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Let 𝑓 , … , 𝑓 ∈ ℂ[𝒛] = ℂ[𝑧 , … , 𝑧 ] be polynomials. The associated ideal is defined as: 

〈𝑓 , … , 𝑓 〉 ≔ 𝑠 𝑓 ∶ 𝑠 ∈ ℂ[𝒛] ⊆ ℂ[𝒛] 

The associated variety is the Zariski-closure of the joint solution set: 

𝑉(𝑓 , … , 𝑓 ) ≔ {𝒛 ∈ ℂ : 𝑓 (𝑧) = ⋯ = 𝑓 = 0} 

Two methods for solving: symbolic with Grobner basis and numerical with homotopy continuation 

Symbolic method 

Hilbert Nullstellensatz. 

If ideals are generated by a single polynomial, then the membership can be tested polynomial 
division 

If ideals are generated by more than one polynomial, then a similar procedure to polynomial 
division can be performed but not all sets of generators are suitable for the polynomial division.  

Example: Let 𝑓 = 𝑥𝑦 − 1 and 𝑓 = 𝑦𝑧 − 1. Consider 𝑓 = 𝑥 − 𝑧 and lexicographic order. We 
have 𝑓 = 𝑧𝑓 − 𝑥𝑓 ∈ 〈𝑓 , 𝑓 〉 however, a multivariate version of polynomial division always 
leads to a reminder. 

Solution: use Grobner basis introduced by Buchberger in 1965 and independently by Hironaka in 
1964 

Theorem (Buchberger): Grobner bases always exist and are computable in finite time. 

The algorithm is very expensive and requires exponential space and time to compute 

Software: SINGULAR, Macaulay2, Magma, Maple 

Homotopy continuation  

Morgan, Sommese, Wampler 1990 

Let us assume that the supports (exponents) are fixed but the coefficients are not. The system 
may be solved for some coefficients and then deformed to the desired system (keep track of the 
solutions numerically).  



This is a very fast method, but problems need to be well conditioned: endpoints may run into 
infinity or singularity, over the real numbers ill conditioned area may not be avoidable. Complx 
and real dimensions of solutions do not agree. 

Software: Bertini, Hom4PS, PHCpack, HomotopyContinuation.jl 

 

Examples of polynomial optimization: image reconstruction, portfolio optimization, Max-cut 
(find a subgraph S I graph V to maximize the number of edges between S and V\S). 

 

Motivation: Let 𝑓, 𝑔 , … , 𝑔 ∈ ℝ[𝒙] = ℝ[𝑥 , … , 𝑥 ]. Consider the constrained polynomial 
optimization problem (CPOP)  

min
,…,

𝑓(𝒙) 

Which is a non-convex optimization problem. 

Solving CPOP is equivalent to computing  

𝑓∗ = 𝑠𝑢𝑝{𝛾 ∈ ℝ|𝑓(𝒙) − 𝛾 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒙 ∈ 𝐾} 

With  

𝐾: = {𝒙 ∈ ℝ |𝑔 (𝒙), … , 𝑔 (𝒙) ≥ 0} 

This is an algebraic problem: f in nonnegative on semialgebraic set K (classic problem in algebraic 
geometry), which is NP-hard. 

Idea: find certificates of non-negativity, for example sum of squares (SOS), which is a convex 
optimization problem. 

Consider a vector space that consists of polynomials of n variables and degree at most d: ℝ[𝒙] ,  
and define a cone of nonnegative polynomials as  

𝑃 , = 𝑓 ∈ ℝ[𝒙] , : 𝑓(𝒙) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒙 ∈ ℝ   

Inside of 𝑃 ,  there is Σ ,  the cone of polynomials that are sum of squares. 

Theorem (Hilbert 1888): 𝑃 , =Σ ,  if and only if n=1 or 2d=2 or (n,2d)=(2,4). 

Example: The Motzkin Polynomial (1965) is contained in 𝑃 ,  but not in Σ , : 

𝑀(𝑥, 𝑦) = 𝑥 𝑦 + 𝑥 𝑦 − 3𝑥 𝑦 + 1 

 

Theorem (Blekherman: 2006, very rough version): For fixed degree 2𝑑 ≥ 4 almost every 
nonnegative polynomial is not a sum of square as n tends to infinity. 



How to tackle applications? 

Procedure: Model application as CPOP. Choose a certificate of nonnegativity (such as SOS) Translate the 
problem into a convex optimization problem. Attack convex optimization problem with suitable solver. 

Warning: most applications cannot be solved straightforwardly 

Sums of Squares in Practice 

Advantages: SOS certificates provide a hierarchy of lower bounds for CPOPs under mild assumptions. 
There exist several preprocessing techniques. There exists software to translate the CPOP into a 
corresponding SDP. There exists various software to SDPs (SeDuMi, SDPT3, Mosek). 

Issues: Numerical issues can occur, Convex optimization problems are, given a starting point, solvable in 
polynomial time in the input size. For SDPs corresponding to SOS certificates of n-variate degree d 

polynomials these are matrices of degree 𝑛 + 𝑑
𝑑

.  

Possible improvements: Create better solvers, find better representations of problems (make 
computations faster and more stable). Relax SOS certificates further, find new ways to certify negativity. 

Circuit Polynomials 

Definition: Define the set of circuit polynomials 

𝑓 = 𝑏 𝒙 ( ) + 𝑐𝒙  ∈ ℝ[𝑥 , … , 𝑥 ]  

With the following properties: 

- Δ ≔ 𝑁𝑒𝑤(𝑓) = 𝑐𝑜𝑛𝑥{𝛼(0, … , 𝛼(𝑛), 𝛽} ⊂ ℝ  is a simplex (𝑁𝑒𝑤(𝑓) Newton polytope is the 
convex hull of all exponents) 

- 𝛽 = ∑ 𝜆𝑖𝛼(𝑖) 𝑛
𝑖=0  with ∑ 𝜆 = 1  and 𝜆 > 0 

- for all j: 𝑏 > 0 and 𝛼(𝑗) ∈  (2ℕ)  

 

Deciding nonnegativity of the circuit polynomials is very easy. 

First define circuit number: 

Θ ≔
𝑏𝑗

𝜆
 

Theorem (Iliman, dW 2014) known for special cases before: The following statements are equivalent for 
circuit polynomials 

- F is nonnegative 
- |𝑐| ≤ Θ  or f is a sum of monomial squares 



Definition: Let the set of sums of nonnegative circuits polynomials (SONC) be: 

𝐶 , ≔ 𝑓 ∈ ℝ[𝒙] , : 𝑓 = 𝑔  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑔  𝑖𝑠 𝑎 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  

Theorem (Iliman, dW 2014) 

𝐶 ,  is a convex cone in 𝑃 ,  which satisfies: 𝐶 , ⊆ Σ ,  if and only if Σ , = P , . 

Theorem (Dresser, Iliman, dW 2016) 

For every n, d the cone C ,  is full dimension in P , . 

 

Problem: how one can check efficiently whether a polynomial has a SONC decomposition 

POEM: a software for SONC Certificates (Effective Methods in Polynomial Optimization) written in 
Python.  

Experimental comparison of SONC and SOS for unconstrained polynomial optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


