Invariants of actions on Artin-Schelter regular algebras

Ellen Kirkman

kirkman@wfu.edu

Department of Mathematics

MSRI

January 23, 2020

Collaborators:

- Kenneth Chan
- Jianmin Chen
- Andy Connor
- Luigi Ferraro
- Jason Gaddis
- Pete Goetz
- James Kuzmanovich
- Frank Moore
- Kewen Peng
- Kent Vashaw
- Chelsea Walton
- Robert Won
- James Zhang

Classical Invariant Theory: Group *G* acting linearly on the algebra $\Bbbk[x_1, \ldots, x_n]$ and study $\Bbbk[x_1, \ldots, x_n]^G$.

Noncommutative Invariant Theory: Replace: $k[x_1, \ldots, x_n]$ with appropriate noncommutative algebra A

G with a group (or Hopf algebra) that acts on A

to extend classical results.

Question: What results extend to this context?

Replace $k[x_1, \dots, x_n]$ by A, a noetherian Artin-Schelter domain generated in degree 1 ($k = \mathbb{C}$). Examples:

- $k_q[x_1...,x_n]$ with $x_jx_i = qx_ix_j$ for j > i.
- $\ \, @ \ \, R[x;\sigma,\delta]$
- Sklyanin algebras, Down-up algebras, etc.

Why A AS regular?

- Defined homologically.
- Commutative AS regular \cong to polynomial ring.
- There is a growing body of results.
- There are lots of interesting open problems.

Problem: Consider A filtered or (skew) Calabi-Yau

H is a Hopf algebra acting on A:

- *H* is semi-simple Hopf algebra
- H preserves the grading on A
- A is an H-module algebra
- The action of H on A is inner-faithful.

Problem: Consider H not finite dimensional, or not semisimple and/or char k = p, or the grading not preserved. Plan: Generalize

I. Bounds on the degrees of minimal generators of A^G

II. Reflection groups

III. Subgroups of $SL_n(\mathbb{C})$

I. Bounds on degrees of minimal generators of A^H

 $\beta(A^H) = \min\{k : A^H \text{ generated by elements}$ of degree $\leq k\}$

Example: $\mathbb{k}[x_1, \ldots, x_n]^{S_n}$ generated by

 $\sigma_m := \sum x_{i_1} x_{i_2} \dots x_{i_m}$ for $m = 1, \dots, n$ $eta(\Bbbk[x_1, \dots, x_n]^{S_n}) = n.$ **Theorem** (Noether (1915)) $\beta(A^G) \leq |G|$ if k has char zero or |G| < char k.

Fleischmann (2000) and Fogarty (2001) extended to non-modular case $(|G|^{-1} \in \mathbb{k})$.

Theorem (Symonds (2011)) If *G* is a finite group of order |G| > 1 acting linearly on $A := \Bbbk[x_1, \dots, x_n]$ with $n \ge 2$ then $\beta(A^G) \le n(|G| - 1)$. Relations among generators in degrees < 2n(|G| - 1). Noether bound can be sharp: $\epsilon = e^{2\pi i/n}$ $A = \Bbbk[x], G = (\epsilon), A^G = \Bbbk[x^n], |G| = n = \beta(A^G).$

Theorem (Domokos and Hegedüs (2000)) If *G* non-cyclic then A^G can be generated by polynomials of total degree:

> $\leq 3|G|/4$ if |G| is even, and $\leq 5|G|/8$ if |G| is odd.

Sezer (2002): Extended to non-modular case.

Theorem (Göbel (1995)) In any characteristic, *G* a group of permutations of x_i for i = 1, ..., n:

$$\beta(A^G) \le \max\{n, \binom{n}{2}\}$$

Example: $A = \Bbbk_{-1}[x, y], yx = -xy$ and $g: x \leftrightarrow y$ acts on A. $\mathcal{O}(x) = x + y$ $\mathcal{O}(x^2) = x^2 + y^2 = (x + y)^2$ $\mathcal{O}(xy) = xy + yx = 0$ A set of generators of A^G is x + y and $x^3 + y^3$ (or $x^2y + xy^2$). $\beta(A^G) = 3 > |G| = 2$.

