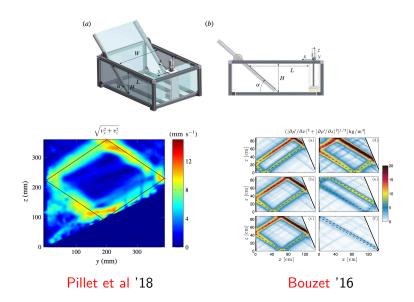
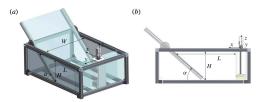
Viscosity limits for 0th order operators

Microlocal Workshop at MSRI

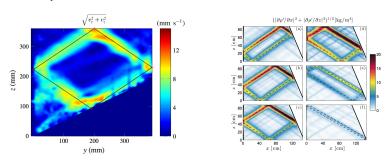
Maciej Zworski, UC Berkeley





Boussinesq approximation:

$$\left\{ \begin{array}{l} \partial_t \eta + \mathbf{u} \cdot \nabla \rho_0 = 0, \quad \mathrm{div} \mathbf{u} = 0, \\ \rho_0 \partial_t \mathbf{u} = - \eta g \mathbf{e}_3 - \nabla P + \mathbf{F} e^{-i\omega_0 t}, \end{array} \right. \quad \mathbf{n} \cdot \mathbf{u} = 0.$$



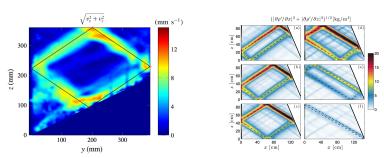
Formal diagonalization gives $\mathbf{u} = u_{+}\mathbf{e}_{+} + u_{-}\mathbf{e}_{-}$

$$i\partial_t u_{\pm} - Pu_{\pm} = e^{-i\omega_0 t} f_{\pm}$$

$$P = H_{\pm}(x, D), \quad H_{\pm}(x, \xi) = \pm (-g\rho'_0(x)/\rho_0(x))^{\frac{1}{2}}\xi_1/|\xi|$$

Boussinesq approximation:

$$\left\{ \begin{array}{l} \partial_t \eta + \mathbf{u} \cdot \nabla \rho_0 = 0, \quad \mathrm{div} \mathbf{u} = 0, \\ \rho_0 \partial_t \mathbf{u} = - \eta g \mathbf{e}_3 - \nabla P + \mathbf{F} e^{-i\omega_0 t}, \end{array} \right. \quad \mathbf{n} \cdot \mathbf{u} = 0.$$



Other related models: rotating fluids Ralston '73

$$\begin{split} \partial_t^2 \Delta_x u &= \partial_{x_1}^2 u, \quad u|_{\partial\Omega} = 0 \\ i \partial_t u - P u &= 0, \quad P = \pm \Delta^{-\frac{1}{2}} \partial_{x_1} \end{split}$$

Mathematical Model

(very much watered down...)

$$H_{\pm}(x,D)$$
 \longrightarrow $P \in \Psi^{0}(\mathbb{T}^{2}), P^{*} = P$

$$p:=\sigma(P)$$
 homogeneous of degree 0 , $dp|_{p^{-1}(\omega_0)}
eq 0$,

the flow of $|\xi|H_p|_{p^{-1}(\omega_0)/\sim}$ is Morse–Smale with no fixed points

$$H_p = \partial_{\xi} p \cdot \partial_x - \partial_x p \cdot \partial_{\xi}, \quad (x, \xi) \sim (y, \eta) \iff x = y, \quad \xi = t\eta, \ t > 0$$

Mathematical Model

The surface
$$\Sigma := p^{-1}(\mathbb{T}^2), P^* = P, u|_{\xi=0} = 0$$

 $|\xi|H_p$ is tangent to Σ .

Morse–Smale flow with no fixed points on Σ :

- (i) $|\xi|H_p$ has a finite number of hyperbolic limit cycles;
- (ii) every trajectory different from (i) has unique trajectories (i) as its α , ω -limit set.

