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In this talk

EPINET - Euclidean Patterns in Non-Euclidean Tilings

Ramsden et al. (2009), EPINET, http://epinet.anu.edu.au/
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In this talk

The goal of this talk is to establish
the simplest nets in hyperbolic space,
from which we can generate
Euclidean counterparts.

Speci�cally, we chase highly
symmetric, in�nite (i.e. 3-periodic)
deltahedra in Euclidean space.

Our motivation:

· Templates for reticular chemistry

· Optimal packing geometries

· Enumeration of these structures

Cowpea Mosaic Virus
PDB 2bfu

MOF-399
Furukawa et al. (2012)
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In this talk

Agenda:

· Establish a bit of notation about
nets and their symmetries

· Present a pipeline for generating
nets in Euclidean space from
nets in hyperbolic space

· Show a bunch of interesting nets
generated from this pipeline

· Analyze and compare a subset of
the generated nets
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Platonic solids

Described by Plato around 360 B.C. (regular nets on S2):

Tetrahedron Octahedron Cube Icosahedron Dodecahedron
Fire Air Earth Water Aether

{3, 3} {3, 4} {4, 3} {3, 5} {5, 3}
Td Oh Oh Ih Ih

In this talk, we are particularly interested in the tetrahedron, the octahedron,
and the icosahedron as they are composed of equilateral triangles; they are
(regular) �deltahedra�.
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Spaces and symmetries

H2 and S2 allow for nets that are forbidden in E2 - i.e. so-called
non-crystallographic symmetries.

S2 E2 H2

{3, 5} {3, 6} {3, 7}

Symmetries are described by:

· 14 point groups in S2

· 17 wallpaper groups in E2

· Hyperbolic groups in H2
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Spaces and symmetries

A few words about the Poincaré disk model of H2:

· A conformal model of the hyperbolic plane
Angles are preserved!

· Geodesics appear as circle arcs (or straight lines through the center)

· These triangles are congruent and equilateral

Slide 7/41



Spaces and symmetries

The usual crystallographic notation
will not work for H2.

We use the orbifold notation for
symmetry groups:

· N means that our pattern has a
unique N-fold symmetry point

· A ∗ means a mirror symmetry.
∗N means that N mirror lines
meet in a point

· × means that our pattern has
glide symmetry

· ◦ means that there is a
translational symmetry in our
pattern

Thurston (1980), Conway & Huson (2002)
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symmetry groups:

· N means that our pattern has a
unique N-fold symmetry point

· A ∗ means a mirror symmetry.
∗N means that N mirror lines
meet in a point

· × means that our pattern has
glide symmetry

· ◦ means that there is a
translational symmetry in our
pattern

∗244 or p4mm

Thurston (1980), Conway & Huson (2002)
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Spaces and symmetries

Escher (1955)
Slide 9/41



Spaces and symmetries

333 (or p3)

Escher (1955)
Slide 9/41



Spaces and symmetries

Conway et al. (2008), Escher (1960)
Slide 10/41



Spaces and symmetries

∗3333

Conway et al. (2008), Escher (1960)
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Spaces and symmetries

∗3333 (not 4∗3)

Conway et al. (2008), Escher (1960)
Slide 10/41



Spaces and symmetries
We can think of the embeddings from before as generalizations of the famous
�penny packing� in E2 with ∗23N symmetry:

∗235 ∗236 ∗237

The density, ρ, of an N-contact packing is summed up beautifully in L. F.
Tóth's formula:

ρ (N) =
3 csc

(
π
N

)
− 6

N − 6

The groups with orbifold symbols ∗23N are called �honeycombs�.

Tóth (1940)
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Spaces and symmetries

Most honeycombs are hyperbolic:

{3, 7}, ∗237 {3, 8}, ∗238 {3, 9}, ∗239

{3, 10}, ∗23(10) {3, 11}, ∗23(11) {3, 12}, ∗23(12)
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3-periodic minimal surfaces

Minimal surfaces are surfaces that locally minimize area (usually subjected to
speci�c boundary conditions). The most symmetric 3-periodic minimal surfaces
in E3 are known (for genus 3):

Primitive Diamond Gyroid
Im3̄m Pn3̄m Ia3̄d

Their covering space is H2. And importantly, ∗246 symmetries in H2 can be
lifted to symmetries in E3 via these surfaces.

Schwartz (1890), Schoen (1970), Bai et al. (2016)
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3-periodic minimal surfaces
By identifying the opposing edges of a (hyperbolic) dodecagon, we can
construct the TPMS.

