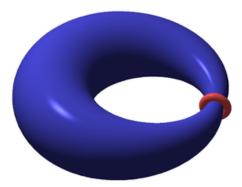
Systoles and Lagrangians of random projective hypersurfaces

Recent developments in microlocal analysis MSRI, 17th october 2019



Damien Gayet (Institut Fourier, Grenoble)

Let $P \in \mathbb{C}^{hom}_d[Z_0, Z_1, Z_2]$.

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$

Let $P \in \mathbb{C}^{hom}_d[Z_0, Z_1, Z_2].$ Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^2$

is generically an orientable compact smooth Riemann surface;

Let $P\in \mathbb{C}^{hom}_d[Z_0,Z_1,Z_2].$ Then $Z(P)=\{P=0\}\subset \mathbb{C}P^2$

is generically an orientable compact smooth Riemann surface;
 connected;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $P \in \mathbb{C}^{hom}_d[Z_0, Z_1, Z_2]$. Then

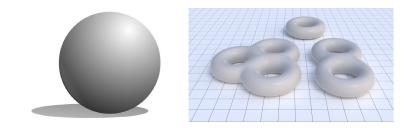
$$Z(P) = \{P = 0\} \subset \mathbb{C}P^2$$

is generically an orientable compact smooth Riemann surface;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

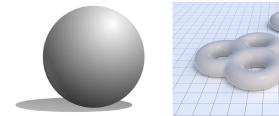
- connected ;
- with a constant genus $\frac{1}{2}(d-1)(d-2)$.

•
$$d = 1$$
 or $d = 2$: sphere

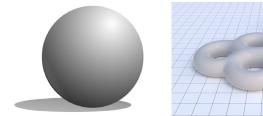


▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

▶ *d* = 3 : torus



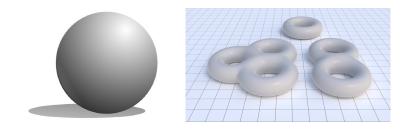
・ロト・日本・日本・日本・日本・日本



・ロト ・日 ・ ・ ヨト

B ▶ - B

- d = 1 or d = 2 : sphere
- ▶ d = 3 : torus
- ▶ d = 4 : genus g = 3
- dim $\mathbb{C}^{hom}_d[Z_0, Z_1, Z_2] \sim_d g$.

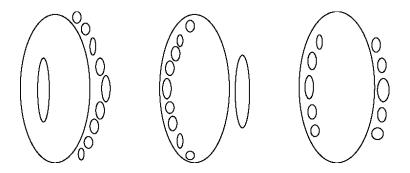


・ロト ・日下・ ・ ヨト

3.1

- d = 1 or d = 2 : sphere
- ▶ d = 3 : torus
- ▶ d = 4 : genus g = 3
- dim $\mathbb{C}^{hom}_d[Z_0, Z_1, Z_2] \sim_d g$.
- Same for the moduli space of projective curves

Very different in the real case : various number of components...



... and various possible configurations : 16th Hilbert problem (here the maximal degree 6 possible curves) Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

• W. Wirtinger theorem : $\forall P, Vol(Z(P)) = d$.

Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

- W. Wirtinger theorem : $\forall P, Vol(Z(P)) = d$.
- ► However Z can have very different shapes :

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

- W. Wirtinger theorem : $\forall P, Vol(Z(P)) = d$.
- ► However Z can have very different shapes :
 - if P is close to Z_0^d , Z is concentrated near a round sphere,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What about the geometry if Z(P) is equipped with the restriction of the ambient metric g_{FS} ?

- W. Wirtinger theorem : $\forall P, Vol(Z(P)) = d$.
- ► However Z can have very different shapes :
 - if P is close to Z_0^d , Z is concentrated near a round sphere,
 - ▶ if *P* is close to the product of equidistributed *d* lines, then *Z* is equidistributed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

If P is taken at random, what can be said more?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence of increasing degree random complex curves gets equidistributed in $\mathbb{C}P^2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

7/47

$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where $a_{i_0i_1i_2}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where $a_{i_0i_1i_2}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

This is the Gaussian measure associated to the Fubini-Study L²-scalar product on the space of polynomials :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}.$$

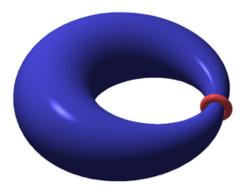
$$P = \sum_{i_0+i_1+i_2=d} a_{i_0i_1i_2} \frac{Z_0^{i_0} Z_1^{i_1} Z_2^{i_2}}{\sqrt{i_0! i_1! i_2!}},$$

where $a_{i_0i_1i_2}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

This is the Gaussian measure associated to the Fubini-Study L²-scalar product on the space of polynomials :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}.$$

 Generalizes for random sections of high powers of an ample line bundle over a compact Kähler manifold.



What about the length of the **systole** of the random complex curve : its shortest non-contractible real loop?