Theorem (Colin de Verdière–Saint-Raymond '18, Dyatlov–Z '18 (no fixed points), Colin de Verdière '18 (fixed points allowed) There exists $\delta > 0$ such that

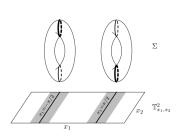
$$[-\delta, \delta] \subset \operatorname{Spec}_{\mathrm{ac}}(P), \quad |\operatorname{Spec}_{\mathrm{pp}}(P) \cap [-\delta, \delta]| < \infty,$$

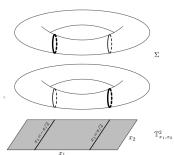
 $\operatorname{Spec}_{\mathrm{sc}}(P) \cap [-\delta, \delta] = \emptyset.$

An example

$$p = |\xi|^{-1}\xi_2 - 2\cos x_1$$
 $p = |\xi|^{-1}\xi_2 - \frac{1}{2}\cos x_1$

$$p = |\xi|^{-1} \xi_2 - \frac{1}{2} \cos x_1$$





Attracting Lagrangians:

$$\Lambda_+ = \{x_1 = \pi/2, \xi_1 < 0, \xi_2 = 0\} \cup \{x_1 = -\pi/2, \xi_1 > 0, \xi_2 = 0\}$$

$$\omega \in [-\delta, \delta] \implies (P - \omega - i0)^{-1} : C^{\infty}(\mathbb{T}^2) \to I^0(\Lambda_+) \subset H^{-\frac{1}{2}-}(\mathbb{T}^2).$$

An example of an embedded eigenvalue

$$P:=
ho^w(x,\xi), \quad p(x,\xi):=\langle \xi
angle^{-1}\xi_2-lpha\,(1-\chi_k(\xi_1)\psi(\xi_2))\cos x_1, \ \chi_k(k\pm 1)=1, \quad \psi(\ell)=\delta_{\ell 0}, \quad \chi_k,\psi\in C_c^\infty(\mathbb{R}).$$
 $P(e^{ix_1k})=0 \quad \text{i.e.} \quad 0\in \operatorname{Spec}_{nn}(P)$

Z Tao '19 (undergraduate at UC Berkeley)

Colin de Verdière '18 suggested a Fermi Golden Rule for embedded eigenvalues: $Pu=0, \Pi: L^2 \to \ker_{L^2} P^\perp, V \in \Psi^{-\infty}(\mathbb{T}^2)$

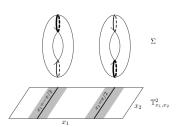
$$\operatorname{Im}\langle Vu, \Pi(P-i0)^{-1}\Pi Vu\rangle \neq 0 \implies \operatorname{Spec}_{\operatorname{pp}}(P+\epsilon V) \cap (-\delta, \delta) = \emptyset.$$

$$(\exists \epsilon_0, \ \delta \ \forall \ 0 < \epsilon < \epsilon_0 \ \cdots)$$

Applications to forced waves

Theorem (Colin de Verdière–Saint-Raymond '18, Dyatlov–Z '18) If $\omega_0 \notin \operatorname{Spec}_{\operatorname{pp}}(P)$ and $i\partial_t u - Pu = e^{-i\omega_0 t} f \in C^\infty$, $u|_{t=0} = 0$, then $u(t) = e^{-i\omega_0 t} u_\infty + b(t) + \epsilon(t)$, $u_\infty \in I^0(\Lambda_+)$, $\|b(t)\|_{L^2} \leq C$, $\|\epsilon(t)\|_{-\frac{1}{2}-} \to 0$.

$$P := \langle D \rangle^{-1} D_{x_2} - 2 \cos x_1, \quad f = e^{-3((x+0.9)^2 + (y+0.8)^2) + i2x + iy}$$



Applications to forced waves

Theorem (Colin de Verdière–Saint-Raymond '18, Dyatlov–Z '18) If $\omega_0 \notin \operatorname{Spec}_{\operatorname{pp}}(P)$ and $i\partial_t u - Pu = e^{-i\omega_0 t} f \in C^\infty$, $u|_{t=0} = 0$, then $u(t) = e^{-i\omega_0 t} u_\infty + b(t) + \epsilon(t)$, $u_\infty \in I^0(\Lambda_+)$, $\|b(t)\|_{L^2} \leq C$, $\|\epsilon(t)\|_{-\frac{1}{2}-} \to 0$.

