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Motivation (following Colin de Verdiere and Saint-Raymond)
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Motivation (following Colin de Verdiere and Saint-Raymond)

https://www.youtube.com/watch?v=6qgPdszHRzs
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Motivation (following Colin de Verdiere and Saint-Raymond)

Boussinesq approximation:

{3t77+u'Vp0:0, divu =0, neu— 0.

podru = —ngez — VP + Fe /w0t

(19¢/0z|* + 199"/ 02]?)"/* [kg/m"]
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Formal diagonalization gives u = u e, + u_e_
iOpuy — Puy = e "0y

P = Hs(x,D), Hi(x,€)=+(—gph(x)/po(x))2E1/I¢|



Motivation (following Colin de Verdiere and Saint-Raymond)

Boussinesq approximation:

{am+u-vp0:0, divu = 0, U O,

podtu = —ngez — VP + Fe~iwot,

(|0p'/0z|* + |9p'/02|%)"/* [kg/m"]

y (mm)

Other related models: rotating fluids Ralston '73
D2Au = 8)2qu, ulpa =0

ipu—Pu=0, P=+A"20,



Mathematical Model
(very much watered down...)

Hi(x, D) —  PecvY(T?), P*=P
p := o(P) homogeneous of degree 0 , dp|p*1(w0) #0,

the flow of [£|Hp|,-1(,)/~ is Morse=Smale with no fixed points

o

szaﬁpax_axP8§7 (X7§)N(y777) < X=Y, §:t777 t>0



Mathematical Model

Pevwy(T?), P*=P, u
The surface ¥ := p~Hwg)/~ lies on the E)oundary of T*T2\ 0

|{|H, is tangent to X

Morse—Smale flow with no fixed points on X:

(i) [€|Hp has a finite number of hyperbolic limit cycles;

(i) every trajectory different from (i) has unique trajectories (i) as
its «, w-limit set.

Theorem (Colin de Verdiere-Saint-Raymond '18, Dyatlov-Z '18
(no fixed points), Colin de Verdiere '18 (fixed points allowed)
There exists 6 > 0 such that

[—0,0] C Spec,.(P), |Spec,,(P)N[-9,d]| < oo,
Spec..(P) N [-6,d] = 0.



An example

p=l¢[T —2cosx1  p=I¢[ T — Fosx
.‘D
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Attracting Lagrangians:
ANy ={x1=7/2,61<0,&=0}U{xg = —7/2,{1 >0, =0}

we[-6,6] = (P—w—i0)"L: C®(T?) = I°(A}) C H™2~(T?).



An example of an embedded eigenvalue
P:=p"(x,8), p(x,&):= (&) & —a(l - xi(&)v (&) cos xi,
xk(k£1) =1, ¥() = 0w, xk v € C°(R).

P(e™k) =0 ie 0 € Spec,,(P)
Z Tao '19 (undergraduate at UC Berkeley)

Colin de Verdiere '18 suggested a Fermi Golden Rule for embedded
eigenvalues: Pu =0, M: [? — kerj2 P+, V € W=°(T?)

Im(Vu, M(P —i0) " 'NVu) #0 = Spec,,(P+€V)N(=6,6) = 0.
(Jeo, V0 <e<eg ---)



Applications to forced waves

Theorem (Colin de Verdiere-Saint-Raymond '18, Dyatlov—Z "18)
If wo ¢ Spec,,,(P) and i0yu — Pu= e "“0tf € C*°, ul—o =0,

then u(t) = ety + b(t) + €(t), uso € I1°(AL), ||b(t)|2 < C,
By 0.

P = <D>_IDXQ —2cosxy, f= e 3((x+0.9)*+(y+0.8)%)+i2x+iy
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Applications to forced waves

Theorem (Colin de Verdiere-Saint-Raymond '18, Dyatlov—Z "18)
If wo ¢ Spec,,,(P) and i0ru — Pu = e™"“°'f € C*°, ul;=0 =0,
then u(t) = ety + b(t) + €(t), uso € I1°(AL), ||b(t)|2 < C,
Ie(8)]_y_ 0.

t
u(t) = / e SPfds = iP~1(1 — e "P)f
0
We need to show that

» the limit (P — w — i0)~!f exists for w near 0

> Y1 — e ) (P)F MM (P o) Ix(P)F.
> (P —i0)~1f € I°(Ay)

Mathematical tools: Radial propagation estimates (Melrose '94,
Vasy '11, Dyatlov-Z '13... ), Lagrangian distributions (Hérmander
'71..)



Applications to forced waves

Theorem (Colin de Verdiere-Saint-Raymond '18, Dyatlov—Z "18)
If wo ¢ Spec,,,(P) and i0yu — Pu= e "“0tf € C*°, ul—o =0,
then u(t) = e oty + b(t) + €(t), uso € I°(AL), ||b(t)||;2 < C,
Ie(8)]_y_ 0.