Let

$$\mathcal{M}_g = \{ ext{genus } g ext{ compact smooth surface} \ ext{ with a metric of curvature } -1 \}.$$

Let

$$\mathcal{M}_g \;\;=\; ig\{ ext{genus } g ext{ compact smooth surface} \ ext{ with a metric of curvature } -1 ig\}.$$

• dim_{$$\mathbb{C}$$} $\mathcal{M}_g = 3g - 3$

Let

$$\mathcal{M}_g \;\;=\; ig\{ ext{genus} \; g \; ext{compact smooth surface} \ ext{with a metric of curvature} \;\;-1 ig\}.$$

• dim_{$$\mathbb{C}$$} $\mathcal{M}_g = 3g - 3$

▶ There exists a natural probability measure Prob_{WP} on M_g.

Let

$$\mathcal{M}_g = ig\{ ext{genus } g ext{ compact smooth surface} \ ext{with a metric of curvature } -1 ig\}.$$

• dim_{$$\mathbb{C}$$} $\mathcal{M}_g = 3g - 3$

There exists a natural probability measure Prob_{WP} on M_g.

Theorem (M. Mirzakhani 2013). There exist C > 0 such that for all $g \ge 2$, $0 < \epsilon \le 1$,

$$\frac{1}{C}\epsilon^2 \leq \operatorname{Prob}_{WP}\left[\operatorname{Length} \text{ of the systole } \leq \epsilon\right] \leq C\epsilon^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Random projective curves

Theorem 1. There exists C > 0, for all $0 < \epsilon \le 1$,

$$\forall d \gg 1, \ e^{-\frac{C}{\epsilon^6}} \leq \mathsf{Prob}_{FS} \big[\mathsf{Length}_{\sqrt{d}g_{FS}} \text{ of the systole } \leq \epsilon \big].$$

Theorem 1' There exists c > 0,

$$\begin{split} \forall d \gg 1, \ c \leq \mathsf{Prob}_{\mathsf{FS}} \Big[\exists \ \gamma_1, \cdots, \gamma_{cd^2}, \forall i, \mathsf{Length}(\gamma_i) \leq 1 \\ & \text{and} \ [\gamma_1], \cdots, [\gamma_{cd^2}] \\ & \text{is an independent family of} \ H_1(Z(P)) \Big]. \end{split}$$

Theorem 1' There exists c > 0,

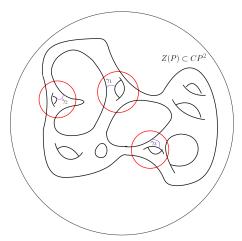
$$\forall d \gg 1, \ c \leq \mathsf{Prob}_{FS} \Big[\exists \ \gamma_1, \cdots, \gamma_{cd^2}, \forall i, \mathsf{Length}(\gamma_i) \leq 1 \\ \text{and} \ [\gamma_1], \cdots, [\gamma_{cd^2}] \\ \text{is an independent family of} \ H_1(Z(P)) \Big].$$

In a hyperbolic surface, such curves give birth to disjoint simple geodesics, however :

Theorem 1' There exists c > 0, $\forall d \gg 1, \ c \leq \operatorname{Prob}_{FS} \left[\exists \gamma_1, \cdots, \gamma_{cd^2}, \forall i, \operatorname{Length}(\gamma_i) \leq 1 \\ \operatorname{and} [\gamma_1], \cdots, [\gamma_{cd^2}] \right]$ is an independent family of $H_1(Z(P))$.

In a hyperbolic surface, such curves give birth to disjoint simple geodesics, however :

Theorem (M. Mirzakhani - B. Petri 2017) There exists C > 0, $\forall g \ge 2$, $\mathbb{E}_{WP} \Big[$ number of simple geodesics of length $\le 1 \Big] \le C$.



For every d, there exists a basis of $H_1(Z)$ such that a uniform proportion of its elements are represented by small loops with uniform probability **Very useless deterministic Corollary.** There exists c > 0, such that for *any* genus *g* surface,

 $\dim H_1 \geq cg.$

Very useless deterministic Corollary. There exists c > 0, such that for *any* genus *g* surface,

dim $H_1 \ge cg$.

In higher dimensions,



Very useless deterministic Corollary. There exists c > 0, such that for *any* genus *g* surface,

dim $H_1 \ge cg$.

In higher dimensions,

complex curves become complex hypersurfaces;

Very useless deterministic Corollary. There exists c > 0, such that for *any* genus *g* surface,

dim $H_1 \ge cg$.

In higher dimensions,

- complex curves become complex hypersurfaces;
- non-contractible loops become Lagrangian submanifolds;

▲□▶▲□▶▲□▶▲□▶ □ のQの

Very useless deterministic Corollary. There exists c > 0, such that for *any* genus *g* surface,

dim $H_1 \geq cg$.