$$u(t) = \int_0^t e^{-isP} f \, ds = iP^{-1}(1 - e^{-itP})f$$

We need to show that

- the limit $(P \omega i0)^{-1}f$ exists for ω near 0
- $P^{-1}(1-e^{-itP})\chi(P)f \xrightarrow{\text{in } H^{-\frac{1}{2}-}} (P-i0)^{-1}\chi(P)f.$
- ▶ $(P i0)^{-1} f \in I^0(\Lambda_+)$

Mathematical tools: Radial propagation estimates (Melrose '94, Vasy '11, Dyatlov–Z '13...), Lagrangian distributions (Hörmander '71...)

Applications to forced waves

Theorem (Colin de Verdière–Saint-Raymond '18, Dyatlov–Z '18) If $\omega_0 \notin \operatorname{Spec}_{\operatorname{pp}}(P)$ and $i\partial_t u - Pu = e^{-i\omega_0 t} f \in C^{\infty}$, $u|_{t=0} = 0$, then $u(t) = e^{-i\omega_0 t} u_{\infty} + b(t) + \epsilon(t)$, $u_{\infty} \in I^0(\Lambda_+)$, $||b(t)||_{L^2} \leq C$, $||\epsilon(t)||_{-\frac{1}{2}-} \to 0$.

Theorem (Wang 王健 '19) There exist invertible maps

$$G_{\pm}:C^{\infty}(\mathbb{S}^1;\mathbb{C}^N) o S^{\frac{1}{2}}/S^{-\frac{1}{2}}(\Lambda_{\pm},\Omega^{\frac{1}{2}}_{\Lambda_{\pm}}\otimes \mathcal{M}_{\Lambda_{\pm}})$$

 $(N = number of components of \Lambda_{\pm})$ such that for every $f \in C^{\infty}(\mathbb{S}^1; \mathbb{C}^N)$ (fixing + or -)

$$\exists ! u = u_{-} + u_{+}, \quad u_{\pm} \in I^{0}(\Lambda_{\pm}), \quad Pu = 0, \quad \sigma_{\Lambda_{\pm}}(u_{\pm}) = G_{\pm}(f).$$

The operator $\mathscr{S}:=G_-^{-1}(\sigma_{\Lambda_-}(u_-))\to G_+^{-1}(\sigma_{\Lambda_+}(u_+))$, extends to a unitary operator on $L^2(\mathbb{S}^1;\mathbb{C}^N)$.

The operator $\mathscr S$ is an analogue of the scattering matrix of Hassell–Melrose–Vasy '04 (for scattering by symbols of order 0) and it has interesting microlocal structure Wang '19.

Viscosity: a non-Hermitian case

$$P \rightsquigarrow P - i\nu \Delta_{\mathbb{T}^2}$$

"The aim of this paper is to present what we believe to be the asymptotic limit of inertial modes in a spherical shell when viscosity tends to zero"

Rieutord-Georgeot-Valdettaro J. Fluid Mech. '01

Theorem (Galkowski–Z, '19?) Suppose that P satisfies the assumptions above and $(x,\xi) \mapsto P(x,\xi)$ is analytic in a conic neighbourhood of $\mathbb{T}^2 \times \mathbb{R}^2 \subset \mathbb{C}^2/(2\pi\mathbb{Z})^2 \times \mathbb{C}^2$. Then there exists an open neighbourhood of 0, $U \subset \mathbb{C}$ such that

$$\operatorname{\mathsf{Spec}}(P - i\nu\Delta_{\mathbb{T}^2}) \cap U \to \mathscr{R}(P) \cap U, \quad \nu \to 0+$$

where $\mathscr{R}(P) \subset \mathbb{C}_{-}$ is a discrete set depending only on P.

