

17 Gauss Way Berkeley, CA 94720-5070 p: 510.642.0143 f: 510.642.8609 www.msri.org

NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Email/Phone: mmarciniak@lagcc.cuny.edu 5734620411 Name: Malgorzata Marciniak

Speaker's Name: Maciej Haranczyk

Talk Title: Facilitating Discovery of Nanoporous Materials for Energy Applications with Porosity Analysis Tools

Date: 10 /03 /2018 Time:11: am / pm (circle one)

Please summarize the lecture in 5 or fewer sentences:

The presentation offers a view at the structure of nanoporous materials from the perspective of how mathematics, in particular computational geometry and topology, can be in analysis of the shape and structure of materials. We want to combine different aspects and different tools to enable this discovery. i.e., discuss new models for porosity analysis, use molecular simulations to predict absorption and create algorithms for discovery (sampling techniques, machine learning or optimization technique) of finding the best structures for particular applications.

CHECK LIST

(This is **NOT** optional, we will **not pay** for **incomplete** forms)

Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.

- Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.
 - Computer Presentations: Obtain a copy of their presentation •
 - Overhead: Obtain a copy or use the originals and scan them •
 - Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil ٠ or in colored ink other than black or blue.
 - Handouts: Obtain copies of and scan all handouts

For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

↓ When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list. (YYYY.MM.DD.TIME.SpeakerLastName)

Email the re-named files to notes@msri.org with the workshop name and your name in the subject line.

Facilitating Discovery of Nanoporous Materials for Energy Applications with Structure and Porosity Analysis Tools

Maciej Haranczyk

Cory Simon, Matt Witman, Nils Zimmermann, Jose Perez, Richard Martin, Berend Smit, Ismael Garcia, Marco Bernabei

Berkeley, CA, October 2018

Nanoporous materials

Slater&Cooper, Science 2015

Diversity and modularity of nanoporous materials

Zeolites

(SiO₂)x building unit of zeolites

Diversity of zeolites (mainly topology, chemistry): ~1.5k made, ~3M predicted

Diversity and modularity of nanoporous materials

^{~0.5}M predicted

Furukawa et al. Science 2013, 341, 974

Diversity and modularity of nanoporous materials

Diversity of PMC: ~50? made, 100 predicted ?

Application Context and Targets

<u>CO₂ capture</u>

Flue gas: 1atm, 14% CO_2 , 40°C

Parasitic Energy= (energy cost) / (amount of CO₂ captured)

Other Targets

"Performance" measure (examples):

·General crystal design:

- Large surface area (gravimetric/volumetric)
- Pore size

Xe/Kr Separations

Xe/Kr mixture: 20/80, 1atm total, 298K

Performance measure: Selectivity + Material uptake

<u>Methane storage</u>

Working capacity = Uptake@65bar-Uptake@5.8bar

Property and Performance Prediction

Hot Topics: Shape and Structure of Materials

Þ

MOFs for Hexane Isomers Separations

Hexane isomers separation is important for petrochemical industry.

 $Fe_2(BDP)_3$ MOF has been demonstrated to have high selectivity towards non-branched isomers.

Best Performing Zeolites in CO₂ Capture Application

L.-C. Lin et al, Nature Materials, 2012

The most diverse of the zeolites with best performance exhibit common features – "sweet spots" that determine property

Anatomy of a binding site: two fragments arranged in a way to maximize interactions

> Martin, et al , ChemPhysChem, 2012

Discovery Methodology Overview

Towards Crystal Structure Prediction and Structure Enumeration

Towards Structure Prediction for Advanced Porous Materials

New classes of advanced porous materials such as **MOFs** permit unlimited structural variation through control of *topology and functionality*

Topology-based Structure Prediction

Building blocks: 4-connected metal (square) and

3-connected linker (triangle)

Example: predicting the structure of a MOF comprising square and triangular components

Reticular Chemistry Structure Resource

Ockwig et al., Acc. Chem. Res. **2005**, 38, 176 O' Keeffe et al., Acc. Chem. Res. **2008**, 41, 1782 Catalogue of possible topologies

rcsr.anu.edu.au

High-symmetry candidate: **tbo** topology or "net"

Map building blocks to vertices of topology graph and perform symmetry operations

Alternative, or funct **Suppliced** linkers can be easily accommodated

Final model exhibits specified topology

Martin, R.L.; Haranczyk, M., Cryst. Growth Des. 2014

Structure Prediction

	Experiment	Model (unrelaxed)	PM6-relaxed model
Density (g/cm ³)	0.42	0.40 (-5.44%)	0.43 (2.40%)
Included sphere diameter (Å)	9.04	9.56 (5.79%)	8.52 (-5.73%)
Free sphere diameter (Å)	7.99	7.67 (-4.06%)	7.84 (-1.93%)
Accessible surface area (m ² /g)	5189.68	5730.52 (10.42%)	5425.27 (4.54%)
Accessible volume (cm ³ /g)	1.00	1.07 (6.75%)	0.93 (-6.67%)