Here, the P-surface:

We have the unit cell of the P-surface:

· in universal cover, H2, on the left (6 lattice vectors)

· as a 3-periodic surface in the middle (3 lattice vectors)

· as a 3-torus on the right (0 lattice vectors)

Sadoc & Charvolin (1989)

Slide 14/41



A walk on the P

Let us trace a �closed loop� on the
P-surface by �jumping� from
∗246-domain to ∗246-domain
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Lifting a net from H2 to E3

As a �rst example, we can decorate a ∗246 orbifold like this:

The pattern in H2 shares the symmetries of the P-surface, Im3̄m and ∗246 and
is known as sod in databases. It outlines the cage-like structure of the mineral
sodalite.

This works because the symmetries of the net in H2 are �commensurate� with
the symmetries of the surface.

O'Kee�e et al. (2008), RCSR - http://rcsr.anu.edu.au
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Lifting a net from H2 to E3

If we lift the same net from H2 onto the D-surface, we get a completely
di�erent net:

Here, we recover the well-known net nbo (named after the compound NbO)
with extrinsic symmetry Pn3̄m and intrisic symmetry ∗246.

In general, for a commensurate decoration we get 4 nets in E3; 1 from the P-
and D− surface, and 1 from each of the 2 embeddings of the Gyroid.

Robins et al. (2005)

Slide 17/41



Relaxing a net

We usually distinguish between the emerging net and a relaxed version of the
net (called the equilibrium placement).

In this case, the two structures are quite similar, but this process might change
the structure quite a bit. Symmetries are preserved.

Delgado-Friedrichs & O'Kee�e (2005)
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Commensurate symmetries

We know that the most symmetric
periodic decoration of these surfaces
we can construct will have symmetry
∗246.

And the least symmetric one will just
have translational symmetry (i.e.
space group P1 and ◦◦◦).

So we need to know all symmetry
groups, G , for which:

∗246 ≤ G ≤ ◦◦◦

∗246

◦◦◦
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Commensurate symmetries
Robins and collaborators did this and ended up with 131 commensurate
symmetry groups:

Robins et al. (2004)

Slide 20/41



Getting frustrated

We now have the pieces needed to bring realise our hyperbolic disk packings in
E3 via the TPMS.

All we need to do is deform the pattern on the left (with ∗239 symmetry) to be
commensurate with the symmetries our TPMS (with ∗246/◦◦◦ symmetry).

Slide 21/41



Getting frustrated

This can now be seen as a group theoretical problem, and GAP can help us
�nd the shared subgroups of ∗23N and ∗246/◦◦◦:
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Getting frustrated

Visualizing the cosets of the subgroup can aid us a further:

· Starting with a
tesselation of H2 of
∗23(10) domains...

· we can assign a color to
each coset in the
subgroup (using the
subgroup generators)...

· and recover the orbifold
symbol of the subgroup
- here 3∗22...

· and see how a single
orbifold can be
visualized...

· as well as the decoration
needed to build the
[3, 10]-net.
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Getting frustrated

Now we know how to deform the {3, 10} net into a net we can lift to E3 via
the TMPS and ∗246:

· Starting from a
tesselation of H2 of
∗246 domains...

· we can construct a
tesselation of
commensurate 3∗22
domains...

· and decorate the
tesselation with the
motif we just found...

· and get a [3, 10]
commensurate with the
symmetries of our
TMPS.

· We can think of the
pattern as an
8-connected packing of
disks.
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Getting frustrated

Net Orbifold

{3, 7} 23×
2223

{3, 8} 2∗23

{3, 9} 2∗23

{3, 10} 3∗22

{3, 12} 2∗33

[3, 7] [3, 8]

[3, 9] [3, 10]

[3, 11] [3, 12]
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From H2 to E3

Due to the commensurate symmetry, we can visualize this as a net on the
TMPS:

Using Systre, we compute equilibrium placements for all of our nets generated
using the di�erent surfaces.

Delgado-Friedrichs & O'Kee�e (2005)
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From H2 to E3

Generally, we get 4 di�erent nets from each pattern in H2.

However, in this case, our mirror symmetry does not lift to the Gyroid, so the
resulting nets from the two embeddings via the Gyroid are identical.

[3, 10] on 3∗22 via P [3, 10] on 3∗22 via D [3, 10] on 3∗22 via G
Pm3̄ P23 I213

Note that the net on the P is 9-valent. Edges may merge when computing
canonical embeddings.

Hyde et al. (2014)
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A note on enumeration

· We can �name� out honeycomb
nets by their parent hyperbolic
net, their (subgroup) orbifold
symbol, and the surface on with
which we lift them to E3.

· However:

· Two subgroups can have
the same orbifold symbol
· Some subgroups �sit� in the
∗246 lattice in in�nitely
many ways
· Some orbifolds have
non-trivial symmetries (i.e.
symmetries not in the ∗246
lattice)

· Enumeration is hard.
Computations get hard for very
elongated orbifolds.