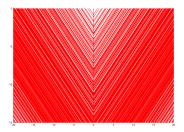
Question: What effect do elements of $\mathcal{R}(P)$ have on long term evolution ? Not so clear if there is a clean mathematical statement.

Viscosity: previous mathematical results

Dyatlov–Z '15: X generator of an Anosov flow on M; eigenvalues of $X + \nu \Delta_M$ converge to Ruelle resonances

Earlier results for Anosov maps: Keller-Liverani '99 ... Nakano-Wittsten '15

False for non-Anosov flows:



The limit set of Spec($X + i\nu\Delta_{\mathbb{R}^3/\mathbb{Z}^3}$), $\nu \to 0+$ where X generates the geodesic flow of $\mathbb{R}^2/\mathbb{Z}^2$

Based on Galtsev–Shafarevitch '06: Spec $(-i(hD_{\theta})^2 + \sin \theta)$

Viscosity: previous mathematical results

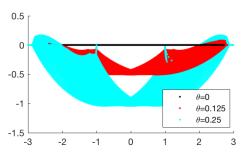
- ▶ Dyatlov–Z '15: X generator of an Anosov flow on M; eigenvalues of $X + \nu \Delta_M$ converge to Ruelle resonances
- ▶ **Z** '15: Eigenvalues of $-\Delta + V(x) i\nu |x|^2$, $V \in L^{\infty}_{\text{comp}}(\mathbb{R}^n)$ converge to resonances of $-\Delta + V$ (justifies the CAP method in computational chemistry)
- ▶ Drouot '17: $X + \nu \sum_{i,j} g_{ij}(z) \partial_{\zeta_j \zeta_i}^2 \big|_{S_z^* M}$; X generator of geodesic flow on $S^* M$; convergence to Ruelle resonances (kinetic Brownian motion)
- ► Frenkel–Losev–Nekrasov '06 (height function on the sphere), Dang–Rivière '18 (general Morse–Smale functions): eigenvalues of $\mathcal{L}_{\nabla f} + \nu \Delta_g$ (Witten Laplacian) converge to Ruelle resonances of the gradient flow.
- Open problem (?): $D_x^2 + x^{-1} \sin x i\nu |x|^2$

Viscosity: a non-Hermitian case

An Example: $P = \langle D \rangle^{-1} D_{x_2} + 2 \cos x_1$

$$\mathscr{R}(P) \cap U \cap \{\operatorname{Im} z > -\theta/C\} = \operatorname{Spec}(P_{\theta}) \cap U \cap \{\operatorname{Im} z > -\theta/C\}$$

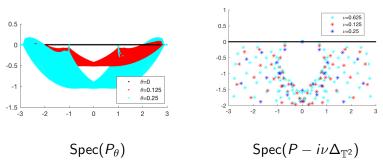
$$P_{\theta} := P|_{\mathbb{T}^2_{\theta}}, \quad T^*\mathbb{T}^2_{\theta} = \{(x_1 + 2i\theta\sin x_1, x_2, (1 - 2i\theta\cos x_1)^{-1}\xi_1, \xi_2)\}.$$



$$\mathscr{R}(P) \cap ((-1+\epsilon,1-\epsilon)-i[0,\delta)) = \emptyset$$
 ?

Viscosity: a non-Hermitian case

An Example:
$$P = \langle D \rangle^{-1} D_{x_2} + 2 \cos x_1$$



The eigenvalues (or their absence) are visible in complex deformation and in the viscosity limit.

Viscosity: mathematical tools

For the general case one needs to adapt the complex microlocal deformation theory of Helffer–Sjöstrand '86.

Viscosity: mathematical tools

- ▶ Boutet de Monvel–Sjöstrand '75: microlocal analysis of projectors on spaces of solutions of systems of operators modeled on $\bar{\partial}$
- ► Boutet de Monvel-Guillemin '81: theory of generalized Toeplitz operators with the BdM-Sj projector as main example
- ► Helffer–Sjöstrand '86: calculus for the study of resonances for very general operators in \mathbb{R}^n ; generalized FBI transforms and corresponding systems of operators; also Martinez '94,'02, Nakamura'96
- ➤ Sjöstrand '96: semiclassical compactly supported weights on analytic compact manifolds

For the viscosity limits we follow the roadmap in Sj '96 to extend it to weights which are homogeneous of degree 1 in ξ .