The Noether bound does not hold.

[FKMP]: arXiv: 1907.06761 $A = \Bbbk_{-1}[x, y], \epsilon = e^{2\pi i/n}, \text{ and } G = \langle q \rangle$ $g = \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix}, \quad g^2 = \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon \end{pmatrix}$ so |G| = 2n. For *n* odd $\beta(A^G) = 3n$ $\beta(A^G) - |G| = n$ (in a 2-dimensional representation of G)

Problem: Find $\beta(\mathbb{k}_{-1}[x_1, \dots, x_n]^G)$.

$$A = \Bbbk \langle x, y \rangle / (y^2 x = x y^2, y x^2 = x^2 y)$$

Basis of the form $x^i (y x)^j y^k$

 $g: x \leftrightarrow y$ acts on A.

Invariants include: x + y, xy + yx (or $x^2 + y^2$), $x^3 + y^3, x^2y + xy^2, (xyx + yxy)$ $\beta(A^G) = 3 > |G| = 2$

$$A = \mathbb{k} \langle x, y \rangle / (y^2 x = xy^2, yx^2 = x^2 y)$$
$$G = \langle g \rangle \quad g = \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix} \quad |G| = 2n$$

$$n \text{ odd } : \beta(A^G) = 3n$$

Noether's bound fails when n is odd.

Problem: Find $\beta(A^G)$ for *A* down-up. $A(\alpha, \beta)$ generated by *x*, *y*, with relations:

 $y^2x = \alpha yxy + \beta xy^2, \quad yx^2 = \alpha xyx + \beta x^2y.$

For $A(0, -1) = \mathbb{k}\langle x, y \rangle / (y^2 x = -xy^2, yx^2 = -x^2y)$ computer computation suggest $\beta(A^G) = 4n$ for n odd.

For A(0,1) and A(2,-1), any element of $GL_2(\Bbbk)$ acts as an automorphism on A.

$A = \Bbbk[x_1, \dots, x_n]$ $\Bbbk[f_1, \dots, f_n] \text{ a subring of primary invariants.}$ $\beta(A^G) \leq \sum_{j=1}^n \deg(f_j) - n$ **Theorem** [KKZ](2014)

A quantum polynomial algebra of dimension n, H semisimple Hopf algebra, and $C \subset A^H \subset A$, C a graded iterated Ore extension $C = \Bbbk[f_1][f_2 : \tau_2, \delta_2] \dots [f_n : \tau_n, \delta_n],$ A_C finitely generated, deg $f_i > 1$ for at least 2 distinct *i*'s then $\beta(A^H) \leq \sum \deg f_i - n.$ **Theorem** [KKZ](2014): $A = \Bbbk_{-1}[x_1, \dots, x_n]$ • $\beta(A^{S_n}) = 2n - 1$ (generators: $s_k = \mathcal{O}(x_1^2 \cdots x_{k-1}^2 x_k), \ k = 1, \dots, n)$ • $\beta(A^{A_n}) = 2n - 3$ (generators: $s_k, k = 1, \ldots, n-1$, and $\mathcal{O}(x_1 x_2 \cdots x_n)$ • $\beta(A^G) \leq 3n^2/4$ for G permutations. • $\beta(A^G) < n^2$ for G a subgroup of $S_n \rtimes \{\pm 1\}$

Questions:

- Is $\beta(A^G)$ biggest for cyclic groups?
- Is β(A^G) a function of just |G|, or does it also depend on the dimension of the representation?
- Is $\beta(A^G)$ a linear function of |G|, of the dimension of the representation?
- Does the dim H play the same role as |G|?
- Can β(A^H) be larger when H is not semisimple? What happens in char p?
- What about $\beta(Q(A)^H)$?

II. Reflection Groups

Let \Bbbk be a field of characteristic zero.

Theorem (1954). The ring of invariants $\mathbb{k}[x_1, \dots, x_n]^G$ under a finite group *G* is a polynomial ring if and only if *G* is generated by reflections.

A linear map g on V is called a <u>reflection</u> of V if all but one of the eigenvalues of g are 1, i.e. dim $V^g = \dim V - 1$.

