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Systoles and Lagrangians
of random projective hypersurfaces

Recent developments in microlocal analysis
MSRI, 17th october 2019

Damien Gayet (Institut Fourier, Grenoble)
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Topology of planar projective curves

Let P € Chem[Zy, Z1, Z5). Then

Z(P)={P =0} CcCP?

> is generically an orientable compact smooth Riemann surface;
> connected;

> with a constant genus 3(d — 1)(d — 2).
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> d =1o0rd=2: sphere

» d =3 : torus

> d=4:genus g =3
dim(CZ"m[Zo,Zl,Zz] ~d 8-

Same for the moduli space of projective curves

v

v

DA



Very different in the real case : various number of components...
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DO O

... and various possible configurations :
16th Hilbert problem
(here the maximal degree 6 possible curves)

Co5o®
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Geometry of planar projective curves

What about the geometry if Z(P) is equipped with the restriction
of the ambient metric grs ?

» W. Wirtinger theorem : VP, Vol(Z(P)) = d.
» However Z can have very different shapes :

» if P is close to Zg, Z is concentrated near a round sphere,
» if P is close to the product of equidistributed d lines, then Z is
equidistributed.
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Random projective curves

If P is taken at random, what can be said more?
Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a

sequence of increasing degree random complex curves gets
equidistributed in CP?.
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» Complex Fubini-Study measure :
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» Complex Fubini-Study measure :

io 711 712

P= 3 ai 2021 2,
= ioith ~
— Viglinlis!

io+ii+i=d 0*11™2

where aj,j,j, are i.i.d. normal variables ~ N¢(0,1).
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p— 2 URARS
= ioi1 i T 7’
io+i+ir=d 0ri1H2
where aj,j,j, are i.i.d. normal variables ~ N¢(0,1).
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» Complex Fubini-Study measure :

io 7 i

p— Z 3 2021 2,
- io i1 ip 7

. Viglinlis!

io+i+ir=d 012

where aj,j,j, are i.i.d. normal variables ~ N¢(0,1).

» This is the Gaussian measure associated to the Fubini-Study
L?-scalar product on the space of polynomials :

P(2)Q(Z)
P, = 222 dvols.
. Qrs = [, Sigpes s

» Generalizes for random sections of high powers of an ample
line bundle over a compact Kahler manifold.
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What about the length of the systole of the random complex
curve : its shortest non-contractible real loop ?
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The origins : hyperbolic surfaces

Let

./\/lg = {genus g compact smooth surface
with a metric of curvature — 1}.

» dimc Mg =3g -3
» There exists a natural probability measure Probyp on M,.

Theorem (M. Mirzakhani 2013). There exist C > 0 such that
forallg>2,0<e<1,

1
662 < Propr[Length of the systole < e} < Cé.
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Random projective curves

Theorem 1. There exists C > 0, for all 0 < e < 1,

%n

Vd>1, e & < ProbFs[Length\/gng of the systole < e}.
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Recall that dim H;(Z) = 2g ~ d°.
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Recall that dim H;(Z) = 2g ~ d°.
Theorem 1’ There exists ¢ > 0,

Vd > 1, ¢ < Probgs|3 71, -+ ,Veq2, Vi, Length(v;) < 1

and [71]7 R [’YCdZ]
is an independent family of H; (Z(P))}

In a hyperbolic surface, such curves give birth to disjoint simple
geodesics, however :

Theorem (M. Mirzakhani - B. Petri 2017) There exists C > 0,

Vg > 2, Eyp|number of simple geodesics of length < 1} < C.
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For every d, there exists a basis of H;(Z) such that a uniform
proportion of its elements are represented by small loops with
uniform probability
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Very useless deterministic Corollary. There exists ¢ > 0, such
that for any genus g surface,

dimH; > cg.