Viscosity: general strategy

There exists G, $G(x, \lambda \xi) = \lambda G(x, \xi)$, $\lambda > 0$ such that

$$H_pG>c_0$$
 when $p=0$ and $|\xi|\geq C_0$

Example:
$$p(x,\xi) = |\xi|^{-1}\xi_2 + \alpha \cos x_1$$
, $G(x,\xi) = \alpha \xi_1 \sin x_1$.

(Basis of the argument of Colin de Verdière–Saint-Raymond; in Dyatlov–Z we used general propagation results implicitly involving such G's.)

$$P_{\theta} := \text{``}e^{-\theta G^{w}(x,D)}Pe^{\theta G^{w}(x,D)\text{''}}, \quad \sigma(P_{\theta}) \text{``}\sim \text{''} \quad p(x+i\theta G_{\xi},\xi-i\theta G_{x}),$$
 and Q ``\in '`\Psi^{-\infty}, $P_{\theta}+iQ$ is invertible.

Then,

$$R_{\nu}(\omega) := (P_{\theta} + iQ + i\nu\Delta_{\theta} - \omega)^{-1} \quad |\omega| < \delta, \quad 0 \le \nu \le \nu_0$$

exists.

Continuity of zeros of $\det(I - iR_{\nu}(\omega)Q)$ as $\nu \to 0$ follows.

Need to justify " \star " for weights which are not compactly supported and not linear in ξ .

Complex deformations in phase space

$$Tu(x,\xi) := \int_M K(x,\xi,y)u(y)dy, \quad K(x,\xi,y) \text{ real analytic}$$

$$K(x,\xi,y) = e^{i\varphi(x,\xi,y)}a(x,y,\xi)\chi(x-y) + \mathcal{O}(e^{-\langle\xi\rangle}),$$

$$\varphi = \xi(\exp_x^{-1}(y)) + \langle \xi \rangle d(x,y)^2 / 2, \quad \xi \in T_x^* M, \ \exp_x^{-1}(y) \in T_x^* M$$
For \mathbb{T}^2 : $K = c \langle \xi \rangle^{\frac{1}{2}} \sum_{k \in \mathbb{Z}^2} e^{i\langle \xi, x - y - k \rangle - \langle \xi \rangle (x - y - k)^2 / 2} \langle x - y - k \rangle^{\frac{1}{2}}.$

 $T^*T \equiv I_{L^2(\mathbb{T}^2)}, \quad TT^* \equiv \Pi, \quad \Pi: L^2(T^*\mathbb{T}^2) \xrightarrow{\perp} TL^2(\mathbb{T}^2).$ (with low frequency modifications – need a small h!)

$$TAT^* \equiv \Pi \widetilde{A}\Pi = \Pi M_{A_0(x,\xi)}\Pi + \Pi \mathcal{O}(\langle \xi \rangle^{-1})\Pi, \quad A \in \Psi^0(\mathbb{T}^2)$$

(In practice, and in preparation for complex microlocal deformations, $T^*T \neq \text{Id}$, and we use an approximate inverse $S \neq T^*$ with differently chosen amplitudes in T and S.)

Complex deformations in phase space

$$Tu(x,\xi) := \int_M K(x,\xi,y)u(y)dy, \quad K(x,\xi,y) \text{ real analytic}$$
 $T^*T \equiv I_{L^2(\mathbb{T}^2)}, \quad TT^* \equiv \Pi, \quad \Pi: L^2(T^*\mathbb{T}^2) \xrightarrow{\perp} TL^2(\mathbb{T}^2).$

$$TAT^*\Pi \equiv \Pi \widetilde{A}\Pi = \Pi M_{A_0(x,\xi)}\Pi + \Pi \mathcal{O}(\langle \xi \rangle^{-1})\Pi, \quad A \in \Psi^0(\mathbb{T}^2)$$