Theorem (Wang T '19) There exist invertible maps
Gy : C(StCV) — 5%/5—%(/\i,9§i ® Ma,)
(N = number of components of A1) such that for every
f € C>=(SY; CN) (fixing + or —)
Fu=u_+uy, ur€l®AL), Pu=0, op,(us)= GL(f).
The operator .7 := G~ *(op_(u_)) — G;l(o/\+(u+)), extends to a

unitary operator on L2(St; CN).

The operator . is an analogue of the scattering matrix of
Hassell-Melrose—Vasy '04 (for scattering by symbols of order 0)
and it has interesting microlocal structure Wang '19.



Viscosity: a non-Hermitian case
P~ P—ivAg

“The aim of this paper is to present what we believe to be the
asymptotic limit of inertial modes in a spherical shell when
viscosity tends to zero”

Rieutord—Georgeot—Valdettaro J. Fluid Mech. '01

Theorem (Galkowski—Z, '19?) Suppose that P satisfies the
assumptions above and (x,&) — P(x,&) is analytic in a conic
neighbourhood of T? x R? C C2?/(2wZ)? x C2. Then there exists
an open neighbourhood of 0, U C C such that

Spec(P — ivAp)NU — Z(P)NU, v —0+
where Z(P) C C_ is a discrete set depending only on P.
Question: What effect do elements of Z(P) have on long term

evolution 7 Not so clear if there is a clean mathematical
statement.



Viscosity: previous mathematical results

» Dyatlov—Z '15: X generator of an Anosov flow on M;
eigenvalues of X 4+ vAp, converge to Ruelle resonances

Earlier results for Anosov maps: Keller-Liverani '99 ...
Nakano—Wittsten '15

False for non-Anosov flows:

The limit set of Spec(X + ivAgs;z3), v — 0+ where X generates
the geodesic flow of R?/7Z?

Based on Galtsev—Shafarevitch '06: Spec(—i(hDp)? + sin 6)



Viscosity: previous mathematical results

Dyatlov—Z '15: X generator of an Anosov flow on M;
eigenvalues of X + vAy, converge to Ruelle resonances
Z '15: Eigenvalues of —A + V(x) — iv|x?, V € L33, ,(R")
converge to resonances of —A + V (justifies the CAP method
in computational chemistry)

Drouot "17: X +v 3}, ; g,-j(z)ﬁgjg
geodesic flow on $*M; convergence to Ruelle resonances
(kinetic Brownian motion)

EvE X generator of

Frenkel-Losev—Nekrasov '06 (height function on the sphere),
Dang—Riviere '18 (general Morse—Smale functions):
eigenvalues of Lyr + vA, (Witten Laplacian) converge to
Ruelle resonances of the gradient flow.

Open problem (?): D2 + x~tsin x — iv|x|?



Viscosity: a non-Hermitian case

An Example: P = (D)71D,, +2cosx

Z(PYNUN{lmz > —0/C} = Spec(Py) N UN {Imz > —0/C}

Py = P|Tg, T*Tg = {(Xl +2i6sin x1, x2, (1—2i9 COSXl)_lﬁl,fz)}.

051
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ZP)N((-1+¢61—€) —i[0,6)=0 7



Viscosity: a non-Hermitian case

An Example: P = (D)71D,, +2cosx

6=0
6=0.125
0=0.25

Spec(Py)

1

0.5

0

-0.5 * Hige Fk *

Spec(P — ivA2)

The eigenvalues (or their absence) are visible in complex
deformation and in the viscosity limit.



Viscosity: mathematical tools

For the general case one needs to adapt the complex microlocal
deformation theory of Helffer-Sjostrand '86.




Viscosity: mathematical tools

» Boutet de Monvel-Sjostrand '75: microlocal analysis of
projectors on spaces of solutions of systems of operators
modeled on 9

» Boutet de Monvel-Guillemin '81: theory of generalized
Toeplitz operators with the BdM-Sj projector as main example

» Helffer-Sjostrand '86: calculus for the study of resonances for
very general operators in R"; generalized FBI transforms and
corresponding systems of operators; also Martinez '94,'02,
Nakamura'96

» Sjostrand '96: semiclassical compactly supported weights on
analytic compact manifolds

For the viscosity limits we follow the roadmap in Sj '96 to extend it
to weights which are homogeneous of degree 1 in &.



Viscosity: general strategy
There exists G, G(x,A¢) = AG(x,&) , A > 0 such that
HpG > ¢ when p =0 and [{| > Gy
Example: p(x, &) = |€|7 & + acosxi, G(x, &) = a&ysinxi.

(Basis of the argument of Colin de Verdiere=Saint-Raymond; in

Dyatlov—Z we used general propagation results implicitly involving
such G's.)