In higher dimensions,

- complex curves become complex hypersurfaces;
- non-contractible loops become Lagrangian submanifolds;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

the useless deterministic bound becomes an non-trivial estimate for homological (Lagrangian) representatives.

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n].$

Let $P \in \mathbb{C}^{hom}_d[Z_0, Z_1, \cdots, Z_n].$ Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

Let
$$P \in \mathbb{C}^{hom}_d[Z_0, Z_1, \cdots, Z_n].$$
 Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

▶ is generically a smooth complex hypersurface, or 2n - 2 real submanifold,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$P \in \mathbb{C}^{hom}_d[Z_0, Z_1, \cdots, Z_n].$$
 Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

▶ is generically a smooth complex hypersurface, or 2n - 2 real submanifold,

▲□▶▲□▶▲□▶▲□▶ □ のQの

• of the same diffeomorphism type.

Let
$$P \in \mathbb{C}^{hom}_d[Z_0, Z_1, \cdots, Z_n].$$
 Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

- ▶ is generically a smooth complex hypersurface, or 2n 2 real submanifold,
- of the same diffeomorphism type. Indeed, the subset of singular polynomials has real codimension 2.

Let
$$P \in \mathbb{C}^{hom}_d[Z_0, Z_1, \cdots, Z_n].$$
 Then $Z(P) = \{P = 0\} \subset \mathbb{C}P^n$

▶ is generically a smooth complex hypersurface, or 2n - 2 real submanifold,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- of the same diffeomorphism type. Indeed, the subset of singular polynomials has real codimension 2.
- d = 1 : complex hyperplane

$$\forall k \neq n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

$$\forall k \neq n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

$$\forall k \neq n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\forall k \neq n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

For n = 2, Z ⊂ CP² is a connected complex curve and its interesting topology lies in H₁(Z), whose dimension grows like d².

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

$$\forall k \neq n-1, \ H_k(Z(P)) = H_k(\mathbb{C}P^n).$$

Same for homotopy groups. In particular, Z is connected for $n \ge 2$ and simply connected for $n \ge 3$.

Chern computation

$$\dim H_{n-1}(Z) \sim d^n.$$

- For n = 2, Z ⊂ CP² is a connected complex curve and its interesting topology lies in H₁(Z), whose dimension grows like d².
- For n = 3, Z ⊂ CP³ is a connected and simply connected complex surface and its interesting homology lies in H₂(Z), that is for real surfaces inside it.

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

• $(Z(P), \omega_{FS|Z(P)})$ is a symplectic manifold.

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

- $(Z(P), \omega_{FS|Z(P)})$ is a symplectic manifold.
- ▶ If *P*, *Q* have the same degree,

$$(Z(P), \omega_{FS|Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS|Z(Q)}).$$

Recall that $\omega_{FS} = g_{FS}(\cdot, J \cdot)$, where J is the complex structure and g_{FS} .

Facts :

•
$$(Z(P), \omega_{FS|Z(P)})$$
 is a symplectic manifold.

▶ If *P*, *Q* have the same degree,

$$(Z(P), \omega_{FS|Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS|Z(Q)}).$$

Hence, if you prove that a property of symplectic nature is true with positive probability, then it is true for *any* hypersurface.

 (M^{2n}, ω) is a symplectic manifold if ω is a closed non-degenerate 2-form.

 (M^{2n}, ω) is a symplectic manifold if ω is a closed non-degenerate 2-form.

•
$$(\mathbb{R}^{2n}, \omega_0)$$
 with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.

 (M^{2n}, ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to (ℝ²ⁿ, ω₀).

 (M^{2n}, ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to (ℝ²ⁿ, ω₀).
- ► A real Riemannian surface (M,g) is symplectic when equipped with its area form dVol_g.

 (M^{2n},ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- ► Darboux theorem : locally any symplectic manifold is symplectomorphic to (ℝ²ⁿ, ω₀).
- ► A real Riemannian surface (M,g) is symplectic when equipped with its area form dVol_g.

• $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.

 (M^{2n},ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to (ℝ²ⁿ, ω₀).
- ► A real Riemannian surface (M,g) is symplectic when equipped with its area form dVol_g.
- $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.
- Any complex hypersurface Z(P) ⊂ CPⁿ is symplectic for the restriction of ω_{FS}.

 (M^{2n},ω) is a *symplectic manifold* if ω is a closed non-degenerate 2-form.

- $(\mathbb{R}^{2n}, \omega_0)$ with $\omega_0 := \sum_{i=1}^n dx_i \wedge dy_i$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to (ℝ²ⁿ, ω₀).
- ► A real Riemannian surface (M,g) is symplectic when equipped with its area form dVol_g.
- $(\mathbb{C}P^n, \omega_{FS})$ is symplectic.
- Any complex hypersurface Z(P) ⊂ CPⁿ is symplectic for the restriction of ω_{FS}.
- The cotangent bundle T*M of a manifold is naturally symplectic.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|\mathcal{TL}} = 0$.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|\mathcal{TL}} = 0$.