Example: Transposition permutation matrices are reflections, and S_n is generated by reflections.

Question:

What groups (Hopf algebras) are "reflection groups (Hopf algebras)" for A?

Definition: *H* is a reflection Hopf algebra for *A* if A^H is AS regular.

Invariants under a symmetric group **Example:** $S_2 = \langle g \rangle$, for $g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, acts on $A = \Bbbk_{-1}[u, v]$ and A^{S_2} is generated by

$$P_1 = u + v$$
 and $P_2 = u^3 + v^3$

The generators are NOT algebraically independent. A^{S_2} is NOT AS-regular (but it is a hyperplane in an AS regular algebra).

The transposition (1,2) is NOT a "reflection".

Definition of "reflection": Want A^g AS regular

All but one eigenvalue of g is 1 \rightsquigarrow

[Jing-Zhang (1997)] The trace function of g acting on A of dimension n has a pole of order n - 1 at t = 1, where

$$Tr_A(g,t) = \sum_{k=0}^{\infty} \operatorname{trace}(g|A_k) t^k$$
$$= \frac{1}{(1-t)^{n-1}q(t)} \text{ for } q(1) \neq 0.$$

Examples :
$$G = \langle g \rangle$$
 on $A = \mathbb{k}_{-1}[u, v]$ ($vu = -uv$):
(a) $g = \begin{bmatrix} \epsilon_n & 0 \\ 0 & 1 \end{bmatrix}$, $Tr_A(g, t) = \frac{1}{(1-t)(1-\epsilon_n t)}$,
 $A^g = \mathbb{k} \langle u^n, v \rangle$ is AS regular (classical reflection).
(b) $g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Tr_A(g, t) = \frac{1}{1+t^2}$,
 A^g is NOT AS regular.
(c) $g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $Tr_A(g, t) = \frac{1}{(1-t)(1+t)}$,

 $A^{g} = \mathbb{k}[u^{2} + v^{2}, uv]$ is AS regular ("mystic reflection").

Example: The binary dihedral groups of order 4ℓ generated by

$$g_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

for λ a primitive 2ℓ th root of unity, acts on $A = \Bbbk_{-1}[x, y]$.

$$A^G = \mathbb{k}[xy, \ x^{2\ell} + y^{2\ell}].$$

[KKZ] (2010) *G* is a reflection group for $A = \Bbbk_{q_{ij}}[x_1, \cdots, x_n]$ iff *G* is generated by "reflections".

[Bazlov and Berenstein](2014) ("Demystification") If *G* is a reflection group for $A = \Bbbk_{q_{ij}}[x_1, \cdots, x_n]$, then there is a classical reflection group *G*' with $\Bbbk G \cong \Bbbk G'$ as algebras.

Questions:

- When is the following generalization of the Shephard-Todd-Chevalley Theorem true: A^G is AS regular if and only if G is generated by "reflections"?
- Do some AS regular algebras have other kinds of reflections?
- What if char $\mathbb{k} = p$?

Example: Jordan Plane $A = \Bbbk \langle x, y \rangle / (xy - yx - y^2)$ with char $\Bbbk = 2$. The transvection g with g.x = x + y and g.y = y has $A^{\langle g \rangle} = \Bbbk \langle x^2, y \rangle$ so g so is a reflection for A.

[FKMW] arXiv 1810.12935, 1907.06763:

Hopf algebras H that act on a quadratic AS regular algebra of dimension 2 or 3 as a Hopf Reflection Algebra: **Examples:**

- (Masuoka) \mathcal{A}_{4m}
- (Masuoka) \mathcal{B}_{4m}
- (Pansera) H_{2n^2}

• (Kashina) Some of the 16 dimensional Hopf algebras **Problem:** Find all reflection Hopf algebras for $A = \Bbbk_{-1}[u, v].$

Dual reflection groups: [KKZ](2017), [CKZ] (2017), [CKZ] arXiv 1801.09020

 $H = \Bbbk G^{\circ} = \Bbbk^{G}$ is a commutative algebra.

H acts inner faithfully on *A* if and only if $A_1 = S_{g_1} \oplus \cdots \oplus S_{g_n}$ where $\{g_i\}$ generate *G*.

