Invariants of actions on Artin-Schelter regular algebras

Ellen Kirkman

kirkman@wfu.edu

Department of Mathematics

MSRI

January 23, 2020

Collaborators:

- **Kenneth Chan**
- **•** Jianmin Chen
- **Andy Connor**
- Luigi Ferraro
- **•** Jason Gaddis
- **•** Pete Goetz
- **•** James Kuzmanovich
- **•** Frank Moore
- **Kewen Peng**
- **Kent Vashaw**
- **Chelsea Walton**
- **Robert Won**
- **•** James Zhang

Classical Invariant Theory: Group G acting linearly on the algebra $\mathbb{K}[x_1, \ldots, x_n]$ and study $\Bbbk[x_1,\ldots,x_n]^G.$

Noncommutative Invariant Theory: Replace: $\mathbb{K}[x_1, \ldots, x_n]$ with appropriate noncommutative algebra A

 G with a group (or Hopf algebra) that acts on A

to extend classical results.

Question: What results extend to this context?

Replace $\Bbbk[x_1, \cdots, x_n]$ by A, a noetherian Artin-Schelter domain generated in degree 1 ($\mathbb{k} = \mathbb{C}$). Examples:

- **D** $\mathbb{k}_q[x_1 \dots, x_n]$ with $x_j x_i = q x_i x_j$ for $j > i$.
- 2 $R[x; \sigma, \delta]$
- **3 Sklyanin algebras, Down-up algebras, etc.**
- Why A AS regular?
	- Defined homologically.
	- Commutative AS regular ≅ to polynomial ring.
	- There is a growing body of results.
	- There are lots of interesting open problems.

Problem: Consider A filtered or (skew) Calabi-Yau

H is a Hopf algebra acting on A :

- \bullet H is semi-simple Hopf algebra
- \bullet H preserves the grading on A
- \bullet A is an H-module algebra
- The action of H on A is inner-faithful.

Problem: Consider H not finite dimensional, or not semisimple and/or char $k = p$, or the grading not preserved.

Plan: Generalize

I. Bounds on the degrees of minimal generators of A^G

II. Reflection groups

III. Subgroups of $SL_n(\mathbb{C})$

I. Bounds on degrees of minimal generators of A^H

 $\beta(A^H) = \min\{k : A^H$ generated by elements of degree $\leq k$ }

Example: $\mathbb{K}[x_1,\ldots,x_n]^{S_n}$ generated by

 $\sigma_m :=\ \sum x_{i_1} x_{i_2} \ldots x_{i_m}$ for $m=1,\ldots,n$ $\beta(\mathbb{K}[x_1,\ldots,x_n]^{S_n})=n.$

Theorem (Noether (1915)) $\beta(A^G) < |G|$ if k has char zero or $|G|$ <char k.

Fleischmann (2000) and Fogarty (2001) extended to non-modular case ($|G|^{-1} \in \Bbbk$).

Theorem (Symonds (2011)) If G is a finite group of order $|G| > 1$ acting linearly on $A := \Bbbk[x_1, \ldots, x_n]$ with $n \geq 2$ then $\beta(A^G) \leq n(|G|-1)$. Relations among generators in degrees

 $\leq 2n(|G|-1)$.

Noether bound can be sharp: $\epsilon=e^{2\pi i/n}$ $A = \mathbb{k}[x], G = (\epsilon), A^G = \mathbb{k}[x^n], |G| = n = \beta(A^G).$

Theorem (Domokos and Hegedüs (2000)) If G non-cyclic then A^G can be generated by polynomials of total degree:

> \leq 3|*G*|/4 if |*G*| is even, and $\leq 5|G|/8$ if $|G|$ is odd.

Sezer (2002): Extended to non-modular case.

Theorem (Göbel (1995)) In any characteristic, G a group of permutations of x_i for $i=1,\ldots,n$:

$$
\beta(A^G) \le \max\{n, \binom{n}{2}\}.
$$

Example: $A = \mathbb{k}_{-1}[x, y], yx = -xy$ and $g: x \leftrightarrow y$ acts on A $\mathcal{O}(x) = x + y$ $\mathcal{O}(x^2) = x^2 + y^2 = (x + y)^2$ $\mathcal{O}(xy) = xy + yx = 0$ A set of generators of A^G is $x+y$ and x^3+y^3 (or $x^2y + xy^2$). $\beta(A^G) = 3 > |G| = 2$.

