac{n}{p} & \frac{2(n+1)}{n-1} =: p_c \leq p \\ \frac{n-1}{4} - \frac{n-1}{2p} & 2 \leq p \leq p_c \end{cases}
$$

Let $2 < p \leq \infty$. What is the behavior of $\lim_{\lambda\to\infty} \|\phi_\lambda\|_{L^p(M)}$?

Sogge '88

$$
\|\phi_{\lambda}\|_{L^p(M)} \leq C\lambda^{\delta(p,n)}, \qquad \delta(p,n) := \begin{cases} \frac{n-1}{2} - \frac{p}{p} & \frac{2}{p} \\ \frac{n-1}{4} - \frac{p-1}{2p} & 2 \end{cases}
$$

$$
\frac{2(n+1)}{n-1} =: p_c \le p
$$

2 \le p \le p_c

Let $2 < p \leq \infty$. What is the behavior of

$$
\lim_{\lambda\to\infty}\|\phi_\lambda\|_{L^p(M)}\qquad?
$$

Sogge '88

$$
\|\phi_{\lambda}\|_{L^p(M)} \leq C\lambda^{\delta(p,n)}, \qquad \delta(p,n) := \begin{cases} \frac{n-1}{2} - \frac{n}{p} & \frac{2(n+1)}{n-1} =: p_c \leq p \\ \frac{n-1}{4} - \frac{n-1}{2p} & 2 \leq p \leq p_c \end{cases}
$$

Hassell–Tacy '15 M has non-positive curvature,

$$
p_c < p
$$
, $\|\phi_{\lambda}\|_{L^p(M)} \leq C \frac{\lambda^{\delta(p,n)}}{\sqrt{\log \lambda}}$.

Let $2 < p \leq \infty$. What is the behavior of

$$
\lim_{\lambda\to\infty}\|\phi_\lambda\|_{L^p(M)}\qquad?
$$

Sogge '88

$$
\|\phi_{\lambda}\|_{L^p(M)} \leq C\lambda^{\delta(p,n)}, \qquad \delta(p,n) := \begin{cases} \frac{n-1}{2} - \frac{n}{p} & \frac{2(n+1)}{n-1} =: p_c \leq p \\ \frac{n-1}{4} - \frac{n-1}{2p} & 2 \leq p \leq p_c \end{cases}
$$

Hassell–Tacy '15 M has non-positive curvature,

$$
p_c < p
$$
, $\|\phi_{\lambda}\|_{L^p(M)} \leq C \frac{\lambda^{\delta(p,n)}}{\sqrt{\log \lambda}}$.

Blair–Sogge '17, '18 M has non-positive curvature,

$$
2 < p \leq p_c, \qquad \left\| \phi_{\lambda} \right\|_{L^p(M)} \leq C \frac{\lambda^{\delta(p,n)}}{(\log \lambda)^{\sigma(p,n)}}.
$$

Theorem (Canzani–G Work in Progress)

Fix $p > p_c$. Suppose that for all $(x, y) \in U \times U$, x is not uniformly maximally conjugate to y. Then,

$$
\|\phi_{\lambda}\|_{L^{p}(U)}\leq C\frac{\lambda^{\delta(p,n)}}{\sqrt{\log\lambda}}\|\phi_{\lambda}\|_{L^{2}(M)}.
$$

Understanding concentration gives logarithmic improvements for high L^p norms

Theorem (Canzani–G Work in Progress)

Fix $p > p_c$. Suppose that for all $(x, y) \in U \times U$, x is not uniformly maximally conjugate to y. Then,

$$
\|\phi_{\lambda}\|_{L^{p}(U)} \leq C \frac{\lambda^{\delta(p,n)}}{\sqrt{\log \lambda}} \|\phi_{\lambda}\|_{L^{2}(M)}.
$$

Theorem (Canzani–G Work in Progress)

