

17 Gauss Way Berkeley, CA 94720-5070 p: 510.642.0143 f: 510.642.8609 www.msri.org

NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Email/Phone: mmarciniak@lagcc.cuny.edu 5734620411 Name: Malgorzata Marciniak

Speaker's Name: Jacob Kirkensgaard

Talk Title: Soft matter as a playground for the exploration of space partitioning

Date: 10 / 04 /2018 Time: 3:30 am / pm (circle one)

Please summarize the lecture in 5 or fewer sentences:

Experimental and theoretical work on various molecules that self-assemble. Single block copolymers may have segments of cylindrical or conical shape that create supramolecular assembly and later a multigeometry assembly with given properties. Various AB deblock or ABC triblock copolymers effects of molecular architecture. With examples from biology: Cubic-lamellar transition in plant membranes, butterflies and weevils.

CHECK LIST

(This is **NOT** optional, we will **not pay** for **incomplete** forms)

🗹 Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.

Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.

- **Computer Presentations:** Obtain a copy of their presentation •
- Overhead: Obtain a copy or use the originals and scan them •
- Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil • or in colored ink other than black or blue.
- Handouts: Obtain copies of and scan all handouts

For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

↓ When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list. (YYYY.MM.DD.TIME.SpeakerLastName)

Email the re-named files to notes@msri.org with the workshop name and your name in the subject line.

Soft matter as a playground for the exploration of space partitioning

Jacob Kirkensgaard, University of Copenhagen

Hot Topics: Shape and Structure of Materials

Molecular overview

Lipids and surfactants

Block copolymers

ц К К

In solvent or in melt state

Molecular shape/geometry

Molecular shape/geometry

Dilute solution structures

Zhu et al, Nature Comm., 4:2297, 2013

Dilute solution structures

d g j j j

PAA₇₅-*b*-PB₁₀₄

Scale bar, 100 nm.

PAA₁₅₀-*b*-PMA₆₀-*b*-PS₂₄₀

Zhu et al, Nature Comm., 4:2297, 2013

A surfactant phase diagram (in theory...)

AB diblock copolymers

AB copolymers: effect of molecular architecture

AB copolymers: effect of molecular architecture

Linear block copolymers: AB vs.ABC

ABC triblock copolymer

Figure from Hadjichristidis et al. 2005, Prog. Polym. Science 30

Same structural vocabulary Interfaces = Surfaces

Macromolecules 2012, 45, 2161-2165

ABC star triblock terpolymers

line torsion, curvature = 0.

Kirkensgaard JJK, Pedersen MC and Hyde ST, Soft Matter, 2014, 10, 37, 7135

● [LAM] ● [8.8.4] ● [6.6.6] ● [8.6.4;8.6.6] ● [10.6.4;10.6.6.] ● [12.6.4] ● [14.6.4] ● [16.6.4] ● [(12z+6).6.4...] ● [L+C]

Kirkensgaard JJK, Pedersen MC and Hyde ST, Soft Matter, 2014, 10, 37, 7135

ABC star triblock terpolymers

Chernyy, Kirkensgaard *et al.* Macromolecules 2018, 51, 1041–1051

ABC stars - experimental ISP phase diagram

ABC_x vs ABC_n

Both x = 2 but molecular architecture differs

Kirkensgaard JJK, Phys Rev E, 85, 031802 (2012)

ABC_x vs ABC_n

Both x = 2 but molecular architecture differs

Kirkensgaard JJK, Phys Rev E, 85, 031802 (2012)

Kirkensgaard JJK, Phys Rev E, 85, 031802 (2012)

A(BC)₂ mikto-arm star copolymer

Self-assembly of A₇- $(B_6-C_5)_2$ reference structure

[PLA] phase

Rheo-SANS experiments support the PL structure

In situ shear small-angle neutron data SANS-2, Paul Scherrer Institute

Simulations: Kirkensgaard JJK, Soft Matter, 2010, 6, 6102-6108 Experimental: Kirkensgaard JJK, Fragouli P, Hadjichristidis N and Mortensen K Macromolecules, 2011, 44 (3), 575-582

Phase diagram

Simulations: Kirkensgaard JJK, Soft Matter, 2010, 6, 6102-6108

Experimental: Kirkensgaard JJK, Fragouli P, Hadjichristidis N and Mortensen K Macromolecules, 2011, 44 (3), 575-582

Simulations: Kirkensgaard JJK, Soft Matter, 2010, 6, 6102-6108 Experimental: Kirkensgaard JJK, Fragouli P, Hadjichristidis N and Mortensen K Macromolecules, 2011, 44 (3), 575-582

[GL_{AB}] - single network core-shell structure

Structure from AI-(B3-C3)₂ molecule

$[S_A + GL_C]$ - sphere packing and single network

Structure from A4-(B9-C3)₂ molecule

Tricontinuous structures in ABC star systems?