The Noether bound does not hold.

[FKMP]: arXiv: 1907.06761 $A = \Bbbk_{-1}[x,y]$, $\epsilon = e^{2\pi i/n}$, and $G = \langle g \rangle$ $g =$ $\begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix}$ $g^2 = \begin{pmatrix} \epsilon & 0 \\ 0 & 0 \end{pmatrix}$ 0 ϵ \setminus so $|G|=2n.$ For *n* odd $\beta(A^G) = 3n$ $\beta(A^G) - |G| = n$ (in a 2-dimensional representation of G)

Problem: Find β ($\mathbb{k}_{-1}[x_1, \ldots x_n]^G$).

$$
A = \frac{k \langle x, y \rangle}{y^2 x = xy^2, yx^2 = x^2 y}
$$

Basis of the form $x^i (yx)^j y^k$

 $g: x \leftrightarrow y$ acts on A.

Invariants include: $x + y$, $xy + yx$ (or $x^2 + y^2$), $x^3 + y^3, x^2y + xy^2, (xyx + yxy)$ $\beta(A^G) = 3 > |G| = 2$

$$
A = \frac{k \langle x, y \rangle}{y^2 x} = xy^2, yx^2 = x^2 y
$$

$$
G = \langle g \rangle \quad g = \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix} \quad |G| = 2n
$$

$$
n \text{ odd } : \beta(A^G) = 3n
$$

Noether's bound fails when n is odd.

Problem: Find $\beta(A^G)$ for A down-up. $A(\alpha, \beta)$ generated by x, y , with relations:

 $y^2x = \alpha yxy + \beta xy^2$, $yx^2 = \alpha xyx + \beta x^2y$.

For $A(0, -1) = \frac{k \langle x, y \rangle}{(y^2 x = -xy^2, yx^2 = -x^2 y)}$ computer computation suggest $\beta(A^G) = 4n$ for n odd.

For $A(0, 1)$ and $A(2, -1)$, any element of $GL_2(\mathbb{k})$ acts as an automorphism on A.

$A = \mathbb{k}[x_1, \ldots, x_n]$

 $\mathbb{K}[f_1,\ldots,f_n]$ a subring of primary invariants. $\beta(A^G) \leq \sum_{j=1}^n \deg(f_j) - n$ **Theorem** [KKZ](2014)

A quantum polynomial algebra of dimension n , H semisimple Hopf algebra, and $C \subset A^H \subset A$, C a graded iterated Ore extension $C = \mathbb{K}[f_1][f_2 : \tau_2, \delta_2] \dots [f_n : \tau_n, \delta_n],$ A_C finitely generated, $\deg f_i > 1$ for at least 2 distinct i 's then $\beta(A^H) \leq \sum \deg f_i - n.$

Theorem [KKZ](2014): $A = k_{-1}[x_1, \ldots, x_n]$ • $\beta(A^{S_n}) = 2n - 1$ (generators: $s_k = \mathcal{O}(x_1^2)$ $\frac{2}{1}\cdots x_k^2$ $_{k-1}^{2}x_{k}),\,k=1,\ldots,n)$ • $\beta(A^{A_n}) = 2n - 3$ (generators: $s_k, k = 1, \ldots, n-1$, and $\mathcal{O}(x_1 x_2 \cdots x_n)$ $\beta(A^G) \leq 3n^2/4$ for G permutations. $\beta(A^G) \leq n^2$ for G a subgroup of $S_n \rtimes \{\pm 1\}$

Questions:

- Is $\beta(A^G)$ biggest for cyclic groups?
- Is $\beta(A^G)$ a function of just $|G|$, or does it also depend on the dimension of the representation?
- Is $\beta(A^G)$ a linear function of $|G|$, of the dimension of the representation?
- Does the dim H play the same role as $|G|$?
- Can $\beta(A^H)$ be larger when H is not semisimple? What happens in char p?
- What about $\beta(Q(A)^H)$?

II. Reflection Groups

Let $\mathbb k$ be a field of characteristic zero.