In higher dimensions,
» complex curves become complex hypersurfaces;
» non-contractible loops become Lagrangian submanifolds;

> the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.
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Higher dimensions

Let P € Chom[Zy, Z4, -+, Z,] Then
Z(P)={P =0} CcCP"

> is generically a smooth complex hypersurface, or 2n — 2 real
submanifold,

» of the same diffeomorphism type. Indeed, the subset of
singular polynomials has real codimension 2.

» d =1 : complex hyperplane
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» Lefschetz theorem
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Lefschetz theorem
Vk #n—1, H(Z(P)) = H(CP").

Same for homotopy groups. In particular, Z is connected for
n > 2 and simply connected for n > 3.

Chern computation

dim Hp_1(Z) ~ d".

= For n=2, Z c CP? is a connected complex curve and its
interesting topology lies in H1(Z), whose dimension grows like
d.

= For n =3, Z C CP3 is a connected and simply connected
complex surface and its interesting homology lies in Hp(Z),
that is for real surfaces inside it.
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Hypersurfaces as symplectic manifolds

Recall that wrs = grs(-, J-), where J is the complex structure and
&Fs-

Facts :
> (Z(P),wrs|z(p)) is a symplectic manifold.
> If P, Q have the same degree,

(Z(P),wes|z(p)) ~sympi (Z(Q),wEs|z(q))-

» Hence, if you prove that a property of symplectic nature is true
with positive probability, then it is true for any hypersurface.
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Symplectic manifolds
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(M2 w) is a symplectic manifold if w is a closed non-degenerate
2-form.

>

>

(R2" wp) with wo := Y_7_, dx; A dy;.

Darboux theorem : locally any symplectic manifold is
symplectomorphic to (R2", wp).

A real Riemannian surface (M, g) is symplectic when
equipped with its area form dVol,.

(CP",wrs) is symplectic.

Any complex hypersurface Z(P) C CP" is symplectic for the
restriction of wrs.

The cotangent bundle T*M of a manifold is naturally
symplectic.
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Lagrangians

A Lagrangian submanifold £ of (M?",w) is a real n-submanifold
such that w7, =0.

» Any real curve of a real surface is Lagrangian.

» Easy : the only orientable compact Lagrangian in (C?,wyg) is
the 2—torus.

» Very hard : there is no Lagrangian sphere in C3 (Gromov
1985) ;

> Very easy to deform a Lagrangian : locally as much as the
differentials of real functions over it.
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Z(p)N R
Rn

» If p e R[z,- -, z,] then Z(p) NIR" is Lagrangian in
(Z(p)awO\Z(p))'
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Z(p)N R
Rn

» If p e R[z,- -, z,] then Z(p) NIR" is Lagrangian in
(Z(p)awO\Z(p))'
» If PERY [Z,---,2Z,) then Z(P)NRP" is Lagrangian in

hom

(Z(P),wEs|z(p))-
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3c>0,Vd>1, YPeCS,,, 31, -, Legn C Z(P)

v

pairwise disjoint,

v

diffeomorphic to L,
[£1],- - ,[Lcqn] form an independent family of H,_1(Z(P))
Lagrangian submanifolds of (Z(P),WFS‘Z(P)),

v

v
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Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,
dim H.(Z(P)) ~g—oo dim H,_1(Z(P)) ~ d".

Theorem 2. Let £ C R"°% be any compact hypersurface with
X(£) # 0. Then

3c>0,Vd>1, YPeCS,,, 31, -, Legn C Z(P)

v

pairwise disjoint,

v

diffeomorphic to L,
[£1],- - ,[Lcqn] form an independent family of H,_1(Z(P))
Lagrangian submanifolds of (Z(P),WFS‘Z(P)),

v

v

Proof : probabilistic!
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For any real hypersurface £ with non-vanishing Euler characteristic
and every large enough degree, there exists a basis of H,_1(Z)
such that a uniform proportion of its elements are represented by
Lagrangian submanifolds diffeomorphic to L.