Tailored Structure Prediction Effort

MOF-74 and its analogues

Examples of various metals

M₂(dobpdc) M = Mg, Mn, Fe, Co, Ni, Zn

Examples of various linkers:

Gygi et al Chem. Mater. 2016

Deng et al. Science 2012

Maciej Haranczyk (maciej.haranczyk@imdea.org)

Structure Prediction of New Materials

Ab initio structure prediction of MOF-74 analogues

High-throughput Structure Analysis and Structural Descriptors for Porous Materials

Voronoi decomposition in 2D

Ongari et al. Langmuir, 2017; Pinheiro et al J. Mol. Graph. Model 2013 Implemented in Zeo++: www.zeoplusplus.org

S4

S10

S20

S30

S40

S50

S100

\$500

Pinheiro et al. CrysEngComm, 2013 Implemented in Zeo++: www.zeoplusplus.org

Brute-force Search for Gas Storage Materials

Covalent Organic Frameworks for Methane Storage

Accelerated Discovery with Machine Learning

Discovery of Materials for Xe/Kr Separations

Nanoporous Materials Genome = ca. 650k materials Our diverse sample = ca. 15k materials

Majority of structures have poor performance...

BUT with our discovery approaches we can fish them out.

C. Simon, R. Mercado, S. Schnell, B. Smit, M. Haranczyk. What Are the Best Materials To Separate a Xenon/Krypton Mixture? Chemistry of Materials, 2015, 27 (12), pp 4459-4475.

Discovery of Materials for Xe/Kr Separations

Structural descriptors (feature vector)

Descriptor	Symbol
Void fraction [unitless]	ϵ_{v}
Crystal density [kg/m ³]	ho
Largest free sphere diameter $[A]$	D_f
Largest included sphere diameter [Å]	D_i
Accessible surface area [m ² /cm ³]	а
Surface density [kg/m ²]	ρ_s

$\mathcal{V}\left(r ight)=arepsilon\left[\left(rac{R_{min}}{r} ight)^{12}-2\left(rac{R_{min}}{r} ight)^{6} ight]$

Lennard-Jones potential

Discovery of Materials for Xe/Kr Separations (II)

Sample of diverse materials become the training set

No single feature (descriptor) determines properties of interest

Discovery of Materials for Xe/Kr Separations (III)

Statistical machine learning is used to correlated feature vectors with performance data. Here, we use a decision forest

Discovery of Materials for Xe/Kr Separations (IV)

C. Simon, R. Mercado, S. Schnell, B. Smit, M. Haranczyk. What Are the Best Materials To Separate a Xenon/ Krypton Mixture? Chemistry of Materials, 2015, 27 (12), pp 4459-4475.

SBMOF-1 Discovery and Experimental Verification

Haranczyk, P.K. Thallapally - Metal-Organic Framework with Optimal Adsorption, Separation, and Selectivity towards Xenon – *Nature Communications* 7 (2016) 11831

Optimization-based Materials Design

Þ

Optimization-based Material Design

Possible discrete chemical building blocks:

Possible "alchemical" building blocks:

Exploring Frontiers of High Surface Area Materials: Gravimetric Surface Area (GSA)

Exploring Frontiers of High Surface Area Materials: Gravimetric Surface Area (GSA)

Exploring Frontiers of High Surface Area MOFs

Similar study for volumetric surface area (VSA)

Martin, Haranczyk, J. Chem. Theory Comp. (JCTC) 2013

Set II

Towards Multiobjective Design

Multiobjective design can be achieved by combining objectives:

12000

Investigated materials

Optimization in Real Chemical Space

An alternative implementation of optimization-based design approach involves real molecular fragments and genetic algorithms .

Genetic algorithm (GA) workflow

Bao et al. PCCP 2015; JPCC 2015

Optimization in Real Chemical Space

Synthesizability and Applicability Prediction with New Structure Descriptors

Towards Synthesizability Prediction: Zeolites

Hypothetical zeolite topologies ~3M vs 200-300 known ones

Li structural criteria based on known zeolites (Li et al., Angew. Chem. Int. Ed. **2013**, 10.1002/anie.201206340)

New Descriptors for Synthesizability Prediction

Distance to fifth neighbor:

Degree of tetrahedrality [0-1]:

0 degrees

 $q_{tet} = 1.00$

New Descriptors for Synthesizability Prediction and their Applications to Deems Database

Maciej Haranczyk (maciej.haranczyk@imdea.org)

Tetrahedrality descriptor for industrially relevant zeolites

Framework	Tetrahedrality
type	$ar{ heta}_{ m tet}$
MFI	0.979
FAU	0.979
BEA	0.976
MOR	0.971
Average	0.976

High tetrahedrality seems a necessary structural feature to sustain harsh process conditions

Zimmermann, Haranczyk, CG&D, 2016

How many all silicious zeolites are 'out there'?