Theorem (1954). The ring of invariants $\Bbbk[x_1,\cdots,x_n]^G$ under a finite group G is a polynomial ring if and only if G is generated by reflections.

A linear map q on V is called a reflection of V if all but one of the eigenvalues of q are 1, i.e. dim $V^g =$ dim $V - 1$.

Example: Transposition permutation matrices are reflections, and S_n is generated by reflections.

Question:

What groups (Hopf algebras) are "reflection groups (Hopf algebras)" for A ?

Definition: H is a reflection Hopf algebra for A if A^H is AS regular.

Invariants under a symmetric group **Example:** $S_2 = \langle g \rangle$, for $g =$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, acts on $A = \mathbb{k}_{-1}[u, v]$ and A^{S_2} is generated by

$$
P_1 = u + v
$$
 and $P_2 = u^3 + v^3$

The generators are NOT algebraically independent. A^{S_2} is NOT AS-regular (but it is a hyperplane in an AS regular algebra).

The transposition $(1, 2)$ is NOT a "reflection".

Definition of "reflection": Want A^g AS regular

All but one eigenvalue of q is 1 \rightsquigarrow

[Jing-Zhang (1997)] The trace function of q acting on A of dimension *n* has a pole of order $n - 1$ at $t = 1$, where

$$
Tr_A(g,t) = \sum_{k=0}^{\infty} \text{trace}(g|A_k)t^k
$$

$$
= \frac{1}{(1-t)^{n-1}q(t)} \text{ for } q(1) \neq 0.
$$

Examples:
$$
G = \langle g \rangle
$$
 on $A = \mathbb{k}_{-1}[u, v]$ ($vu = -uv$):
\n(a) $g = \begin{bmatrix} \epsilon_n & 0 \\ 0 & 1 \end{bmatrix}$, $Tr_A(g, t) = \frac{1}{(1-t)(1 - \epsilon_n t)}$,
\n $A^g = \mathbb{k}\langle u^n, v \rangle$ is AS regular (classical reflection).

(b)
$$
g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
, $Tr_A(g, t) = \frac{1}{1 + t^2}$,
A^g is NOT AS regular.

(c)
$$
g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$
, $Tr_A(g, t) = \frac{1}{(1-t)(1+t)}$,
\n $A^g = \mathbb{k}[u^2 + v^2, uv]$ is AS regular ("mystic reflection").

Example: The binary dihedral groups of order 4ℓ generated by

$$
g_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}
$$
 and
$$
g_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$

for λ a primitive 2 ℓ th root of unity, acts on $A = \mathbb{k}_{-1}[x, y]$.

$$
A^G = \mathbb{k}[xy, x^{2\ell} + y^{2\ell}].
$$

[KKZ] (2010) G is a reflection group for $A = \mathbb{k}_{q_{i}}[x_1, \dots, x_n]$ iff G is generated by "reflections".

[Bazlov and Berenstein](2014) ("Demystification") If G is a reflection group for $A = \mathbb{k}_{q_{ij}}[x_1, \dots, x_n]$, then there is a classical reflection group G' with $kG \cong kG'$ as algebras.

Questions:

- When is the following generalization of the Shephard-Todd-Chevalley Theorem true: A^G is AS regular if and only if G is generated by "reflections"?
- Do some AS regular algebras have other kinds of reflections?
- What if char $k = p$?

Example: Jordan Plane $A = \frac{k \langle x, y \rangle}{(xy - yx - y^2)}$ with char $k = 2$. The transvection q with $q.x = x + y$ and $g.y = y$ has $A^{\langle g \rangle} = \Bbbk \langle x^2, y \rangle$ so g so is a reflection for A .

[FKMW] arXiv 1810.12935, 1907.06763:

Hopf algebras H that act on a quadratic AS regular algebra of dimension 2 or 3 as a Hopf Reflection Algebra: **Examples:**

- \bullet (Masuoka) \mathcal{A}_{4m}
- \bullet (Masuoka) \mathcal{B}_{4m}
- \bullet (Pansera) H_{2n^2}

(Kashina) Some of the 16 dimensional Hopf algebras **Problem:** Find all reflection Hopf algebras for $A = \mathbb{k}_{-1}[u, v].$

Dual reflection groups: [KKZ](2017), [CKZ] (2017), [CKZ] arXiv 1801.09020

 $H = \Bbbk G^{\circ} = \Bbbk^G$ is a commutative algebra.