Zeng et al, Nature Materials, 4, 2005

Construction of bicontinuous patterns

Take two threaded nets, here double diamond

Construct Voronoi partition of net nodes

Minimize area of Voronoi walls with K. Brakke's *Surface Evolver*

Construction of tricontinuous patterns

Do the same with 3 nets! Here triple gyroid (3srs).

MANY polycontinuous patterns are possible! We are only interested in those with unbranched junction lines.

ĨÈ	

Take two threaded nets, here double diamond

Construct Voronoi partition of net nodes

Minimize area of Voronoi walls with K. Brakke's *Surface Evolver*

Some possible tricontinuous patterns

Triple D (3dia)

Tricontinuous 3-colored structures

S

Tricontinuous 3-colored structures

Fischer, de Campo, Kirkensgaard, Hyde and Schröder-Turk, Macromolecules, 47, 2014

From flat to curved space

Zero Curvature

Positive Curvature

Negative Curvature

From flat to curved space

BCP's on templated substrate Nature Communications 7, 12366 (2016)

BCP striped nano spheres Scientific Reports | 6:29796 (2016)

BCP 3-armed stars minority components PNAS, 111, 4, 1271 (2015)

AB and CD constrained in pairs to have the same size.

Again define ratio x = C/A to compare with pure ABC stars. Here x = 2.

Investigate at 4 segregation levels - all symmetric.

1.2

3.33

0.6

0.7

0.8

14

0.9

Kirkensgaard JJK, Interface Focus, 2, 602-607 (2012)

 a_{ij}

80

70

60

50

40

35

 $x \rightarrow$

0.28

0.1

0.67

0.2

0.3

Kirkensgaard JJK, Interface Focus, 2, 602-607 (2012)

Blending ABC and ABD 3-miktoarm stars

Kirkensgaard JJK, Evans ME, de Campo L and Hyde ST, PNAS, 111(4), 1271–1276 (2014)

Table 1. Details of threaded multiple nets from regular dense hyperbolic forests mapped onto the Gyroid.

Tree edge length	# nets*	# stripes (i) [†]	# stripes (ii) [†]
$\cosh^{-1}(3)$	2 srs	2	4
$\cosh^{-1}(5)$	2 srs	2	6
$\cosh^{-1}(15)$	4* hcb ‡	6	8
$\cosh^{-1}(53)$	$54 \ srs$	10	10
$\cosh^{-1}(99)$	54 srs	8	14
$\cosh^{-1}(195)$	2 srs	12	14
$\cosh^{-1}(675)$	54 srs	10	20
$\cosh^{-1}(725)$	54 srs	14	18

Kirkensgaard JJK, Evans ME, de Campo L and Hyde ST, PNAS, 111(4), 1271–1276 (2014)

Table 1.	Details of	threaded	multiple	nets from	ı regular
dense	hyperbolic	forests n	napped of	nto the G	yroid.

Tree edge length	# nets*	# stripes (i) [†]	# stripes (ii) [†]
$\cosh^{-1}(3)$	2 srs	2	4
$\cosh^{-1}(5)$	2 srs	2	6
$\cosh^{-1}(15)$	4* hcb ‡	6	8
$\cosh^{-1}(53)$	$54 \ srs$	10	10
$\cosh^{-1}(99)$	54 srs	8	14
$\cosh^{-1}(195)$	2 srs	12	14
$\cosh^{-1}(675)$	54 srs	10	20
$\cosh^{-1}(725)$	54 srs	14	18

-Model --Simulation 1.8 1.6 (ب) الم 1.2 0.8 0.3 r 0.2 0.5 0 0.1 0.4 0.6 195 99 3 15 53 675 725

Ideally, all nets are of the same hand...

(001)

(111)

Stars in curved geometries

Zero Curvature

Positive Curvature

Negative Curvature

Image: Stu Ramsden, ANU

Stars in curved geometries

Zero Curvature

Positive Curvature

Negative Curvature

ABCD 4-miktoarm stars

BCP self-assembly - relevance to other phenomena

Nuclear pasta (proton density) configurations in inner crusts of neutron stars (at densities of 10¹⁴ g/cm³)

Caplan and Horowitz, Rev. Mod. Phys 89, 2017

BCP self-assembly - relevance to other phenomena

Nuclear pasta (proton density) configurations in inner crusts of neutron stars (at densities of 10¹⁴ g/cm³)

Caplan and Horowitz, Rev. Mod. Phys 89, 2017

Biology: Cubic-lamellar transition in plant membranes

Images courtesy Łucja Kowalewska, University of Warsaw

Biology: Butterflies and weevils

Images courtesy Gerd Schröder-Turk, Murdoch University

S. Wickham, H. Averdunk, S. T. Hyde, M. Large, L. Poladian, G. E. Schröder-Turk (2007)