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overview

e X-ray micro CT image acquisition, reconstruction, analysis
— Segmentation into phases, e.g. “rock” and “pore”
— Geometry via the Signed Euclidean Distance Function

* Persistent homology from images
— via (discrete) Morse theory

* Connecting persistent homology to physical properites.
— consolidation of sandpacks versus sandstones
— percolating length scales in porous materials
— permeability of 2D and 3D models
— trapping in two-phase fluid flow experiments

Above covers work with the Applied Maths micro CT group and
Adrian Sheppard, Anna Herring, Moh Saadatfar, Olaf Delgado-Friedrichs, Peter Wood



ANU lab-scale micro-CT facility

* |In continual development since 2000, over 30 staff and students involved in
past 15 years (lead by Mark Knackstedt, Tim Senden, Adrian Sheppard)

e x-ray sources and detectors “off the shelf”

e standard resolution down to ~2 microns on samples up to ~¥150 mm long
e latest machines achieve submicron resolution on ~ 2 mm samples.

* in-house acquisition protocols (Heliscan), and reconstruction,

* image segmentation and quantitative analysis (mango, diamorse) and
visualisation software (Drishti)

 samples include porous and granular materials, fossils, insects, plants.
4 'Y,
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Sheppard et al. “Techniques in Helical Scanning” Nuclear Instruments and Methods in Physics Research B vol 324 (2014): 49-56.



sample applications

rock core 400 MYO placoderm fish

figures obtained at the ANU micro CT facility, volume rendering using Drishti




sample applications

English willow bee brain cavity
(from a professional cricket bat) (imaged with osmium staining)

figures obtained at the ANU micro CT facility, volume rendering using Drishti



granular and porous materials

1mm scale bars

AN
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Ottawa sand Clashach sandstone Mt Gambier limestone

Want accurate geometric and topological characterisation from x-ray micro-CT images
e pore and grain size distributions, structure of immiscible fluid distributions
e adjacencies between elements, network models

Understand how these quantities correlate with physical properties such as
» diffusion, permeability, trapping capacity, mechanical response to load.

figures obtained at the ANU micro CT facility



homology

image credit: torus mesh from http://persson.berkeley.edu/distmesh/
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Manifold Cell complex
C; = formal sums of i-dimensional cells
0:C =2C., istheboundaryoperator. 00=0
Boundaries are the image space of d
Cycles are the null space of 0
Two cycles are homologous when their difference is a boundary.
The homology group is H(X) =null d /im 0
Betti numbers, £, are the ranks of the homology groups



homology

Theorems: [1] homology is independent of the way a space is ‘cut up’ into cells.
[2] homology is invariant up to homotopy

(deformation that maintains connectivity)

for a subset of R3, the possible non-zero Betti numbers are

(,30, /))1 ’ ,32) -

(Objects, Loops, Cavities)

Handle
N
Solid Object:  (+1:0) (1,2,0) (1,3,0)
.. (1,21 (1,4,1) (1,6,1)
Hollow Object: =0 L L

the Euler characteristic y = ,— 5, + 3, is another topological invariant

Topological property:
Betti numbers are independent of the “size” of the topological feature
so small “noisy” features contribute as much as large ones.



persistent homology

idea is to measure topology of a growing sequence of spaces (a filtration)

H(Xo) = H(X1) — H(X2) - H(Xy)

XoC X1 CXy---CX,

We

/4
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+ + + +
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{1, 2, 3,4, [12], [34], [24], [13], [23], [123] }




persistent homology

idea is to measure topology of a growing sequence of spaces (a filtration)

XoC X1 CXy---CX,

H(Xo) — H(X1) — H(Xs) - H(X,)

this is the lower-level set filtration of a real-valued function:
X, = {x such that f(z) < h}
Each homology class is born at a parameter value h = b and

dies (becomes a boundary) at a value h = d.
This gives us a set of intervals (b,d) for the filtration.



