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Nanoporous
crystalline materials
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Over 3 million predicted structures

Our focus
o Zeolites:
o 180 known
o 300K predicted
o Metal organic frameworks (MOFs)
o  More than 10K synthesized
o Over 140K predicted

Many important applications,
ranging from gas storage and
separation to catalysis, sensing, etc.

How to screen the database of
possible materials to find one that is
optimal for a given application,

without using molecular simulation?

Material
class

Building blocks

Topologies

MOFs

&

® ©° o

©

©

[}

PPNs

Zeolites

Ty

=

e 977258

{:_h "

ANty

- ';l‘:‘ P,
L}

ZIFs

ZI

e

TR




Classical signatures

The classical signature of a nanoporous material is
(D,, D¢, p, ASA, AV) € R>.

o D, = diameter of maximal included sphere
o D; = diameter of maximal free sphere

o p = density

o ASA = accessible surface area
o AV = accessible volume




Topological signature: overview

oPreprocessing

o Normalization: create a supercell of each material by expanding each unit cell
to approximately the size of the largest unit cell of all considered materials.

o Extract from the software package Zeo++ the pore system accessible to the
gas molecule of interest.

o Sample each pore system with a fixed number of points per unit surface area.

o Creation of the signature
o Create Vietoris-Rips complexes from the sampled points, using Euclidean
distance between the points.
o Compute persistence barcodes in dimensions 0, 1, and 2.



From point clouds to barcodes
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Otter et al., arXiv, 2016.



From point clouds to barcodes
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Otter et al., arXiv, 2016.



From pore structure to signature

PCOD8331112 Step 1. Identification of Pore Structure
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Examples of

topological signatures
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Topological signature: details

oZeo ++

o detects the accessible void space inside a porous material using a periodic
Voronoi network, modelling the framework atoms as hard spheres;

o encodes the pore structure as hundreds of thousands of points on the
boundary of the space where a probe molecule could be placed.

oTo sample points provided by Zeo++
o combine random sampling and grid sampling;

o for the random sampling, choose one point per 2 A2 surface area, at least
0.8Afrom all other sampled points;

o for each grid cube (side length 0.5 A), choose the point that is closest to the
midpoint of the cube and add it to the random sampling if its distance to the
randomly sampled points is greater than 0.8 A.
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Topological signature: details
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oThe Vietoris-Rips complex D, A
o grown in 164 steps of 0.025 A increments, from 0 to 4.1 A;
o bound prevents geodesically distant points of the surface that are close in
Euclidean metric from being connected;
o describes the embedding of the pore surface into the ambient space;

o not all homology classes die by maximal filtration: assign a maximum death
time, based on linear fit between D, and the death time for smaller pores.



Persistence landscapes

oBarcodes give rise to persistence landscapes.

A={\:R—>RU{0} |k e N}

oThe [2-landscape distance between barcodes B and B’ with
associated landscapes A and A’:

AB.B)=In-Nla= 3 ([ et - o)

k=1

| =t

2

Bubenik, ) Mach Learn Res (2015)
Dlotko & Bubenik, J] Symbolic Comp (2017)



Distance between topological signatures: Dy

 — T2 & 2 . 2
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o a,=0.1, a,=0.45,and a, = 0.45: minimize the error in predicting global
structural properties and performance properties for a test set of 5000
materials.

o L,-distances chosen, instead of L, for some other p, for similar reasons.

n, = the number of points sampled on material i.

o V, =the volume of its supercell.
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Distance comparison

The distance D between two classical
signatures is the Euclidean distance between
the vectors. Modifying the weights has little
to no effect on the relation between D and
Dye.
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Four most similar zeolite structures

: Selected Nth Similar Structure
Descriptor —

PerH




Four most similar zeolite structures
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MOFs with similar

geometry

(Similarities unreported in the literature)
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MOFs with similar
geometry

(Similarities unreported in the literature)
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The methane storage problem

oGoal: a topology-based methodology to quantify similarity of the
chemical environment of adsorbed molecules, in order to develop

computationally feasible high-throughput screening for high-
performance materials.

oRelevant performance property: deliverable capacity, i.e., the
difference in loading (number of methane molecules per unit
material) at the (high) pressure at which we charge the materials with

methane and at the (low) pressure at which we discharge the
material.
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Performance properties
of structures similar to

top 13 zeolites
80% have similarly high deliverable capacity

Deliverable Capacity ( v STP/v)
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Performance properties
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Optimal conditions for

adsorptive storage?