A is graded by G and $A^H = A_e$.

When A_e is AS regular we call G a dual reflection group for A.

Example: $G = D_8$ is a dual reflection group for $A = \Bbbk_{\pm 1}[u, w][v; \sigma]$, where $\sigma(u) = aw$, $\sigma(w) = bu$, and D_8 grading $u \mapsto r, v \mapsto r\rho, w \mapsto r\rho^2$. Relations in A:

> $wu = \pm uw$ grade ρ^2 vu = awv grade ρ^3 vw = buv; grade ρ

The invariant subring is

$$A^H = A_e \cong \mathbb{k}[u^2, w^2][v^2; \sigma']$$

an AS regular algebra.

Necessary conditions for G to be a dual reflection group:

$$\begin{split} A &= A^H \oplus \oplus_{g \neq e} u_g A^H \\ \text{Let } p(t) &:= 1 + \sum_{g \neq e} t^{\ell(g)} \text{ (the Poincaré polynomial)} \\ p(1) &= |G| \\ H_{A^H}(t) &= \frac{H_A(t)}{p(t)} \text{ so } p(t) \end{split}$$

is a product of cyclotomic polynomial.,

For $H = k^{D_8}$ acting on $A = k \langle u, v, w \rangle$ (group grades) $r r \rho r \rho^2$

(A has PBW basis of the form $u^i w^j v^k$, $B := A^H$) $A = B \oplus uB \oplus vB \oplus wB \oplus uvB \oplus uwB \oplus wvB \oplus uwvB$ $e \quad r \quad r\rho \quad r\rho^2 \quad \rho \quad \rho^2 \quad \rho^3 \quad r\rho^3$ $p(t) = 1 + 3t + 3t^2 + t^3 = (1+t)^3$ p(1) = 8 $H_B(t) = \frac{1}{(1-t)^3(1+t)^3} = \frac{1}{(1-t^2)^3}$

Work with Kent Vashaw: Consider G of order 16.

- Look at all minimal generating sets of G.
- Find the Poincaré polynomial of the generating set.
- See the relations that would be imposed on *A*.
- Do any relations give *A* AS regular?
- Is A_e regular?

For *G* the semidihedral group of order 16 with generating set with $p(t) = (1 + t)^4$ $A := k \langle x_1, x_2, x_3, x_4 \rangle / \text{(relations below)}$

 $x_3^2 = x_1x_2$ (grade c), $x_4^2 = x_2x_1$ (grade cd) $x_1x_3 = x_2x_4$ (grade acd), $x_3x_1 = x_2x_3$ (grade a) $x_1x_4 = x_4x_2$ (grade ad), $x_4x_1 = x_3x_2$ (grade ac). Peter Goetz proved that *A* is AS regular.

 $A_e = \mathbb{k}[x_1^2, x_2^2, x_3x_4, x_4x_3]$, commutative polynomial ring,

$$H_{A^{H}}(t) = \frac{1}{(1-t)^{4}(1+t)^{4}} = \frac{1}{(1-t^{2})^{4}}.$$

Problem: Classify all dual reflection groups

III.Generalization of $SL_n(\mathbb{C})$

Homological Determinant (Jørgensen and Zhang (2000)): Scalar associated to a map in local cohomology (the determinant for polynomial rings).

hdet : $H \rightarrow \Bbbk$ a homomorphism.

Generalized Watanabe's Theorem[KKZ] (2009): A^H is AS-Gorenstein when H has hdet $\circ S = \epsilon$ (trivial homological determinant).

Morally: Hopf actions on A with trivial homological determinant should behave like actions of subgroups of $SL_n(\mathbb{C})$ on $\Bbbk[x_1, \ldots, x_n]$.

If g is a 2-cycle and $A = \mathbf{k}_{-1}[x_1, \dots, x_n]$ then hdet(g) = 1.

For ALL groups *G* of $n \times n$ permutations, A^G is AS-Gorenstein.

Not true for commutative polynomial ring – e.g.

 $\mathbb{C}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}$

is not Gorenstein while

 $\mathbb{C}_{-1}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}$

is AS-Gorenstein.