Morse theory

Suppose f: M -> R is a real valued function on a manifold, M.

A is defined by the of f:

M, ={xin M suchthat f(x) <t}
A topologist’s favourite Morse We will study f: R" -> R, here illustrated as
function is a height function f: M ->R R level sets in a contour plot:
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The topology of lower level sets, M,,
changes only when t passes through a critical value of f



Morse complex

The index of an isolated critical point is the number of descending directions

@ min:indexO0
O saddle:inde
max: index

negative gradient flowlines show
where a drop of water would flow

™
A4

unstable manifold of an index-i
critical point is an i-cell.

these flowlines define adjacencies
between critical points in an
(abstract) cell complex called

the Morse Complex



filtration of the Morse complex

Order the critical points by function value to get a filtration of the cell complex

min: O-cell
saddle: 1-cel
max: 2-cell

S00




persistence diagram
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Order the critical points by function value to get a filtration of the cell complex
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min: O-cell
saddle: 1-cel
max: 2-cell
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stability of persistence diagrams

The connection between Morse theory and persistent homology
helped establish the stability of persistence diagrams
[Cohen-Steiner, Edelsbrunner, Harer (2007)]
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Figure 2: Left: two close functions, one with many and the other
with just four critical values. Right: the persistence diagrams of the
two functions, and the bijection between them.



distance functions from images

Compute the

Segment an XCT image into
grain (white) and
pore (black) regions. SEDT(x) = - dist(x, W) if xisin B

SEDT(x) = dist(x,B) ifxisin W

Signed Euclidean Distance Transform:




lower level set filtration




lower level set filtration




lower level set filtration




lower level set filtration




lower level set filtration




persistence diagrams of an SEDT

Level set value at birth (mm)

Level set value at birth (mm)

0.25 0.8

E 0.0 . E 0.20} e E 0.7l R

. : ..O-‘O'..-.. ..%
P & = o1s| AR : = :
< L lae < Oy #i < 0.6f
s TR - s LT o s
© 0.1} IR © o010} . .;:';E,g, ©
o NI kel et - 0.5} .
- v TSN 2 0.05} Ve = 2
© K . © : . ©
® s s - G 04l
E -0.2} R E: 0.00 e 2 B o
> > -0.05 ;;;'.;ﬁ > 03 '
L L " -
0 PDO 3 3 PD1 3 PD2
Y o3} 2 010}  .aF 0.2
(] (] (]
e & —01s| . 3 0.1t
— — =l —

04T o3 <02 o1 0.0 B —k 0.0 0.1 0.2 08601 02 03 04 05 06 07 0.8

Level set value at birth (mm)

b<0,d<0
- birth = pore radius

b<0,d>0

- birth = min throat in loop
death = min grain-contact radius

b>0,d>0
birth = max grain contact

death = grain radius.
- death = max pore throat



porous materials PD1
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Fig. 3. Persistence diagrams (represented as 2D histograms
of persistence pairs) for 1D cycles in the pore-space of four
samples: (a) mono-disperse spherical bead pack, (b) polydis-
perse unconsolidated sand, (c) well-consolidated Castlegate
sandstone, (d) fossiliferous Mt Gambier limestone.
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PD1 diagrams show us the degree
of consolidation of a sandstone

Delgado-Friedrichs, Robins, Sheppard. IEEE ICIP (2014)



Skeleton derived
from void phase
of silica sphere
packing.

Dark blue 2D
patches show

that the porespace
is not well-modeled
by a line skeleton.