Any real curve of a real surface is Lagrangian.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|\mathcal{TL}} = 0$.

- Any real curve of a real surface is Lagrangian.
- ► Easy : the only orientable compact Lagrangian in (C², ω₀) is the 2-torus.

A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|\mathcal{TL}} = 0$.

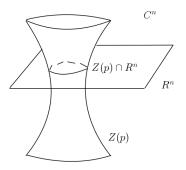
- Any real curve of a real surface is Lagrangian.
- ► Easy : the only orientable compact Lagrangian in (C², ω₀) is the 2-torus.

A D N A 目 N A E N A E N A B N A C N

▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);

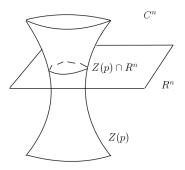
A Lagrangian submanifold \mathcal{L} of (M^{2n}, ω) is a real *n*-submanifold such that $\omega_{|\mathcal{TL}} = 0$.

- Any real curve of a real surface is Lagrangian.
- ► Easy : the only orientable compact Lagrangian in (C², ω₀) is the 2-torus.
- ▶ Very hard : there is no Lagrangian sphere in C³ (Gromov 1985);
- Very easy to deform a Lagrangian : locally as much as the differentials of real functions over it.



▶ If $p \in \mathbb{R}[z_1, \dots, z_n]$ then $Z(p) \cap \mathbb{R}^n$ is Lagrangian in $(Z(p), \omega_{0|Z(p)})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○



- ▶ If $p \in \mathbb{R}[z_1, \dots, z_n]$ then $Z(p) \cap \mathbb{R}^n$ is Lagrangian in $(Z(p), \omega_{0|Z(p)})$.
- ▶ If $P \in \mathbb{R}^d_{hom}[Z_0, \cdots, Z_n]$ then $Z(P) \cap \mathbb{R}P^n$ is Lagrangian in $(Z(P), \omega_{FS|Z(P)})$.

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

 $\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

pairwise disjoint,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be *any* compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^d_{hom}, \ \exists \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \subset Z(P)$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L} ,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$$

- pairwise disjoint,
- ▶ diffeomorphic to *L*,
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d\to\infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$$

- pairwise disjoint,
- ▶ diffeomorphic to *L*,
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$
- Lagrangian submanifolds of $(Z(P), \omega_{FS|Z(P)})$,

Recall that for a degree d polynomial P,

 $\dim H_*(Z(P)) \sim_{d \to \infty} \dim H_{n-1}(Z(P)) \sim d^n.$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

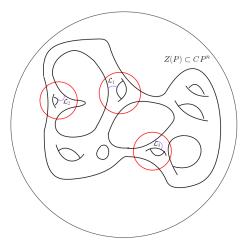
$$\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$$

- pairwise disjoint,
- ▶ diffeomorphic to *L*,
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Lagrangian submanifolds of $(Z(P), \omega_{FS|Z(P)})$,

Proof : probabilistic !



For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by Lagrangian submanifolds diffeomorphic to \mathcal{L} . **Topological Corollary** Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

 $\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$

- pairwise disjoint,
- ▶ diffeomorphic to *L*,
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Topological Corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text{ odd}}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

 $\exists c > 0, \ \forall d \gg 1, \ \forall P \in \mathbb{C}^{d}_{hom}, \ \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{cd^{n}} \subset Z(P)$

- pairwise disjoint,
- ▶ diffeomorphic to *L*,
- $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ form an independent family of $H_{n-1}(Z(P))$.

Universal phenomenon : Same holds for zeros of sections of high powers of an ample line bundle over a compact Kähler manifold.

From Picard-Lefschetz theory : **Theorem (S. Chmutov 1982).** There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in Z(P).

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

From Picard-Lefschetz theory : **Theorem (S. Chmutov 1982).** There exists $\sim \frac{d^n}{\sqrt{d}}$ disjoint Lagrangian spheres in Z(P).

From tropical arguments :

Theorem (G. Mikhalkin 2004). There exists cd^n disjoint Lagrangian spheres and cd^n Lagrangian tori, whose classes in $H_{n-1}(Z(P))$ are independent, with c explicit and natural.

24/47

From random real algebraic geometry : **Theorem (with J.-Y. Welschinger 2014).** Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) c > 0, such that for $d \gg 1$,

 $c < \operatorname{Prob}_{FS,\mathbb{R}}[\exists \text{ at least } c\sqrt{d}^n \text{ components of } Z(P) \cap \mathbb{R}P^n$ diffeomorphic to $\mathcal{L}].$ From random real algebraic geometry : **Theorem (with J.-Y. Welschinger 2014).** Let $\mathcal{L} \subset \mathbb{R}^n$ as before. Then there exists (an ugly but explicit and universal) c > 0, such that for $d \gg 1$,

$$c < \operatorname{Prob}_{FS,\mathbb{R}}[\exists \text{ at least } c\sqrt{d}^n \text{ components of } Z(P) \cap \mathbb{R}P^n$$

diffeomorphic to $\mathcal{L}].$

Corollary. At least $c\sqrt{d}^n$ disjoint Lagrangians diffeomorphic to \mathcal{L} in any Z(P).

