Joint with Zelditch
\n
$$
\Omega
$$
: C" s. convex domain in IR²
\n Δ - Spectral problem: Determine Ω from Spec(Δ n)
\nwith Dirichlet ur Neumann
\nLength spectral problem: Determine Ω from
\n $Lsp(\Omega) = \text{Sleyth of periodic followed\ntrajectory}$
\nAndexm- Melins (1976)
\nS.S. Tr. ω + Ω C Jq(Ω)
\n ω + Ω C Jq(Ω)

Def:
$$
\Omega
$$
 is called $\frac{2-NC}{N}$ in C^n if
\n $\partial \Omega = \partial D + f(v)N_{\theta}$, $D = \{x^2+y^2\} \cup \{y\}$
\nwith $||f||_{C^n} \le A_n Z$ if

Proof uses parametrix of
$$
Marvizi-Melnse 1982
$$

929.

 $Thm (De Simoi - Kaloshin - Wei (6))$ $f_{\text{ol}}t_{\text{best}}$ of $\frac{\text{S-NC}}{\text{in C}}$ with a $\frac{\mathbb{Z}_{2}}{\text{in}}$ symmetry S^g_{ε} If $\mathcal{I}_{sp}(\Omega_t) = \mathcal{I}_{sp}(\Omega_c)$, then $\Omega_t = \Omega_o$ Ω

Cor. If
$$
\Omega_t \in S_{\epsilon}^{\ell}
$$
, and $Spec(\Omega_{\Omega_{\epsilon}}) = Spec(\Omega_{\Omega_{\alpha}})$
then $\Omega_t = \Omega_{\epsilon}$

Thm: Nearly circular ellipses are spectrally uniquely
among all small

$$
\partial E_5 = \{\omega^2 + \frac{y^2}{1-5^2} = 1\}
$$
 $0 \le z \le 5$ small
Kac : $D = E_0$ is spectrally unique.

① If Spec
$$
(\Delta_{B}) = \text{Spec}(\Delta E_{\alpha})
$$
, then $s = \text{ics } s - \text{NC}$ in C^{n} from
\nUse formulas of *Melnose* for heat trace invariants.

\n② $s = \text{NC}$ in C^{n} . Spec $(\Delta_{B}) = \text{Spec}(\Delta E_{\alpha})$

\nThen $s = \text{Rationally}$ Integrable (R.1)

\nDef: $s = \text{valled } R.1$. If $\forall q \geq s$.

\n $T_{s,q} = \{\text{periodic orbits containing } J_{s,q}\}$

\nforms a *Constic* (invariant curve) in $s = \text{N}$.

6) Free:
$$
\Omega
$$
 is an ellipse

\n4) Ω is ellipse, $\text{Spec}(\Omega) = \text{Spec}(\text{E} \epsilon)$, then $\Omega = E_{\epsilon}$.

\n
$$
\text{Marvizi-Melrose: } Tq = \text{Sup } J \cdot q, \quad Tq = \text{sup } J \cdot q,
$$
\n

\n\n $\text{-} Tq - Tq = O_N (q^{-N})$ \n

\n\n $\text{-} Tq \sim d(\text{dSL}) + \frac{C(\text{L})}{q^2} + \frac{C_2(\text{L})}{q^2} + \cdots$ \n

\n\n $\text{C}(\text{L}) < 0$ \n

Thm:
$$
\Omega
$$
 is $\Sigma - NC$ in C^6 . Then $\forall s \in \partial \Omega$,

\n $\forall 932, \exists 1$ [op of type U.g. at S .

\n $\beta^9(s, \phi) = (s, \tilde{\phi})$

\n $\bot_{q}(\tilde{s}) = \text{length of the two}$

\n $\bot_{q}(\tilde{s}) = \text{length of the two}$

\n $\top_{q} = \text{Max } \bot_{q}(\tilde{s}) = \top_{q} = \text{min } \bot_{q}(\tilde{s})$

\n $\bot_{q} = \text{Max } \bot_{q}(\tilde{s}) = \top_{q} = \text{min } \bot_{q}(\tilde{s})$

\n $\bot_{q} = \text{max } \bot_{q}(\tilde{s}) = \top_{q} = \text{min } \bot_{q}(\tilde{s})$

\n $\bot_{q} = \text{max } \bot_{q} = \text{min } \$

.

 $T_q(s) = T_q(s)$ or $L_q(s)$ is constant, $q \ge 3$.

 $\ell = \{ (s, \phi_q(s)) ; s \in \mathcal{S} \}$ $Claim: C is invariant curve consists of$ (1. g) type periodic orbits.