Fix $p > p_c$ and let $U \subset M$. Suppose that for all $(x, y) \in U \times U$, there are \mathcal{G}_{xy} and \mathcal{B}_{xy} so that $\cup_{j\in\mathcal{G}_{\chi_{\mathcal{Y}}}}\mathcal{T}_j$ does not loop through $\mathcal{y},$ for log λ times. Then, there is $\mathsf{N}=\mathsf{N}(\rho)$ such that

$$
\|\phi_\lambda\|_{L^p(\mathcal{U})}\leq C\lambda^{\delta(p,n)}\Big(\frac{1}{\sqrt{\log\lambda}}+\sup_{x,y\in\mathcal{U}}\textup{vol}\big(\cup_{j\in\mathcal{B}_{xy}}\mathcal{T}_j\big)^{(1-\frac{p_c}{2p})}(\log\lambda)^N\Big)\|\phi_\lambda\|_{L^2(M)}.
$$

The proof describes concentration of saturating examples

• Part 1: How does L^p norm grow at a point?

The proof describes concentration of saturating examples

• Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.

- Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.
- Part 2: How do multiple points share L^2 mass?
- Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.
- Part 2: How do multiple points share L^2 mass? Communication between points.
- Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.
- Part 2: How do multiple points share L^2 mass? Communication between points.
- \bullet Output: A single point cannot carry optimally distributed L^2 mass
- Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.
- Part 2: How do multiple points share L^2 mass? Communication between points.
- \bullet Output: A single point cannot carry optimally distributed L^2 mass and many points cannot share well distributed L^2 mass.
- Part 1: How does L^p norm grow at a point? Similar to L^∞ case: think geodesic beams.
- Part 2: How do multiple points share L^2 mass? Communication between points.
- \bullet Output: A single point cannot carry optimally distributed L^2 mass and many points cannot share well distributed L^2 mass.
- The 'enemy' is finitely many zonal type points scaled by $\sqrt{\log \lambda}$.

$$
\bullet\;\;\Big\{\big||\xi|_g^2-1\big|>R\Big\}
$$

•
$$
\left\{ \left| |\xi|_g^2 - 1 \right| > R \right\}
$$
 Standard Sobolev bounds

$$
\|(1-\psi(hD))u\|_{L^p}\leq C_{\epsilon}h^{n(\frac{1}{p}-\frac{1}{2})}\|(1-\psi(hD))u\|_{H_h^{n(\frac{1}{2}-\frac{1}{p})+\epsilon}}=O(h^{\infty}).
$$

•
$$
\left\{ \left| |\xi|_g^2 - 1 \right| > R \right\}
$$
 Standard Sobolev bounds

$$
\|(1-\psi(hD))u\|_{L^p}\leq C_{\epsilon}h^{n(\frac{1}{p}-\frac{1}{2})}\|(1-\psi(hD))u\|_{H_h^{n(\frac{1}{2}-\frac{1}{p})+\epsilon}}=O(h^{\infty}).
$$

• Decomposition of S^*M into good geodesic tubes.

•
$$
\left\{||\xi|_g^2 - 1| > R\right\}
$$
 Standard Sobolev bounds

$$
\|(1-\psi(hD))u\|_{L^p}\leq C_{\epsilon}h^{n(\frac{1}{p}-\frac{1}{2})}\|(1-\psi(hD))u\|_{H_h^{n(\frac{1}{2}-\frac{1}{p})+\epsilon}}=O(h^{\infty}).
$$

- Decomposition of S^*M into good geodesic tubes.
- $\bullet\,$ Let $\mathcal{H}\subset\mathcal{S}^*\mathcal{M}$ transverse to H_p

•
$$
\left\{||\xi|_g^2 - 1| > R\right\}
$$
 Standard Sobolev bounds

$$
\|(1-\psi(hD))u\|_{L^p}\leq C_{\epsilon}h^{n(\frac{1}{p}-\frac{1}{2})}\|(1-\psi(hD))u\|_{H_h^{n(\frac{1}{2}-\frac{1}{p})+\epsilon}}=O(h^{\infty}).
$$

- Decomposition of S^*M into good geodesic tubes.
- Let $\mathcal{H} \subset S^*M$ transverse to H_p and find a good set of balls in \mathcal{H} of radius $R.$