Image by Olaf D-F

using Voluminous

a web-based

version of Drishti,

both apps developed at
NCI Vizlab



percolating length scales in PDs

Level set value at death (um)

the percolating length is the maximal radius of a sphere that can move
through the pore space
= threshold for which X,, connects opposite boundaries of the sample.
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Persistence diagrams for SEDT of a sandstone micro CT image, 1280 cubed voxels

Critical percolating radii are significant features in the PDs

see: Robins, Saadatfar, Delgado-Friedrichs, Sheppard
“Percolating length scales...” WRR (2016)
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permeability

is defined by the

between mean fluid velocity v measured by Q k Ap
fluid flux Q through V= —F=—
) A L
cross-sectional area A for
pressure difference Ap 10000
over length L and T
fluid viscosity g L
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image after Tiab and Donaldson (1996)
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permeability

Katz-Thompson cross-property model:
(PhysRevB 1986)

o
k= cl*[—)
gy

c geometric const (= 1/226)
I. critical pore radius for percolation
(o/ op) electrical conductivity rel to bulk

Image from Scholz et al. PRL 2012
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FIG. 2. Calculated permeability kcqic vs measured permeabili-
ty kmeas for various sandstones and carbonates. The dashed lines
indicate a factor of 2 deviation. Note that the unit of permeabil-
ity is the millidarcy (md) =10~"! cm?

Image from Katz, Thompson PRB 1986



permeability and topology

Scholz et al Phys Rev Lett (2012) propose (o/ o) can be replaced by (1-y,)/N = 5,/N
for circular and elliptical (quasi) 2D grain models.

a 3D version of the Scholz relationship does not hold
see: Liu, Herring, Robins, Armstrong

“Prediction of permeability from Euler characteristic of 3D images” SCA 2017
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permeability and topology

Scholz et al Phys Rev Lett (2012) propose (o/ o) can be replaced by (1-y,)/N = 5,/N
for circular and elliptical (quasi) 2D grain models.

a 3D version of the Scholz relationship does not hold
see: Liu, Herring, Robins, Armstrong

“Prediction of permeability from Euler characteristic of 3D images” SCA 2017
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topology and trapping

Capillary trapping

occurs when a non-wetting
fluid is surrounded by a
wetting fluid and can

no longer flow to an outlet
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summary

. acquire micro-CT image

. segment into pore and grain

. compute signed distance transform

. build Morse complex

. compute persistence diagrams }j

. interpret!
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diamorse package available at:
https://github.com/AppliedMathematicsANU/diamorse
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International Conference on Tomography of Materials & Structures

ICTMS 2019

22-26 July 2019 | Cairns, Australia

WELCOME TO ICTMS 2019

ICTMS 2013 - INTERNATIONAL CONFERENCE ON TOMOGRAPHY OF MATERIALS &
STRUCTURES
22 - 26 JULY 2019

The fourth biannual conference of IntACT (Int. Assoc. of Computed Tomography), ICTMS
2019, will bring together scientists from universities, research organisations, and industry, to
discuss 3D/4D tomographic imaging and analysis methods for (non-clinical) studies of
materials and structures as well as their evolution.

Australia has a strong tomography community with a long commitment to GeoX and ICTMS,
with research groups active in theory, algorithms and hardware . Australian developments
include lab-based micro and ultra-micro CTs (some commercialised e.g. Gatan XuM, FEI
Heliscan); imaging and XRF beamlines at the Australian Synchrotron (AS), a recently
commissioned neutron imaging facility, high-end TEM systems, along with numerous
applications groups with sophisticated 3D analysis techniques. We hope that hosting the next
ICTMS in Australia will enhance involvement in ICTMS (and intACT in general) by this
community in future, and encourage increased involvement from the Asia-Pacific region
simply by being more accessible. It is great timing for AS which has received a new round of
funding and is expected to announce shortly the addition of a micro-CT beamline that will be
nearing completion by ICTMS 2019.



Topological image analysis

Topologically consistent
skeletonisation and
partitioning

Solid phase shown in grey

Pore space divided into
coloured pores by the basins

Blue lines are
basin boundaries

White lines are the
Morse Skeleton

Delgado-Friedrichs, Robins, Sheppard
IEEE TPAMI (2014)

Source code available from
https://github.com/AppliedMathemat

icsANU/diamorse

image created by Olaf Delgado-Friedrichs
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