[3, 10] on 3∗22 via P

Ramsden et al. (2009), Evans et al. (2015), Kolbe & Evans (2018)
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From H2 to E3

For N ∈ {7, 8, 9, 10, 12}, we:

· Determined all subgroups of
23N down to and including
those that could be found as
index-4 subgroups in ∗246

· Built 35+ nets in H2 using these
groups

· These nets yielded 100+ nets in
E3 from the outlined pipeline

· We found 10 in�nite deltahedra
in our search. 5 are not reported
elsewhere. Maybe?

· As well as many other
interesting structures

2∗33 in ∗23(12)
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For N ∈ {7, 8, 9, 10, 12}, we:

· Determined all subgroups of
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index-4 subgroups in ∗246

· Built 35+ nets in H2 using these
groups

· These nets yielded 100+ nets in
E3 from the outlined pipeline

· We found 10 in�nite deltahedra
in our search. 5 are not reported
elsewhere. Maybe?

· As well as many other
interesting structures

[3, 9] on 222331 via P

[3, 12] on 2∗33 via G
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From H2 to E3

[3, 10] on 3∗22 via P [3, 12] on 2∗33 via P
shy xay

[3, 9] on 2∗23 via D [3, 8] on 222301 via G
uty tes
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From H2 to E3

[3, 7] on 23× (A) via D [3, 7] on 23× (B) via D
svm svu

[3, 7] on 23× (B) via P [3, 9] on 222321 via D
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From H2 to E3

Other structures are nearly deltahedra:

11% 5%
[3, 7] on 222313 via G [3, 7] on 222311 via P (svn-x)

9% 13%
[3, 8] on 222312 via G (lcv-e) [3, 10] on 3∗22 via G
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Looking for fame
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Looking for fame
Due to computational constraints, we generated these [3, 7]-nets on the
three-torus as well the Klein graph:

· 222301
· 222341
· 222311
· 222312
· 222313
· 222332
· 222314
· 222321
· 222323
· 222331
· Klein
· 23× (A)
· 23× (B) [3, 7] via 222301

Using an invariant representation of the surface embedding (and
double-checking with Delaney-Dress symbols), these embeddings are
equilavent.

Dress (1987)
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Looking for fame
Nauty and GAP can establish the group of automorphisms for each of our nets.
Nauty classi�es our [3, 7] nets as:

Orbifold symbol |Aut(G)|
222301
222341

24

222311 24
222312 24
222313
222332

24

222314 24
222321 24
222323 24
222331
Klein

336

23× (A) 24
23× (B) 24 [3, 7] via 222301

As before, we see that the [3, 7] net built via 222331 is indeed the Klein graph.

McKay & Piperno (2013)
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Looking for fame

And in conclusion, we have produced four 3-periodic embeddings of the
7-valent Klein graph.

The prettiest ones is built via one of the embeddings of the Gyroid:
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Outlook

Next steps:

· Very symmetric Schwarzites -
i.e. the surface duals of the
triangulations

· Embeddings via sub-periodic
surfaces (and other surfaces) -
e.g. the [3, 7] on 2223 on an
HCB-surface on the right

· Curating and comparing our
nets to existing databases such
as RCSR and EPINET

RCSR, http://rcsr.anu.edu.au, EPINET, http://epinet.anu.edu.au/

Slide 39/41



Outlook

Next steps:

· Very symmetric Schwarzites -
i.e. the surface duals of the
triangulations

· Embeddings via sub-periodic
surfaces (and other surfaces) -
e.g. the [3, 7] on 2223 on an
HCB-surface on the right

· Curating and comparing our
nets to existing databases such
as RCSR and EPINET

RCSR, http://rcsr.anu.edu.au, EPINET, http://epinet.anu.edu.au/

Slide 39/41



Outlook

Next steps:

· Very symmetric Schwarzites -
i.e. the surface duals of the
triangulations

· Embeddings via sub-periodic
surfaces (and other surfaces) -
e.g. the [3, 7] on 2223 on an
HCB-surface on the right

· Curating and comparing our
nets to existing databases such
as RCSR and EPINET

RCSR, http://rcsr.anu.edu.au, EPINET, http://epinet.anu.edu.au/

Slide 39/41



References

Polyhedra and packings from hyperbolic honeycombs
Pedersen & Hyde
Proc. Natl. Acad. Sci. 115, 6905-6910 (2018)

Surface embeddings of the Klein and the Möbius-Kantor graphs
Pedersen, Delgado-Friedrichs, & Hyde
Acta Crystallogr. Sect. A 74, 223-232 (2018)

Hyperbolic crystallography of two-periodic surfaces and associated structures
Pedersen & Hyde
Acta Crystallogr. Sect. A 73, 124�134 (2017)

Slide 40/41



Acknowledgements

From Australian National University:

· Stephen Hyde

· Stuart Ramsden

· Vanessa Robins

· Olaf Delgado-Friedrichs

From Technische Universität Berlin:

· Myfanwy Evans

· Benedikt Kolbe

Funding:

Software:

Slide 41/41