•
$$
\left\{ \left| |\xi|_g^2 - 1 \right| > R \right\}
$$
 Standard Sobolev bounds

$$
\|(1-\psi(hD))u\|_{L^p}\leq C_{\epsilon}h^{n(\frac{1}{p}-\frac{1}{2})}\|(1-\psi(hD))u\|_{H_h^{n(\frac{1}{2}-\frac{1}{p})+\epsilon}}=O(h^{\infty}).
$$

- Decomposition of S^*M into good geodesic tubes.
- Let $\mathcal{H} \subset S^*M$ transverse to H_p and find a good set of balls in \mathcal{H} of radius $R.$

 $\bullet\,$ Let \mathcal{A}_k be those tubes, $\mathcal{T}_j\in\mathcal{A}_k$ with norm $\|\chi_{\mathcal{T}_j} u\|_{L^2}\sim 2^{-k}\|u\|_{L^2}.$

 $\bullet\,$ Let \mathcal{A}_k be those tubes, $\mathcal{T}_j\in\mathcal{A}_k$ with norm $\|\chi_{\mathcal{T}_j} u\|_{L^2}\sim 2^{-k}\|u\|_{L^2}.$

$$
w_k = \sum_{\mathcal{T}_j \in \mathcal{A}_k} \chi_{\mathcal{T}_j} u.
$$

 $\bullet\,$ Let \mathcal{A}_k be those tubes, $\mathcal{T}_j\in\mathcal{A}_k$ with norm $\|\chi_{\mathcal{T}_j} u\|_{L^2}\sim 2^{-k}\|u\|_{L^2}.$

$$
w_k = \sum_{\mathcal{T}_j \in \mathcal{A}_k} \chi_{\mathcal{T}_j} u.
$$

•
\n
$$
\|w_k\|_{L^{\infty}} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2} \min(2^{2k}, R^{1-n})
$$

 $\bullet\,$ Let \mathcal{A}_k be those tubes, $\mathcal{T}_j\in\mathcal{A}_k$ with norm $\|\chi_{\mathcal{T}_j} u\|_{L^2}\sim 2^{-k}\|u\|_{L^2}.$

$$
w_k = \sum_{\mathcal{T}_j \in \mathcal{A}_k} \chi_{\mathcal{T}_j} u.
$$

•
$$
\|w_k\|_{L^\infty}\leq h^{\frac{1-n}{2}}R^{\frac{n-1}{2}}2^{-k}\|u\|_{L^2}\min(2^{2k},R^{1-n})
$$

• Let $T \sim \log h^{-1}$. When $2^k R^{\frac{n-1}{2}} \gg T^N$ or $2^k R^{\frac{n-1}{2}} \ll T^{-N} ||u||_{L^2}$, $||w_k||_{L^{\infty}} \leq h^{\frac{1-n}{2}} T^{-N} \min(1, 2^{-k} R^{\frac{1-n}{2}} T^N) ||u||_{L^2},$

 $\bullet\,$ Let \mathcal{A}_k be those tubes, $\mathcal{T}_j\in\mathcal{A}_k$ with norm $\|\chi_{\mathcal{T}_j} u\|_{L^2}\sim 2^{-k}\|u\|_{L^2}.$

$$
w_k = \sum_{\mathcal{T}_j \in \mathcal{A}_k} \chi_{\mathcal{T}_j} u.
$$

•

$$
\|w_k\|_{L^{\infty}} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2} \min(2^{2k}, R^{1-n})
$$

• Let $T \sim \log h^{-1}$. When $2^k R^{\frac{n-1}{2}} \gg T^N$ or $2^k R^{\frac{n-1}{2}} \ll T^{-N} ||u||_{L^2}$, $||w_k||_{L^{\infty}} \leq h^{\frac{1-n}{2}} T^{-N} \min(1, 2^{-k} R^{\frac{1-n}{2}} T^N) ||u||_{L^2},$

interpolation and Sogge's L^{p_c} estimates are enough

• Cover M with good balls, B_{α} .

- Cover M with good balls, B_{α} .
- Filter $\mathcal{T}_j \in \mathcal{A}_k$ by with B_α they intersect.