Claim: [Bathia-Meyers, 2006] There is
an optimal heat of adsorption that
maximizes deliverable capacity of a
nanoporous material for methane
storage.

Question: How to relate this claim to
the molecular simulation results of
[Simon et al., 2014] plotted on the
right?
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Deliverable capacity
and heat of adsorption

o Top: all zeolites [Simon et al., 2014]

o Bottom: 500 geometrically most
similar structures to four references
structures.

o Conclusion: There is not a single
class of optimal materials
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Mapper: another TDA tool

oUnsupervised mutivariate pattern analysis of high-dimensional data,
retains more information than PCA

oProduces a compressed visual representation of the data, providing a
strong indication of where to look for meaningful clustering and
encoding relations between clusters

oNumerous remarkably successful applications, e.g., to the discovery
of a new subtype of breast cancer [Levine et al., PNAS 2011].



Mapper: another TDA tool

olnput:
o Data set X equipped with notion of “distance” between points
o Functionf: X 2> R"
o Cover of R"

oProcess:
o Pull the cover back to X via f.

o Cluster points in the pre-images of the opens in the cover, usually by single-
linkage clustering.

o Visualize: clusters as nodes, connected by an edge if they share a common
element and colored by some relevant average value.



Mapper plot of top 1%
of zeolites for
methane storage

Distance = distance between topological
signatures

Nodes are colored by mean value of
heat of adsorption (red = high, blue =
low)

(Obtained with the Ayasdi Core
software platform (www.ayasdi.com).
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Diversity of zeolites
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Examples and features
of the six groups

Examples

Features
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High-throughput screening

Nano-Porous Materials Genome

— —'?‘ L-
Promising Structures -:c-:z@}:-:-zz
ﬁ}'r




Procedure of High-Throughput Screening

Define a training set using the min-max algorithm

Prepare the database of performance parameter (PP)

Perform TDA on pore shapes for the entire set of
structures

Screen the remaining materials based on similarities of
pore shapes and assign them to most similar ones

Structures assigned to top-performing structures of
the initial set | the promising set

Simulate the promising set to refine prediction
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Percentage of top 1% materials in promising sets

PP TD CD
>130 61.1% 722
130—120 722 60.6
120—110 59.8 43.5
110—100 55.6 39.8
100—90 39.3 27.2

total 45.16 32.31



Another application: carbon capture

oRelevant performance property: parasitic energy, i.e., the loss of
electricity production if a carbon capture-and-sequestration process
is added to a coal-fired power plant.



Parasitic energy of

each zeolite vs its
closest match
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Percentage of top 1% materials in promising sets

PP (PE) TD CD

<740 23.8% 154
750—-740 22.2 10.9
760—750 22.1 10.8
770—760 24.6 4.5
780—-770 21.7 5.3

total 23.14 9.68



Conclusions

o Quantifying similarity of pore structures allows us not only to find
structures geometrically similar to top-performing ones, but also to
orr]gamze the set of materials with respect to the similarity of their pore
shapes.

o For methane storage, we find several distinct classes of pore shapes and
conclude that each class actually requires a different optimization strategy.

oIn global searches for the most similar structures to a selected subset, the
o¥erall performance of TD is significantly better than that of the aggregate
of CD.

oTD is highly capable of detectin%(good materials in the entire set, as long as
some top materials are already known.

oThe TD screening approach is highly efficient in detecting high-performing
materials for both methane storage and carbon capture.



Example of an open problem

Inside vs outside:




Future work

oUse alpha complexes or cubical complexes, rather than Vietoris-Rips
complexes.

oFor applications in which the pores play a more active role, such as
catalysis, extend the methodology to include chemical specificity and
charge distribution.

oFind a way to take symmetries and periodic boundary conditions into
account.

oSolve the “inside vs outside” problem.

oFind a way to deal with the fact that D, currently too expensive
compute for all possible pairs of predicted materials.