 H acts inner faithfully on A if and only if $A_1 = S_{a_1} \oplus \cdots \oplus S_{a_n}$ where $\{g_i\}$ generate G.

A is graded by G and $A^H = A_e$.

When A^e is AS regular we call G a *dual reflection group for* A.

Example: $G = D_8$ is a dual reflection group for $A = \mathbb{k}_{+1}[u, w][v; \sigma]$, where $\sigma(u) = aw$, $\sigma(w) = bu$, and D_8 grading $u \mapsto r, v \mapsto r\rho, w \mapsto r\rho^2$. Relations in A:

> $wu=\pm uw$ grade ρ^2 $vu = awv$ grade ρ^3 $vw = buv$; grade ρ

The invariant subring is

$$
A^H = A_e \cong \mathbb{k}[u^2, w^2][v^2; \sigma']
$$

an AS regular algebra.

Necessary conditions for G to be a dual reflection group:

 $A = A^H \oplus \oplus_{g \neq e} u_g A^H$ Let $p(t) := 1 + \sum t^{\ell(g)}$ (the Poincaré polynomial) $q \neq e$ $p(1) = |G|$ $H_{A^{H}}(t) = \frac{H_{A}(t)}{R_{A}(t)}$ $p(t)$ so $p(t)$

is a product of cyclotomic polynomial.,

For $H=k^{D_8}$ acting on $A=k\langle u, v, w\rangle$ (group grades) $r \quad r \quad r \quad r \rho^2$

(A has PBW basis of the form $u^iw^jv^k$, $B:=A^H$) $A = B \oplus uB \oplus vB \oplus wB \oplus uvB \oplus uvB \oplus uwvB$ e r r ρ r ρ^2 ρ ρ^2 ρ^3 r ρ^3 $p(t) = 1 + 3t + 3t^2 + t^3 = (1 + t)^3$ $p(1) = 8$ $H_B(t) = \frac{1}{(1-t)^{3/4}}$ $\frac{1}{(1-t)^3(1+t)^3} =$ 1 $(1-t^2)^3$

Work with Kent Vashaw: Consider G of order 16.

- Look at all minimal generating sets of G .
- Find the Poincaré polynomial of the generating set.
- See the relations that would be imposed on A.
- Do any relations give A AS regular?
- Is A_e regular?

For G the semidihedral group of order 16 with generating set with $p(t)=(1+t)^4$ $A := \mathbb{k}\langle x_1, x_2, x_3, x_4\rangle$ /(relations below)

 $x_3^2 = x_1 x_2$ (grade c), $x_4^2 = x_2 x_1$ (grade cd) $x_1x_3 = x_2x_4$ (grade acd), $x_3x_1 = x_2x_3$ (grade a) $x_1x_4 = x_4x_2$ (grade ad), $x_4x_1 = x_3x_2$ (grade ac). Peter Goetz proved that \overline{A} is AS regular.

 $A_e = \mathbb{k}[x_1^2]$ $\left[^{2}_{1},x_{2}^{2},x_{3}x_{4},x_{4}x_{3}\right]$, commutative polynomial ring,

$$
H_{A^H}(t) = \frac{1}{(1-t)^4(1+t)^4} = \frac{1}{(1-t^2)^4}.
$$

Problem: Classify all dual reflection groups

III.Generalization of $SL_n(\mathbb{C})$

Homological Determinant (Jørgensen and Zhang (2000)): Scalar associated to a map in local cohomology (the determinant for polynomial rings).

hdet : $H \to \mathbb{k}$ a homomorphism.

Generalized Watanabe's Theorem[KKZ] (2009): A^H is AS-Gorenstein when H has hdet $\circ S = \epsilon$ (trivial homological determinant).

Morally: Hopf actions on A with trivial homological determinant should behave like actions of subgroups of $SL_n(\mathbb{C})$ on $\mathbb{K}[x_1,\ldots,x_n]$.

If g is a 2-cycle and $A = \mathbb{k}_{-1}[x_1, \ldots, x_n]$ then $\mathrm{hdet}(q) = 1$.

For ALL groups G of $n \times n$ permutations, A^G is AS-Gorenstein.