- Cover M with good balls, B_{α} .
- Filter $\mathcal{T}_j \in \mathcal{A}_k$ by with B_α they intersect.

 $\mathcal{T}_j \in \mathcal{A}_{k,\alpha} \Leftrightarrow \mathcal{T}_j \in \mathcal{A}_k$ and $\pi_M(\mathcal{T}_j) \cap B_\alpha \neq \emptyset$.

 $\tau_j \notin \mathcal{A}_{k,\alpha}$

- Cover M with good balls, B_{α} .
- Filter $\mathcal{T}_j \in \mathcal{A}_k$ by with B_α they intersect.

 $\mathcal{T}_i \in \mathcal{A}_{k,\alpha} \Leftrightarrow \mathcal{T}_i \in \mathcal{A}_k$ and $\pi_M(\mathcal{T}_i) \cap B_\alpha \neq \emptyset$.

 $\tau_j \notin \mathcal{A}_{k,\alpha}$

 $\mathcal{T}_j \in \mathcal{A}_{k,\alpha}$ B_{α}

• Filter balls B_{α} by L^{∞} norm of w_k .

- Cover M with good balls, B_{α} .
- Filter $\mathcal{T}_j \in \mathcal{A}_k$ by with B_α they intersect.

 $\mathcal{T}_i \in \mathcal{A}_{k,\alpha} \Leftrightarrow \mathcal{T}_i \in \mathcal{A}_k$ and $\pi_M(\mathcal{T}_i) \cap B_\alpha \neq \emptyset$.

 $\tau_j \notin \mathcal{A}_{k,\alpha}$

 $\mathcal{T}_j \in \mathcal{A}_{k,\alpha}$ B_{α}

• Filter balls B_{α} by L^{∞} norm of w_k .

$$
B_{\alpha} \in \mathcal{I}_{k,m} \Leftrightarrow 2^{m} \sim \frac{h^{\frac{m-1}{2}} R^{\frac{1-n}{2}} \|w_{k}\|_{L^{\infty}(B_{\alpha})}}{\|u\|_{L^{2}}}, \qquad U_{k,m} = \bigcup_{\alpha \in \mathcal{I}_{k,m}} B_{\alpha}
$$

$$
B_{\alpha} \in \mathcal{I}_{k,m} \Leftrightarrow 2^{m} \sim \frac{h^{\frac{n-1}{2}} R^{\frac{1-n}{2}} \|w_{k}\|_{L^{\infty}(B_{\alpha})}}{\|u\|_{L^{2}}}, \qquad U_{k,m} = \bigcup_{\alpha \in \mathcal{I}_{k,m}} B_{\alpha}
$$

• If 2 $^m\ll R^{\frac{1-n}{2}}$ T^{-N} then low L^∞ and by interpolation, $U_{k,m}$ does not contribute significantly.

How many balls are in $\mathcal{I}_{k,m}$?

How many balls are in $\mathcal{I}_{k,m}$?

• If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{\mathsf{x}_{\alpha}}:=\bigcup_{|t|\leq 1}\varphi_t(\,T^*_{\mathsf{x}_{\alpha}}\mathsf{M})
$$

has large norm: $\|\chi_{\Lambda_{\mathsf{X}_{\alpha}}} w_k\|_{L^2} \geq 2^m R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2}$

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{\mathsf{x}_{\alpha}}:=\bigcup_{|t|\leq 1}\varphi_t(\,T^*_{\mathsf{x}_{\alpha}}\mathsf{M})
$$

has large norm: $\|\chi_{\Lambda_{\mathsf{X}_{\alpha}}} w_k\|_{L^2} \geq 2^m R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2}$

• The set $S_{x_0}^*M\subset \mathcal{T}_{x_0}^*M$ is curved

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_\alpha}:=\bigcup_{|t|\leq 1}\varphi_t({T^*_{x_\alpha}}M)
$$
 has large norm:
$$
\|\chi_{\Lambda_{x_\alpha}}w_k\|_{L^2}\geq 2^mR^{\frac{n-1}{2}}2^{-k}\|u\|_{L^2}
$$