Proof of Theorem 1 (systoles)

Theorem 1. There exists c > 0,

 $\forall d \gg 1, \ c \leq \mathsf{Prob}_{\textit{FS}}\big[\mathsf{Length}_{\sqrt{d}g_{\textit{FS}}} \text{ of the systole } \leq 1\big].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of Theorem 1 (systoles)

Theorem 1. There exists c > 0,

$$\forall d \gg 1, \ c \leq \mathsf{Prob}_{FS} \big[\mathsf{Length}_{\sqrt{d}g_{FS}} \text{ of the systole } \leq 1 \big].$$

Fact : Enough to prove that there exists a non-contractible curve with length ≤ 1 with uniform probability.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$.

Pick a generic $Q \in \mathbb{R}^3_{hom}[Z_0, Z_1, Z_2]$. Then

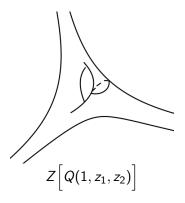
 $Z(Q) \sim \mathbb{T}^2 \subset \mathbb{C}P^2.$

Pick a generic
$$Q\in \mathbb{R}^3_{hom}[Z_0,Z_1,Z_2].$$
 Then $Z(Q)\sim \mathbb{T}^2\subset \mathbb{C}P^2.$

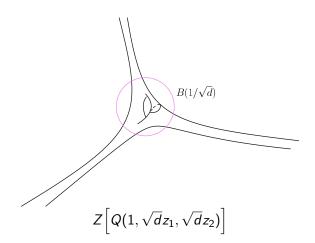
By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\},\$

Pick a generic $Q\in \mathbb{R}^3_{hom}[Z_0,Z_1,Z_2].$ Then $Z(Q)\sim \mathbb{T}^2\subset \mathbb{C}P^2.$

By Bézout theorem $Z(Q) \cap Z(Z_0) = \{3 \text{ points}\},\$



Rescaling

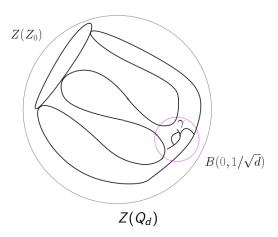


Homogenization

If
$$Q_d:=Z_0^d Q\Big(1,\sqrt{d}ig(rac{Z_1}{Z_0},\cdots,rac{Z_n}{Z_0}ig)\Big)$$
, then

Homogenization

If
$$Q_d:=Z_0^d Q\Big(1,\sqrt{d}ig(rac{Z_1}{Z_0},\cdots,rac{Z_n}{Z_0}ig)\Big)$$
, then



Barrier method

The random P writes

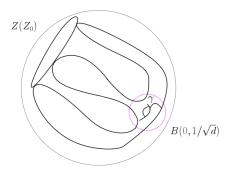
 $P = aQ_d + R,$ with $a \sim \mathcal{N}_{\mathbb{C}}(0,1)$ and $R \in Q_d^{\perp}$ random independent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Barrier method

The random P writes

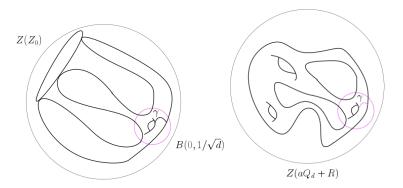
 $P = aQ_d + R,$ with $a \sim \mathcal{N}_{\mathbb{C}}(0,1)$ and $R \in Q_d^{\perp}$ random independent

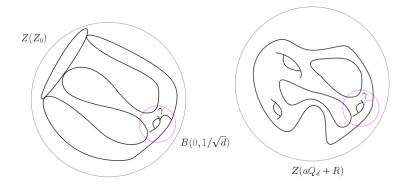


Barrier method

The random P writes

 $P = aQ_d + R,$ with $a \sim \mathcal{N}_{\mathbb{C}}(0,1)$ and $R \in Q_d^{\perp}$ random independent





Proposition. With uniform probability in *d*, *R* does not destroy the toric shape of $Z(Q_d)$ in $B(x, 1/\sqrt{d})$.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Indeed, over $B(1/\sqrt{d})$ and after rescaling,

Indeed, over $B(1/\sqrt{d})$ and after rescaling, $\triangleright \ Q_d$ looks like q on $\mathbb{B} \subset \mathbb{C}^2$;

Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like q on $\mathbb{B} \subset \mathbb{C}^2$;
- ▶ $R([1:\frac{z}{\sqrt{d}}])$ looks like a random holomorphic function on $\mathbb{B} \subset \mathbb{C}^2$, independent of *d*.