Descriptor	Percentage filtered
Deem	NA
LIDI	0.90
LID2	5.55
LID3	30.5 I
LID4	21.41
New (5thN)	82.43
Qtet	69.72

How many all silicious zeolites are 'out there'?

*Plus including filer based on diffusion criteria (2D channels, large pores)

Molecular Barn-finds and their Porous Crystalline Phases

Barn-find

A **barn find** is a classic car or motorcycle that has been discovered, often in derelict condition. The term comes from their tendency to be found in places such as barns, sheds, carports and outbuildings where they have been stored for many years. The term usually applies to vehicles that are rare and valuable, and which are consequently of great interest to car collectors and enthusiasts despite their poor condition.

[Wikipedia]

Progress in Discovery of Porous Molecular Materials

Hansell&Cooper,; Nature Rev Mat 2016

Zhang et al, Angew. Chem., Int. Ed. 2014

Databases of crystal structures:

- Cambridge Structure Database (CSD)
 - Crystallography Open Database

CSD:

- Largest [650k]
- Structures provided by users
- Structures need to fulfill high quality criteria

Porous Molecular Materials from Data Science Perspective

Are there any previously synthesized cage molecules yet to enter the porous materials research?

"Molecular barn finds"

The introduction of a porous molecule to the porous solids community requires three steps: (i) the molecule has to be synthesized, (ii) the corresponding solid material (amorphous or crystalline) needs to be obtained, and (iii) its porosity needs to be confirmed.

Repository of All Known Molecules

Databases of molecules:

- PubChem
- ChemSpider
- Vendors

PubChem

- Largest of them [100M]
- Structures mined from literature, patents, provided by vendors
- All structures encoded as SMILES, some have 3D coordinates (generated with OpenEye's OMEGA and MMFF94)

Porous ?

CID = 1008508

CID = 101377082

Examples from PubChem

D

Detection of Molecular Porosity

Linear shape

Partially trapped Open shape

Almost fully trapped

Fully trapped

Linear molecule

Molecular belt

Molecular cage

53

Pore Exposure Ratio (PER) Molecular Descriptor

Outline of PER Calculation (1)

Identification of points highlighting the void space around atoms – Use of Voronoi nodes

Outline of PER Calculation (2)

PER for one Voronoi node (analogous procedure applied to all Voronoi nodes)

For each node, PER value is calculated

Molecule (black spheres and lines) and studied point (white sphere)

around the molecule (orange triangles)

G - Spherical grid

Outline of PER Calculation (3)

Outline of PER Calculation (4)

Outline of PER Calculation (5)

Algorithms being implemented in Zeo++

Pore Exposure Ratio (PER) Molecular Descriptor

 $PER_{3D} = Max(Surf(C_i)) / Surf(C)$

CID = 16148678 Pore Exposure Ration ⊜0:1

Molecular Cages – PER 0 - 0.36

CID = 88543151 Pore Exposure Ration = 0.81

CID = 10008508 Pore Exposure Ration = 0.75

Molecular Non-Cages – PER > 0.36 (Non-porous Molecules - PER > 0.75)

Screening PubChem

Molecular Cage Barn-finds

M1	101377082	Japanese	We are not able to obtain a copy of the proceeding article to confirm the synthesis of M1.
M2	102021452	English	The reference article mentions Molecule M2 as a possible outcome of a reaction. The synthesis of M2, however , is not confirmed.
M3	102210546	English	The reference discusses an analogue of M3 in which vertex H atoms are substitute with Me groups. We expect that M3 can be synthesized with the same reaction path as the Me analogue.
M4	102263757	Japanese	We are not able to obtain a copy of the reference. However synthesis of M4 was reported in another article (Tetrahedron Letters 51 (2010) 6521–6525).
M5	102333795	Japanese	We are not able to obtain a copy of the proceeding article to confirm the synthesis of M5.
M6	16148678		We are not able to identify the reference article.

Crystal Structure Prediction

Methodology:

- Systematic search through 13 most common space groups
- 5000 random configurations
- OPLS2005 forcefield
- UPACK code
- Porosity characterization with Zeo++

65

- Nanoporous materials, with their chemical diversity and industrial importance, represent an exciting and enormous search space – novel algorithms to execute searches are needed
- In many cases shape/geometry is a sufficient proxy for molecular interactions; therefore applications of computational geometry can have a huge impact
- Opportunities for material discovery via optimization, search algorithms and machine learning are clear
- Feature engineering (esp. physics-based descriptors) and statistical-based analysis of large sets of structures offer collaboration opportunities between mathematicians and domain scientists

Thank you