• The set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved A_{x_β} A_{x_α} A_{x_α} A_{x_1}

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_\alpha}:=\bigcup_{|t|\leq 1}\varphi_t({T^*_{x_\alpha}}M)
$$
 has large norm:
$$
\|\chi_{\Lambda_{x_\alpha}}w_k\|_{L^2}\geq 2^mR^{\frac{n-1}{2}}2^{-k}\|u\|_{L^2}
$$

• The set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved A_{x_β} A_{x_α} A_{x_α} A_{x_1}

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_{\alpha}} := \bigcup_{|t| \le 1} \varphi_t(T^*_{x_{\alpha}} M)
$$

has large norm: $\|\chi_{\Lambda_{x_{\alpha}}} w_k\|_{L^2} \ge 2^m R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2}$

- The set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved A_{x_β} A_{x_α} A_{x_α} A_{x_1}
- Uncertainty principle:

How many balls are in $\mathcal{I}_{k,m}$?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_{\alpha}} := \bigcup_{|t| \leq 1} \varphi_t(T_{x_{\alpha}}^* M) \qquad \qquad \xi_1
$$
\nhas large norm:

\n
$$
\|\chi_{\Lambda_{x_{\alpha}}} w_k\|_{L^2} \geq 2^m R^{\frac{n-1}{2}} 2^{-k} \|u\|_{L^2}
$$
\nThe set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved

\n

-
- \bullet Uncertainty principle: Second microlocalization to $\Lambda_{\mathsf{x}_{\alpha}}$ and to $\Lambda_{\mathsf{x}_{\beta}}$ are incompatible with uniform estimates when x_{α}, x_{β} are close.

 $\Lambda_{x_\alpha} :=$

How many balls are in \mathcal{I}_{km} ?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_{\alpha}} := \bigcup_{|t| \leq 1} \varphi_t(T_{x_{\alpha}}^* M) \qquad \qquad \xi_1
$$
\nhas large norm: $||\chi_{\Lambda_{x_{\alpha}}} w_k||_{L^2} \geq 2^m R^{\frac{n-1}{2}} 2^{-k} ||u||_{L^2}$

\nThe set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved

\n

has large norm: $\|\chi_{\Lambda_{\chi_{\alpha}}} w_k\|_{L^2} \geq 2^m R$

- \bullet Uncertainty principle: Second microlocalization to $\Lambda_{\mathsf{x}_{\alpha}}$ and to $\Lambda_{\mathsf{x}_{\beta}}$ are incompatible with uniform estimates when x_{α}, x_{β} are close.
- $\bullet\,$ Large norm on many $\Lambda_{\mathsf{x}_{\alpha}}$ implies large L^2 norm

 $\Lambda_{x_{\alpha}} :=$

How many balls are in \mathcal{I}_{km} ?

- If $\alpha \in \mathcal{I}_{k,m}$, there is $x_{\alpha} \in B_{\alpha}$ with large $|u(x_{\alpha})|$
- Second microlocalization to

$$
\Lambda_{x_{\alpha}} := \bigcup_{|t| \leq 1} \varphi_t(T_{x_{\alpha}}^* M) \qquad \qquad \xi_1
$$
\nhas large norm: $||\chi_{\Lambda_{x_{\alpha}}} w_k||_{L^2} \geq 2^m R^{\frac{n-1}{2}} 2^{-k} ||u||_{L^2}$

\nThe set $S_{x_0}^* M \subset T_{x_0}^* M$ is curved

\n

-
- \bullet Uncertainty principle: Second microlocalization to $\Lambda_{\mathsf{x}_{\alpha}}$ and to $\Lambda_{\mathsf{x}_{\beta}}$ are incompatible with uniform estimates when x_{α}, x_{β} are close.
- $\bullet\,$ Large norm on many $\Lambda_{\mathsf{x}_{\alpha}}$ implies large L^2 norm

$$
\approx 2^{2m} R^{n-1} 2^{-2k} |\mathcal{I}_{k,m}| \|u\|_{L^2}^2 \leq \sum_{\alpha \in \mathcal{I}_{k,m}} \|\chi_{\Lambda_{x_\alpha}} u\|_{L^2}^2 \leq \|u\|_{L^2}^2.
$$

• Construct a non-self looping subset of tubes over $U_{k,m}$

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.
- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

- Construct a non-self looping subset of tubes over $U_{k,m}$
- Each pair of balls B_{α} , B_{β} in $U_{k,m}$ has few looping tubes.
- Take all potential loops together \rightarrow the 'bad' tubes
- Create a large good non-self looping set can't be too many tubes over any point.