Indeed, over $B(1/\sqrt{d})$ and after rescaling,

- Q_d looks like q on $\mathbb{B} \subset \mathbb{C}^2$;
- $R([1:\frac{z}{\sqrt{d}}])$ looks like a random holomorphic function on $\mathbb{B} \subset \mathbb{C}^2$, independent of d.

(日)

Everything is asymptotically independent of d !

Why $1/\sqrt{d}$?

・ロト・「聞」・「思ト・「思ト・「思ト・」 しゃ

Why $1/\sqrt{d}$?

$$\blacktriangleright \ \|Z_0^d\|_{FS}\big([1:\frac{z}{\sqrt{d}}]\big) = \frac{|Z_0^d|}{|Z|^d} = \big(1 + \frac{|z|^2}{d}\big)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$$

Why $1/\sqrt{d}$?

$$\blacktriangleright \ \|Z_0^d\|_{FS}\big([1:\frac{z}{\sqrt{d}}]\big) = \frac{|Z_0^d|}{|Z|^d} = \big(1 + \frac{|z|^2}{d}\big)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$$

► This means that 1/√d is the natural scale of the geometry of degree d algebraic hypersurfaces.

Why $1/\sqrt{d}$?

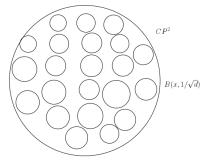
•
$$\|Z_0^d\|_{FS}\left([1:\frac{z}{\sqrt{d}}]\right) = \frac{|Z_0^d|}{|Z|^d} = \left(1 + \frac{|z|^2}{d}\right)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}$$

- ► This means that 1/√d is the natural scale of the geometry of degree d algebraic hypersurfaces.
- Universal semi-classical phenomenon : same for sections of an holomorphic line bundles over a complex projective manifold. Reason : universality of peak sections or universal asymptotic behavior of the Bergmann kernel.

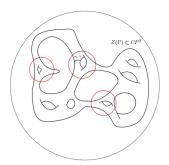
(ロト (同) (E) (E) (E) (O)(O)

Why $1/\sqrt{d}$?

- $\|Z_0^d\|_{FS}\left([1:\frac{z}{\sqrt{d}}]\right) = \frac{|Z_0^d|}{|Z|^d} = \left(1 + \frac{|z|^2}{d}\right)^{-d/2} \sim_d e^{-\frac{1}{2}|z|^2}.$
- ► This means that 1/√d is the natural scale of the geometry of degree d algebraic hypersurfaces.
- Universal semi-classical phenomenon : same for sections of an holomorphic line bundles over a complex projective manifold. Reason : universality of peak sections or universal asymptotic behavior of the Bergmann kernel.
- ▶ Random sums of eigenfunctions of the Laplacian with eigenvalues less than $L : 1/\sqrt{L}$ is the natural scale of the geometry of zeros of the random sums. Reason : universal behavior of the spectral kernel.



There is at least $\sim d^2$ disjoint small balls

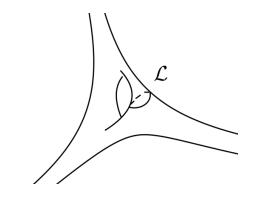


With uniform probability, a uniform proportion of these d^2 balls contain the affine torus

Ideas of the proof of Theorem 2

Ideas of the proof of Theorem 2

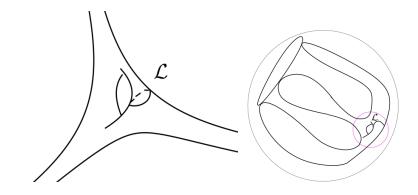
Theorem (Alexander 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^n can be C^1 -perturbed into a component \mathcal{L}' of an algebraic hypersurface.



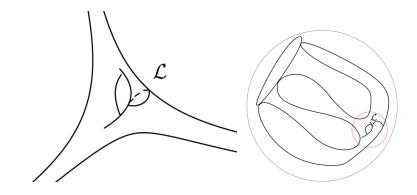
• Choose q such that $\mathcal{L} \subset Z(q)$;

・ロト ・雪 ・ ・ 田 ・ ・ 田 ・

æ

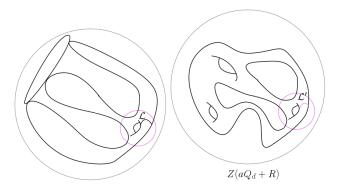


- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_d ;



・ロト ・ 日 ・ ・ 日 ・ ・

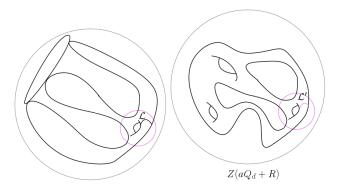
- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_d ;
- decompose $P = aQ_d + R$.