$$\widetilde{A}(\alpha,\beta) = e^{i\psi_0(\alpha,\beta)} a(\alpha,\beta), \quad \alpha = (x,\xi), \quad \beta = (x',\xi')$$

$$\operatorname{Im} \psi_0 \sim \langle \xi \rangle (x-x')^2 + \langle \xi \rangle^{-1} (\xi - \xi')^2$$

$$a_0(\alpha,\alpha) = A_0(x,\xi)$$

$$\zeta_i(x,\xi,D_x,D_\varepsilon) Tu(x,\xi) \equiv 0, \quad [\zeta_k,\zeta_\ell] = 0$$

$$\zeta_i := |\xi|^{-1} (D_{x_i} - \xi_i) - \frac{1}{2} |\xi|^{-3} (D_x - \xi)^2 \xi_i - i D_{\xi_i} + \mathcal{O}(\langle \xi \rangle^{-1})$$

They are the analogue of the $\bar{\partial}$ system in BdM–Sj '75

Complex deformations in phase space for tori

We now follow Helffer-Sjöstrand '87, Sj '96 and deform:

$$T_{\theta}(x,\xi) := Tu(x + i\theta G_{\xi}(x,\xi), \xi - i\theta G_{x}(x,\xi))$$

$$S_{\theta}T_{\theta}u \equiv u, \quad u \in \mathscr{A} \text{ (analytic functions) },$$

$$\mathscr{H}_{\theta}^{s} := \bar{\mathscr{A}}, \quad \|u\|_{\mathscr{H}_{\theta}^{s}} = \|\langle \xi \rangle^{s} T_{\theta} u\|_{L^{2}(T^{*}\mathbb{T}^{2})}$$

(modification for low frequencies; note that there is no weight since G is homogeneous in ξ – cheating here at low frequencies)

$$\widetilde{\Pi}_{ heta} := \mathit{T}_{ heta} \mathit{S}_{ heta}$$
 extends to $\mathit{L}^{2}(\mathit{T}^{*}\mathbb{T}^{2})$

$$\widetilde{\Pi}_{\theta}: L^{2}(T^{*}\mathbb{T}^{2}) \to \mathscr{H}_{\theta}^{0}, \quad \text{not an orthogonal projection}$$

$$\zeta_{j,\theta}\widetilde{\Pi}_{\theta} = 0, \quad \widetilde{\Pi}_{\theta}\widetilde{\zeta}_{j,\theta}^{t} = 0, \quad [\zeta_{j,\theta}, \zeta_{\ell,\theta}] = 0.$$

$$\widetilde{\Pi}_{\theta}(\alpha,\beta) = e^{i\widetilde{\psi}_{\theta}(\alpha,\beta)}\widetilde{b}_{\theta}(\alpha,\beta), \ \operatorname{Im}\widetilde{\psi}_{\theta} \sim \langle \xi \rangle (x-x')^2 + \langle \xi \rangle^{-1} (\xi-\xi')^2$$

BdM-G '81, Sj 96: $B_{\theta,f} = \widetilde{\Pi}_{\theta} f \widetilde{\Pi}_{\theta}^*$, $B_{\theta,f}^2 \equiv B_{\theta,f}$ for a suitable $f \geq c$.

First step:
$$B_{\theta,f}(\alpha,\beta) = e^{i\psi_{\theta}(\alpha,\beta)}b_{\theta,f}(\alpha,\beta)$$

c.v._{$$\gamma$$}($\psi_{\theta}(\alpha, \gamma) + \psi_{\theta}(\gamma, \beta)$) = $\psi_{\theta}(\alpha, \beta)$