Py i e CTURIPICTINE) g (Py) " plx + i0Ge, € — 106,
and Q “€" W, Py +iQ is invertible.
Then,

R, (w) = (Py+iQ+ivhg—w)™ |w<d 0<v<ip
exists.
Continuity of zeros of det(/ — iR, (w)Q) as v — 0 follows.

Need to justify “x" for weights which are not compactly supported
and not linear in &.



Complex deformations in phase space

Tu(x,&) = /M K(x,& y)u(y)dy, K(x,&, y) real analytic

K(x, & y) = ea(x, y, )x(x — y) + Oe™ ),

p = E(expi () +(€)d(x,y)?/2, €€ TIM, expt(y) € TAM
For T2 K = c(€)3 32, pp e/ Exy—R—O0y=kP/2(x — y — k)3,

T*T = Iy, TT* =0, N:L2(TT?) = TLA(T?).

(with low frequency modifications — need a small h!)

TAT* = NAT = MMy )1 + NOWE) NN, A€ WO(T?)

(In practice, and in preparation for complex microlocal
deformations, T*T ## Id, and we use an approximate inverse
S # T* with differently chosen amplitudes in T and S.)



Complex deformations in phase space
Tu(x,€) ::/ K(x,& y)u(y)dy, K(x,&, y) real analytic
M
T*T = ey, TT*=MN, N:L2(T*T?) = TL2(T?).
TAT* M = NAN = MMy, 0+ NO((E) )N, A € WO(T?)
Av(aaﬁ) = ein(aﬂ)a(a?B)7 a = (X7§)7 B = (leé-/)
Im gfo ~ (€)(x = x')* + (&) 71§ ~ €)°
aO(Ckv Ct) = AO(X7 5)

Cj(X7§7DX7D§)Tu(X7£)Eov [Ck:Cf]:O

G 1= €171 (Dy = &) = 31€17(Dx = €)% — iDg; + O((&) )

They are the analogue of the 9 system in BdM-Sj '75



Complex deformations in phase space for tori
We now follow Helffer-Sjostrand '87, Sj '96 and deform:
To(x, &) == Tu(x 4+ i0Ge(x, ), & — i0Gx(x,§))

SpTou = u, u € < (analytic functions) ,

Ay =, ullses = 11€)° Toulli2(T+12)

(modification for low frequencies; note that there is no weight
since G is homogeneous in £ — cheating here at low frequencies)

ﬁg ;= TpSp extends to LZ(T*’]IQ)
My [2(T*T?) — #;°, not an orthogonal projection
oMo =0, MgCfy=0, [o.Coo] =0
o(er, B) = €M by(a, B), Tmiy ~ (€)(x—x)+(§) H(E=¢)?
BdM-G '81, Sj 96: By s = lMyfT1y, 802,r = By r for a suitable f > c.
First step: By r(c, f) = e/o(B) p, £(a, B)
vy (Yo(a,v) + va(v, B)) = vo(e, B)



Complex deformations in phase space for tori
No(a, B) = e @A by ¢ g, Do)y =0, (jo(B, Dg)p =0
ola, B) = ey (o(c, ) — Da(B,7))  (Bos = Pof Py)
Why do we have c.v.(vg(a,v) + vo(7, B)) = vo(a, B) ?
@ = {(a, dathy; B, —dghg)} C S1 x Sp C T*C?" x T*C?"

$1=(GH0). S2=520). p: 5~ SiNS =~ S/S"
j=1 J=1

¢ ={(p1,02) € 51 X S2: p1(p1) = p2(p2)}, € o€ =7F
Lemma /f 51 N T*A =S50 TN, A= {(x +iG¢,§ — iGx)} then
% o€t is idempotent.

(Of course everything has to be done in the almost analytic
category...)

We then follow the strategy of He-Sj '87 and Sj '96...



Viscosity: general strategy

\U}’ﬂ)l(ﬂl‘q) SA: G — A, Ng: L2(T*T2) i} To )
ToASNy(cv, B) = (@B a5(ar, B)

09(A) == apla = a(x + i0Ge, € — i0G,) + O((6)™ )
Hy — Ay s compact if s > r
HpG > co = |0p(P) —w| > 16 = P—w:

e%ﬂgo Fredholm %0

0

3Q = SeMeqMy Ty, q € C(T*T?)
R, (w) = (P+iQ+ivA—w) ™t 1 P — AP, 0<v <, |lw<d
Study of det%o(l — iR, (w)Q) shows the continuity of spectra.

% 1 o
* * * *
0.5 * Fuge o *
* $ ., x K o e *
o B * *f; ;%w * ¥
1 _ ok Heree *
©  #=0.125 -1.5 * ¢ kg ¥ *
6=0.25 * K’ P *
15 -2 ot e = X
e 2 1 0 1 2 3 3 2 1 0 2
Spec, (P)

Spec(P — ivAm2)



Thank you for your attention!