★ロト★御と★注と★注と、注

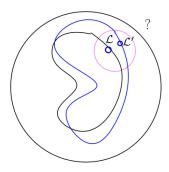
Proposition. With uniform probability, in $B(1/\sqrt{d})$,

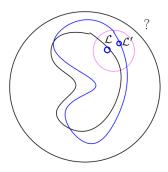
• R does not kill the shape of $Z(Q_d)$,



Proposition. With uniform probability, in $B(1/\sqrt{d})$,

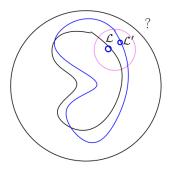
- R does not kill the shape of $Z(Q_d)$,
- there exists $\mathcal{L}' \subset Z(P)$ Lagrangian for ω_{FS} .



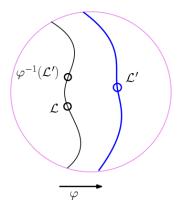


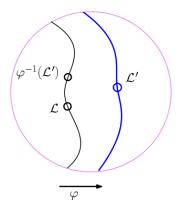
・ロト・日本・日本・日本・日本・日本

• $\mathcal{L} \subset Z(Q_d)$ is Lagrangian for ω_0

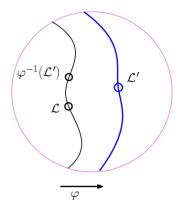


L ⊂ *Z*(*Q_d*)is Lagrangian for ω₀;
 how to find *L'* ⊂ *Z*(*P*) Lagrangian for ω_{FS}?



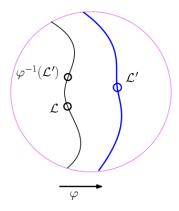


Facts :



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

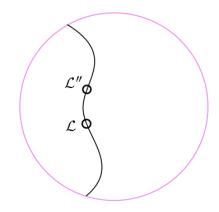
►
$$\exists \varphi, \varphi(Z(Q_d)) = Z(P).$$



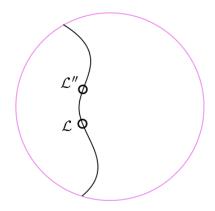
Facts :

$$\begin{array}{l} \exists \varphi, \ \varphi(Z(Q_d)) = Z(P). \\ \\ \hline \text{Then} \\ \mathcal{L}' \quad \text{Lagrangian for } \omega_{FS} \quad \text{ in } Z(P) \\ \\ \Leftrightarrow \\ \varphi^{-1}(\mathcal{L}') \quad \text{Lagrangian for } \varphi^* \omega_{FS} \quad \text{ in } Z(Q_d) \end{array}$$

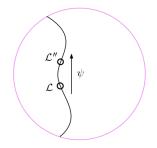
◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ○吾○



• \mathcal{L} Lagrangian for ω_0 in $Z(Q_d)$;

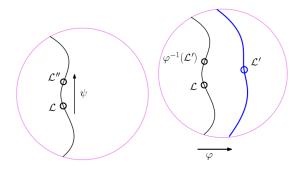


- \mathcal{L} Lagrangian for ω_0 in $Z(Q_d)$;
- how to find \mathcal{L}'' Lagrangian for $\varphi^* \omega_{FS}$ in $Z(Q_d)$?



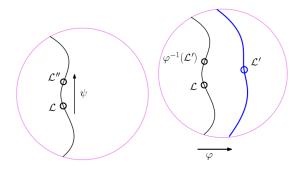
Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

★ロト★御と★注と★注と、注



Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

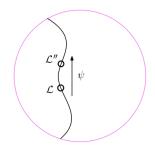
For us :
$$\omega = \phi^* \omega_{FS}$$
,
 $\blacktriangleright \mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω ,
 $\flat \mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}



Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

For us :
$$\omega = \phi^* \omega_{FS}$$
,
 $\blacktriangleright \mathcal{L}'' = \psi(\mathcal{L})$ is Lagrangian, for ω ,
 $\flat \mathcal{L}' = \phi \circ \psi(\mathcal{L})$ is Lagrangian for ω_{FS}

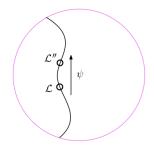
Objection! It could happen that ψ or φ sends \mathcal{L}'' out of the ball!



 $\label{eq:model} \begin{array}{ll} \mbox{Moser Trick.} \ \ \mbox{Let } \omega \ \mbox{symplectic and exact over} \\ Z\cap \mathbb{B}. \ \mbox{Then, there exists } \psi: Z\cap \mathbb{B} \to Z \ \mbox{such that} \end{array}$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 $\blacktriangleright \psi^* \omega = \omega_0$

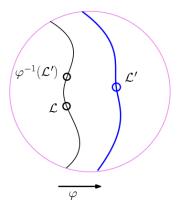


Quantitative Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that

イロト イロト イヨト イヨト 三日

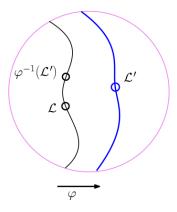
$$\blacktriangleright \psi^* \omega = \omega_0$$