When A has dimension 2 and hdet trivial: CKWZ H have been classified ("Quantum binary polyhedral groups") CKWZ A^H is a hypersurface in an AS regular algebra of dimension 3 ("Quantum Kleinian singularities") CKWZ There is a McKay coorespondence CKMW Matrix factorizations corresponding to MCM modules

Auslander's Theorem

Let *G* be a "small" subgroup of $GL_n(\Bbbk)$ (finite with no reflections), and let $A = \Bbbk[x_1, \ldots, x_n]$. Then the skew-group ring A # G is isomorphic to $End_{A^G}(A)$ as algebras ((a # g)(x) = ag(x)). grade($_AM$) = $j(_AM)$:= min{ $i : \text{Ext}^i_A(M, A) \neq 0$ } Assume that A is GK-Cohen-Macaulay j(M) + GKdim(M) = GKdim(A)

Def. The pertinency of the H-action on A is

 $p(A, H) := GKdim A - GKdim((A \# H)/(1_A \# f)).$

Theorem: TFAE for GKdim $A \ge 2$:

Auslander's Theorem: A#H ≈ End_A(A) naturally.
p(A, H) ≥ 2

Auslander's Theorem holds for:

CKWZ *H* semisimple acting on *A* (AS regular dim 2) with trivial hdet

BHZ Group actions on $U(\mathfrak{g})$ with trivial hdet for certain \mathfrak{g}

- GKMW Permutation actions on $A = \Bbbk_{-1}[x_1, \ldots, x_n]$
- GKMW Permutation of x, y, z in generic 3-dim Sklyanin algebra
 - GHZ Group actions on most Noetherian graded down-up algebras with trivial homological determinant
 - CKZ Group coactions on Noetherian graded down-up algebras with trivial homological determinant
 - C Group actions by "small groups" acting on AS regular algebras of dim 2

Question: Does Auslander's Theorem hold for Hopf actions with trivial homological determinant acting on an AS regular algebra? $R = \mathbb{k}[x_1, \dots, x_n]/I$ is a graded isolated singularity if R_p is regular for all homogeneous prime ideals $p \neq (x_1, \dots, x_n)$.

Theorem (Iyama-Yoshino): For $G \subseteq SL_n(\Bbbk)$. Then $\Bbbk[x_1, \ldots, x_n]^G$ is a graded isolated singularity if and only if for all $e \neq g \in G$ have no eigenvalues = 1.

Examples: $A = \Bbbk[x_1, x_2, x_3]$

 $\begin{array}{l} G = \langle (1 \ 2 \ 3) \rangle \text{: } A^G \text{ NOT an isolated singularity.} \\ G = \langle \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{bmatrix} \rangle \text{: } A^G \text{ IS an isolated singularity.} \end{array}$

tails $B = grB/gr_0B$.

Theorem [BHZ]: When p(A, H) = GKdim(A), then tails A^H has finite gldim, and hence is a graded isolated singularity (Mori-Ueyama (2016)).

Let $V_n = \Bbbk_{-1}[x_1, ..., x_n].$

The following A^G have isolated singularities:

GKMW Permutation of x, y, z on generic 3-dim Sklyanin algebra

GKMW $\langle (1\ 2)(3\ 4), (1\ 3)(2\ 4) \rangle$ acting on V_4 ,

GKMW $\langle (1 \ 2)(3 \ 4) \cdots (2n-1 \ 2n) \rangle$ acting on V_{2n}

CYZ Cyclic permutation for V_n when $n = 2^a p^b$ for $p \ge 7$.

ALL groups have an element with eigenvalue 1, in contrast to the commutative case.

[CYZ] Conjecture: Cyclic permutation for V_n is isolated singularity if and only if n not divisible by 3 or 5. True for n < 77.

n	2	3	4	5	6	7	8	9	10	11	12	13	14
р	2	2	4	4	5	7	8	8	9	11	[8,11]	13	14

2, 2, 4, 4, 5, 7, 8, 8, 9, 11 is not in Online Encyclopedia of Integer Sequences!

Question:

When is A^H a graded isolated singularity?

THANKS !