Topological Corollary Let £ C R"°4 be any compact
hypersurface with x(£) # 0. Then

3c>0,Vd>1, YPeCS, , 31, -, Legn C Z(P)

» pairwise disjoint,
» diffeomorphic to L,
> [L1],- - ,[Lcgn] form an independent family of H,_1(Z(P)).
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Topological Corollary Let £ C R"°4 be any compact
hypersurface with x(£) # 0. Then

3c>0,Vd>1, YPeCS, , 31, -, Legn C Z(P)

» pairwise disjoint,
» diffeomorphic to L,
> [L1],- - ,[Lcgn] form an independent family of H,_1(Z(P)).

Universal phenomenon : Same holds for zeros of sections of high
powers of an ample line bundle over a compact Kahler manifold.
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From Picard-Lefschetz theory :

Theorem (S. Chmutov 1982). There exists ~ % disjoint

Lagrangian spheres in Z(P).

From tropical arguments :

Theorem (G. Mikhalkin 2004). There exists cd” disjoint
Lagrangian spheres and cd” Lagrangian tori, whose classes in
Hn—1(Z(P)) are independent, with ¢ explicit and natural.
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From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let £ C R" as before.
Then there exists (an ugly but explicit and universal) ¢ > 0, such

that for d > 1,

c < Probrsr [3 at least cV/d' components of Z(P) NRP"
diffeomorphic to E}.
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From random real algebraic geometry :

Theorem (with J.-Y. Welschinger 2014). Let £ C R" as before.
Then there exists (an ugly but explicit and universal) ¢ > 0, such
that for d > 1,

c < Probrsr [3 at least cV/d' components of Z(P) NRP"
diffeomorphic to E}.

Corollary. At least cvd" disjoint Lagrangians diffeomorphic to £
in any Z(P).



Proof of Theorem 1 (systoles)

Theorem 1. There exists ¢ > 0,

Vd > 1, ¢ < Probgs [Length\/ggFS of the systole < 1].
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Proof of Theorem 1 (systoles)

Theorem 1. There exists ¢ > 0,
Vd > 1, ¢ < Probgs [Length\/ggFS of the systole < 1]

Fact : Enough to prove that there exists a non-contractible curve
with length < 1 with uniform probability.
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Artificial non-contractible curve
Pick a generic Q € ]R?wm[Zo, 2y, 25).
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Artificial non-contractible curve
Pick a generic Q € R%om[Zo, Zy,Z>]. Then

Z(Q) ~T? c CP?.

By Bézout theorem Z(Q) N Z(Zy) = {3 points},

/\

Z|:Q(1,Z]_,Z2)i|
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Rescaling

\

-

Z[Q(l, Vdz, \@22)]
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Homogenization

If Qq := ng(l,\/H(%,.-- %)) then
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Barrier method

The random P writes

P = aQs+R,
with a~ Ng(0,1) and R € Q7 random independent
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Barrier method

The random P writes

P = aQ4+R,
with a~ Ng(0,1) and R € Q7 random independent
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~_ - Z(aQu+R)

Proposition. With uniform probability in d, R does not destroy
the toric shape of Z(Qy) in B(x,1/V/d).
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Indeed, over B(1/+/d) and after rescaling,
» Qg looks like g on B C C?;
» R([L: ﬁ]) looks like a random holomorphic function on
B C C?, independent of d.
Everything is asymptotically independent of d'!

32/47
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Why 1/v/d?

d 2|2\ —
s 128l (1 : 2) = &) = (14 1)~

» This means that 1/1/d is the natural scale of the geometry of
degree d algebraic hypersurfaces.

1,2
~d eii‘z‘ .
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Why 1/v/d?

z zd z|2\—d/2 _ L2
> 1Z8Nes (11 Z5]) = 150 = (1+ ) 7%~y em2l,

» This means that 1/1/d is the natural scale of the geometry of
degree d algebraic hypersurfaces.