Not true for commutative polynomial ring $-$ e.g.

 $\mathbb{C}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}$

is not Gorenstein while

$$
\mathbb{C}_{-1}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}
$$

is AS-Gorenstein.

When A has dimension 2 and hdet trivial: CKWZ H have been classified ("Quantum binary polyhedral groups") CKWZ A^H is a hypersurface in an AS regular algebra of dimension 3 ("Quantum Kleinian singularities") CKWZ There is a McKay coorespondence CKMW Matrix factorizations corresponding to MCM modules

Auslander's Theorem

Let G be a "small" subgroup of $GL_n(\mathbbk)$ (finite with no reflections), and let $A = \mathbb{k}[x_1, \dots, x_n]$. Then the skew-group ring $A#G$ is isomorphic to End_{AG}(A) as algebras ($(a\#q)(x) = aq(x)$).

 $\textsf{grade}({}_AM) = j({}_AM) := \min\{i: \operatorname{Ext}^{i}_A(M,A) \neq 0\}$ Assume that A is GK-Cohen-Macaulay $j(M) + \text{GKdim}(M) = \text{GKdim}(A)$

Def. The *pertinency of the* H*-action on* A is

 $p(A, H) := GKdim A - GKdim((A \# H)/(1_A \# f)).$

Theorem: TFAE for GKdim $A > 2$:

• Auslander's Theorem: $A\#H \cong \text{End}_{A^H}(A)$ naturally. • $p(A, H) > 2$

Auslander's Theorem holds for:

CKWZ H semisimple acting on A (AS regular dim 2) with trivial hdet

BHZ Group actions on $U(\mathfrak{g})$ with trivial hdet for certain g

- GKMW Permutation actions on $A = \mathbb{k}_{-1}[x_1, \ldots, x_n]$
- GKMW Permutation of x, y, z in generic 3-dim Sklyanin algebra
	- GHZ Group actions on most Noetherian graded down-up algebras with trivial homological determinant
	- CKZ Group coactions on Noetherian graded down-up algebras with trivial homological determinant
		- C Group actions by "small groups" acting on AS regular algebras of dim 2

Question: Does Auslander's Theorem hold for Hopf actions with trivial homological determinant acting on an AS regular algebra?

 $R = \mathbb{K}[x_1, \ldots, x_n]/I$ is a graded isolated singularity if R_p is regular for all homogeneous prime ideals $p \neq (x_1, \ldots, x_n)$.

Theorem (Iyama-Yoshino): For $G \subseteq SL_n(\mathbb{k})$. Then $\Bbbk[x_1,\ldots,x_n]^{G}$ is a graded isolated singularity if and only if for all $e \neq q \in G$ have no eigenvalues = 1.

Examples: $A = k[x_1, x_2, x_3]$

 $G = \langle (1 2 3) \rangle: A^G$ NOT an isolated singularity. ' $G = \langle$ $\sqrt{ }$ $\overline{}$ ω 0 0 $0 \hspace{0.2cm} \omega \hspace{0.2cm} 0$ 0 0 ω 1 $\big|$: A^G IS an isolated singularity.

tails $B = \frac{grB}{gr_0B}$.

Theorem [BHZ]: When $p(A, H) = GKdim(A)$, then tails A^H has finite gldim, and hence is a graded isolated singularity (Mori-Ueyama (2016)).

Let $V_n = \mathbb{k}_{-1}[x_1, \ldots, x_n].$ The following A^G have isolated singularities:

GKMW Permutation of x, y, z on generic 3-dim Sklyanin algebra

GKMW $\langle (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4) \rangle$ acting on V_4 ,

GKMW $\langle (1 2)(3 4) \cdots (2n - 1 2n) \rangle$ acting on V_{2n}

CYZ Cyclic permutation for V_n when $n = 2^a p^b$ for $p \ge 7$.

ALL groups have an element with eigenvalue 1, in contrast to the commutative case.

[CYZ] Conjecture: Cyclic permutation for V_n is isolated singularity if and only if n not divisible by 3 or 5. True for $n < 77$.

2, 2, 4, 4, 5, 7, 8, 8, 9, 11 is not in Online Encyclopedia of Integer Sequences!

Question:

When is A^H a graded isolated singularity?

THANKS !