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Connections between random topology and circular molecules such as plasmids of 
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Speaker: Eric Babson

Title: Random knoots, random groups and DNA

Note Taker: Ma lgorzata Marciniak

Plan: Suggest a relationship between homology of maps into tiling spaces

and the dynamics of local reaction system

1. Toy examples fitting very well with the homotopy side (they are called

plasmid examples).

2. Properties of the collections of systems that are related to homotopies

3. Theorems about the spaces arising here (random petro complexes) on

the topology side and suggest phase transition

4. Suggest examples where one can try to use this approach to learn about

systems that they care about.

Basic Setup

• P is a finite collection of allowed local structures (patches allowed in

the system) e.g., triangulated discs with labeling of the vertices

• A is an infinite collection of assemblies which locally from P , e.g.,

triangulated surfaces covered by discs from P

• R a finite collection of local reactions e.g., r ∈ R is associated to a pair

of subdisks in disks in P with identical boundaries.
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More carefully: patches ρ in P have a marked interior vertex p and every

vertex v in some assembly α ∈ A has a neighborhood N ⊆ α with (v, α) ∼=

(p, ρ) (isomorphic).

Plasmid toy example

• P = {· − · − ·|i, j, k ∈ {1, . . . n}} where each bi is a linear short DNA

strand · − · − · Variations (more general class of examples): P could

have restrictions which pairs are adjacent, or P could be 2-dimensional

triangulated disc such as P =

• A = {all circular DNA strands consisting of {b1, . . . , bn}} 3 α13552

• R ⊆ {rijk|i, j, k ∈ {1, . . . , n}}, where α =

For convenience add some assumptions about R in the toy plasmid ex-

ample (so it fits exactly with homotopy). R = Re ∪ Rt, where Re =
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{riij} ∪ {riji} ∪ ... (with two indices equal) and Rt ⊆ {rijk|i 6= j 6= k}

(any subset closed with respect to permutations of indices i, j, k).

Toy picture: rikj assume that each bi is palindromic

Notation: For the toy plasmid examples define l(α) = # of pieces in α,

α ∈ A (for example l(α12553) = 5)

α = α̃ if there is a sequence of basic reactions in R changing α to α̃. If

α = α̃ then

dR(α, α̃) = minimum number of steps from R changing α to α̃

If α 6= α̃ then dR(α, α̃) =∞.

IfR is a toy plasmid example thenXR = the 2 dimensional simplicial complex with trianglesRt

and all edges e.g., Rt = {r123r124}, XR =

Definition 1 A plasmid system R is λ-fast if for every α, α̃ ∈ A with α = α̃

there is

dR(α, α̃) ≤ λ(l(λ) + l(α̃))

For convenience assume that reaction rates preferring faster to shorten

Idea: Geometrically XR is Gromov hyperbolic. In the toy example the

system reaches the equilibrium quickly.

Definition 2 A plasmid system R is dissolving if every pair α, α̃ ∈ A have

α = α̃
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Idea: Geometrically Π1Xr = {1}. In the toy example only short plasmids

remain

Definition 3 A plasmid system R is l-stable if

Probα∈A,l(α)=l (l = minα=α̃l(α̃)) >
1
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Idea: Most long plasmids stay long

If P ⊆ {1, . . . n} write Rt[P ] = {rijk ∈ Rt|i, j, k ∈ P}

Theorems by Khale, Heffman (deterministic):

a) If for every P ⊆ {1, . . . n} have Rt[P ] < 2|P | then R is fast (counterex-

amples exists for Rt[P ] = 2|P |)

b) There is a function M(e) such that M → ∞ as e → 2 (very hard to

identify). If for some e < 2 and every P ⊆ {1, . . . n} with |P | ≤ M(e)

have Rt[P ] < e|P | then R is fast.

Note: There are examples (tori) with n = k2 and |Rt| = 2k2 but R is

slow and is not dissolving or t-stable. This situation is rare.

Theorems (random):

a) If α > 2.5 then

lim
n→∞

Prob|Rt|=nα (R is fast and dissolving) = 1

b) If α < 2.5 then

lim
n→∞

Prob|Rt|=nα (R is fast and l-stable) = 1
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