> Universal semi-classical phenomenon : same for sections of an
holomorphic line bundles over a complex projective manifold.
Reason : universality of peak sections or universal asymptotic
behavior of the Bergmann kernel.
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v

z zd z|2\—d/2 _ 1,2
1Z811s([1: Z5]) = 150 = (14 2) 2 g em3l0

This means that 1/+/d is the natural scale of the geometry of
degree d algebraic hypersurfaces.

Universal semi-classical phenomenon : same for sections of an
holomorphic line bundles over a complex projective manifold.
Reason : universality of peak sections or universal asymptotic
behavior of the Bergmann kernel.

Random sums of eigenfunctions of the Laplacian with
eigenvalues less than L : 1/+/L is the natural scale of the
geometry of zeros of the random sums. Reason : universal
behavior of the spectral kernel.



There is at least ~ d? disjoint small balls



With uniform probability, a uniform proportion of these d? balls
contain the affine torus
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|deas of the proof of Theorem 2
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|deas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface £ in R" can be Cl-perturbed into a component £’ of
an algebraic hypersurface.
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/\

» Choose q such that £ C Z(q);
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» Choose g such that £ C Z(q);
» homogeneize and rescale g into Qy;
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» Choose g such that £ C Z(q);
» homogeneize and rescale g into Qy;
» decompose P = aQqy + R.
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Proposition. With uniform probability, in B(1/+/d),
» R does not kill the shape of Z(Qq),
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Proposition. With uniform probability, in B(l/\/g)
» R does not kill the shape of Z(Qq),
» there exists L C Z(P) Lagrangian for wrs.
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> L C Z(Qq)

L:/
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» L C Z(Qq)is Lagrangian for wy
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©

Moser Trick. Let w symplectic and exact over Z N B. Then, there
exists ¥ : ZNB — Z such that ¥*w = wp.

For us : w = ¢*wrs,
» L" =1(L) is Lagrangian, for w,
» L' = ¢o(L) is Lagrangian for wrs

Objection! It could happen that ¥ or ¢ sends L” out of the ball !
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Moser Trick. Let w symplectic and exact over
Z N B. Then, there exists ¥ : ZNB — Z such that

> Yw = wo
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Quantitative Moser Trick. Let w symplectic and exact over
Z N B. Then, there exists ¥ : ZNB — Z such that

> Yw = wo

» |¢) — id| is controlled by |w — wp|
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Since

>

>

>

wFs is close to wg,

with uniform probability R is small,
so that ¢ close to the identity,

so that £” and £’ stay in the ball. O
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From one to a lot of Lagrangians

» There exists ~ d" balls of size 1/\@

» With uniform probability, a uniform proportion of them
contains a Lagrangian copy of £

» Deterministic conclusion : there exists at least one such
hypersurface

» Hence, all of them have cd” such Lagrangians.
O
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Why non-vanishing Euler characteristics ?

Fact : If £ C (Z,w,J) is Lagrangian, then
| 2

NL=TL.
Indeed, w = g(-,J-), sothat JTL L TL. O
> If moreover x(£) # 0 then
0 # [£] € Hn-1(2).
Indeed for L orientable,

X(L£) = #{ zeros of a tangent vector field}.
= #{ zeros of a normal vector field}

~ (4120

Corollary The only orientable compact Lagrangian in R* is the
torus.
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The Moser trick

Moser Trick. Let w symplectic and exact over Z NB. Then, there
exists ¢ : ZNB — Z such that ¢*w = wy.

Proof. Let w; := wp+ t(w — wp). We search (¢;);, such that
Piwe = wp.
Assume that (X;); is a generating vector field, that is
Dede(x) = Xe(9e(x))-
This implies ¢} (Extwt + 8twt) = 0, which is true if
d(we(Xt,+)) +w — wo,
is true, which is true if
we(Xe, ) + A= Xo.

Since wy is non-degenerate, this has a solution (X;)¢. O
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