• Let $|\mathcal{B}_{xy}|$ be the maximal number of looping tubes between a pair (x, y) .

• Let $|\mathcal{B}_{xy}|$ be the maximal number of looping tubes between a pair (x, y) .

•

$$
\begin{aligned} \|\chi_{\mathcal{B}}\,w_k\|_{L^\infty(U_{k,m})}&\leq h^{\frac{1-n}{2}}\,R^{\frac{n-1}{2}}|\mathcal{B}_{xy}||\mathcal{I}_{k,m}|2^{-k}\|u\|_{L^2}\\ \|\chi_{\mathcal{B}}\,w_k\|_{L^2}&\leq h^{\frac{1-n}{2}}\,R^{\frac{n-1}{2}}|\mathcal{B}_{xy}||\mathcal{I}_{k,m}|^22^{-k}\|u\|_{L^2}\end{aligned}
$$

• Let $|\mathcal{B}_{xy}|$ be the maximal number of looping tubes between a pair (x, y) .

$$
||\chi_{\mathcal{B}} w_k||_{L^{\infty}(U_{k,m})} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} |\mathcal{B}_{xy}||\mathcal{I}_{k,m}|2^{-k}||u||_{L^2}
$$

$$
||\chi_{\mathcal{B}} w_k||_{L^2} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} |\mathcal{B}_{xy}||\mathcal{I}_{k,m}|^2 2^{-k} ||u||_{L^2}
$$

• Since the tubes in G are T non-looping implies

•

$$
|\mathcal{G}| \leq 2^{2k} \, \mathcal{T}^{-1}
$$

• Let $|\mathcal{B}_{xy}|$ be the maximal number of looping tubes between a pair (x, y) .

$$
\|\chi_{\mathcal{B}} w_k\|_{L^{\infty}(U_{k,m})} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} |\mathcal{B}_{xy}||\mathcal{I}_{k,m}|2^{-k} \|u\|_{L^2}
$$

$$
\|\chi_{\mathcal{B}} w_k\|_{L^2} \leq h^{\frac{1-n}{2}} R^{\frac{n-1}{2}} |\mathcal{B}_{xy}||\mathcal{I}_{k,m}|^2 2^{-k} \|u\|_{L^2}
$$

• Since the tubes in G are T non-looping implies

•

•

$$
|\mathcal{G}| \leq 2^{2k}\,T^{-1}
$$

$$
\|\chi_{\mathcal{G}} w_k\|_{L^2(U_{k,m})}\leq \frac{\|u\|_{L^2}}{T^{\frac{1}{2}}}.
$$

What does concentration of ϕ_{λ_j} in position and momentum say about:

Question 1: Let $x \in M$. What is the behavior of $\lim_{\lambda_j \to \infty} |\phi_{\lambda_j}(\mathbf{x})|$  ? (first part of the talk)

Question 2: Let $2 < p \leq \infty$. The behavior of $\lim_{\lambda_j\to\infty}\|\phi_{\lambda_j}\|_{L^p(M)}$? (second part of talk)

• L^p estimates for $2 < p \leq p_c$

- L^p estimates for $2 < p \leq p_c$
- Polynomial improvements in other geometries

- L^p estimates for $2 < p \leq p_c$
- Polynomial improvements in other geometries
- Lower bounds on L^∞ given microlocalization information

- L^p estimates for $2 < p \leq p_c$
- Polynomial improvements in other geometries
- Lower bounds on L^∞ given microlocalization information
- Generic quantitative improvements

Thank you!