•
$$|\psi - id|$$
 is controlled by $|\omega - \omega_0|$



Since

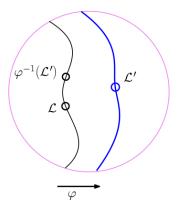
• ω_{FS} is close to ω_0 ,



・ロト ・ 日 ・ ・ ヨ ・ ・

Since

- ω_{FS} is close to ω_0 ,
- ▶ with uniform probability *R* is small,

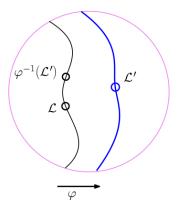


・ロト ・日下・ ・日下

∃⇒

Since

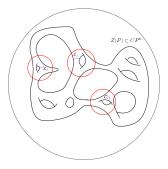
- ω_{FS} is close to ω_0 ,
- ▶ with uniform probability *R* is small,
- so that φ close to the identity,



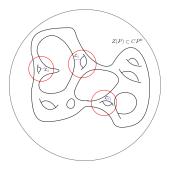
B •

Since

- ω_{FS} is close to ω_0 ,
- with uniform probability R is small,
- so that φ close to the identity,
- ▶ so that \mathcal{L}'' and \mathcal{L}' stay in the ball. \Box

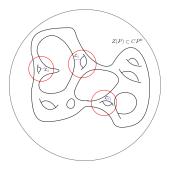


• There exists $\sim d^n$ balls of size $1/\sqrt{d}$

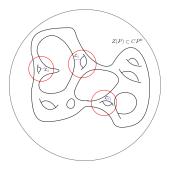


- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- ► With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*

<ロ> (四) (四) (三) (三) (三) (三)



- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- ► With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*
- Deterministic conclusion : there exists at least one such hypersurface



- There exists $\sim d^n$ balls of size $1/\sqrt{d}$
- ► With uniform probability, a uniform proportion of them contains a Lagrangian copy of *L*
- Deterministic conclusion : there exists at least one such hypersurface
- ▶ Hence, all of them have *cdⁿ* such Lagrangians.

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

 $N\mathcal{L} = T\mathcal{L}.$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

• If moreover $\chi(\mathcal{L}) \neq 0$ then

 $0\neq [\mathcal{L}]\in H_{n-1}(Z).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

• If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0\neq [\mathcal{L}]\in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

 $\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field} \}.$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

• If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0\neq [\mathcal{L}]\in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

$$\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field} \}.$$

= $\#\{ \text{ zeros of a normal vector field} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

• If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0\neq [\mathcal{L}]\in H_{n-1}(Z).$$

Indeed for \mathcal{L} orientable,

$$\begin{split} \chi(\mathcal{L}) &= \#\{ \text{ zeros of a tangent vector field} \} \\ &= \#\{ \text{ zeros of a normal vector field} \} \\ &= [\mathcal{L}] \cdot [\mathcal{L}] . \ \Box \end{split}$$

Fact : If $\mathcal{L} \subset (Z, \omega, J)$ is Lagrangian, then

$$N\mathcal{L} = T\mathcal{L}.$$

Indeed, $\omega = g(\cdot, J \cdot)$, so that $JT\mathcal{L} \perp T\mathcal{L}$. \Box

• If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0\neq [\mathcal{L}]\in H_{n-1}(Z).$$

Indeed for ${\mathcal L}$ orientable,

$$\begin{split} \chi(\mathcal{L}) &= \#\{ \text{ zeros of a tangent vector field} \} \\ &= \#\{ \text{ zeros of a normal vector field} \} \\ &= [\mathcal{L}] \cdot [\mathcal{L}] . \ \Box \end{split}$$

Corollary The only orientable compact Lagrangian in \mathbb{R}^4 is the torus.

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^* (\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t) = 0$, which is true if

$$d(\omega_t(X_t,\cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t,\cdot)+\lambda-\lambda_0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi : Z \cap \mathbb{B} \to Z$ such that $\psi^* \omega = \omega_0$.

Proof. Let $\omega_t := \omega_0 + t(\omega - \omega_0)$. We search $(\phi_t)_t$, such that

$$\phi_t^*\omega_t = \omega_0.$$

Assume that $(X_t)_t$ is a generating vector field, that is

$$\partial_t \phi_t(x) = X_t(\phi_t(x)).$$

This implies $\phi_t^* (\mathcal{L}_{X_t} \omega_t + \partial_t \omega_t) = 0$, which is true if

$$d(\omega_t(X_t,\cdot)) + \omega - \omega_0,$$

is true, which is true if

$$\omega_t(X_t,\cdot)+\lambda-\lambda_0.$$

Since ω_t is non-degenerate, this has a solution $(X_t)_t$, \Box_{Ξ} , Ξ_{Ξ} , Ξ_{Ξ} , \Im_{AC}