Complex deformations in phase space for tori

$$\begin{split} \widetilde{\Pi}_{\theta}(\alpha,\beta) &= e^{i\widetilde{\psi}_{\theta}(\alpha,\beta)}\widetilde{b}_{\theta}, \quad \zeta_{j,\theta}(\alpha,D_{\alpha})\widetilde{\Pi}_{\theta} = 0, \quad \widetilde{\zeta}_{j,\theta}(\beta,D_{\beta})\widetilde{\Pi}_{\theta} = 0 \\ \psi_{\theta}(\alpha,\beta) &:= \text{c.v.}_{\gamma}(\widetilde{\psi}_{\theta}(\alpha,\gamma) - \overline{\widetilde{\psi}_{\theta}(\beta,\gamma)}) \quad (B_{\theta,f} := \widetilde{P}_{\theta}f\widetilde{P}_{\theta}^{*}) \end{split}$$
 Why do we have $\text{c.v.}_{\gamma}(\psi_{\theta}(\alpha,\gamma) + \psi_{\theta}(\gamma,\beta)) = \psi_{\theta}(\alpha,\beta)$?
$$\mathscr{C} := \{(\alpha,d_{\alpha}\widetilde{\psi}_{\theta};\beta,-d_{\beta}\widetilde{\psi}_{\theta})\} \subset S_{1} \times S_{2} \subset T^{*}\mathbb{C}^{2n} \times T^{*}\mathbb{C}^{2n} \\ S_{1} &= \bigcap_{j=1}^{n} \zeta_{j,\theta}^{-1}(0), \quad S_{2} &= \bigcap_{j=1}^{n} \widetilde{\zeta}_{j,\theta}^{-1}(0), \quad p_{j} : S_{j} \to S_{1} \cap S_{2} \simeq S_{j}/S_{j}^{\sigma_{\theta}} \\ \mathscr{C} &= \{(\rho_{1},\rho_{2}) \in S_{1} \times S_{2} : p_{1}(\rho_{1}) = p_{2}(\rho_{2})\}, \quad \mathscr{C} \circ \mathscr{C} = \mathscr{C} \end{split}$$

Lemma If $S_1 \cap T^*\Lambda = S_2 \cap T^*\Lambda$, $\Lambda := \{(x + iG_{\xi}, \xi - iG_x)\}$ then $\mathscr{C} \circ \overline{\mathscr{C}}^t$ is idempotent.

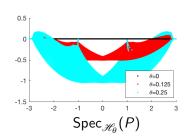
(Of course everything has to be done in the almost analytic category...)

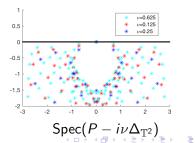
We then follow the strategy of He-Si '87 and Si '96...

Viscosity: general strategy

$$\begin{split} \Psi^m_{\mathrm{hol}}(\mathbb{T}^2) \ni A : \mathscr{H}_{\theta} \to \mathscr{H}_{\theta}, \quad \Pi_{\theta} : L^2(T^*\mathbb{T}^2) \xrightarrow{\perp} T_{\theta}\mathscr{H}_{\theta} \\ T_{\theta}AS_{\theta}\Pi_{\theta}(\alpha,\beta) &= e^{i\psi_{\theta}(\alpha,\beta)}a_{\theta}(\alpha,\beta) \\ \sigma_{\theta}(A) := a_{\theta}|_{\Delta} = a(x+i\theta G_{\xi},\xi-i\theta G_{x}) + \mathcal{O}(\langle\xi\rangle^{m-1}) \\ \mathscr{H}^s_{\theta} \hookrightarrow \mathscr{H}^r_{\theta} \quad \text{is compact if } s > r \\ H_pG > c_0 \Rightarrow |\sigma_{\theta}(P) - \omega| > c_1\theta \Rightarrow P - \omega : \mathscr{H}^0_{\theta} \xrightarrow{\text{Fredholm}} \mathscr{H}^0_{\theta} \\ \exists \ Q = S_{\theta}\Pi_{\theta}q\Pi_{\theta}T_{\theta}, \quad q \in C_{c}^{\infty}(T^*\mathbb{T}^2) \\ R_{\nu}(\omega) = (P+iQ+i\nu\Delta-\omega)^{-1} : \mathscr{H}^0_{\theta} \to \mathscr{H}^0_{\theta}, \quad 0 \le \nu \le \nu_0, \quad |\omega| < \delta \end{split}$$

Study of $\det_{\mathscr{H}^0}(I - iR_{\nu}(\omega)Q)$ shows the continuity of spectra.





Thank you for your attention!