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Classical and Noncommutative Invariant Theory

Classical Invariant Theory:
Group G acting linearly on the algebra k[x1, . . . , xn] and
study k[x1, . . . , xn]G.

Noncommutative Invariant Theory:
Replace:
k[x1, . . . , xn] with appropriate noncommutative algebra A

G with a group (or Hopf algebra) that acts on A

to extend classical results.

Question: What results extend to this context?



Replace k[x1, · · · , xn] by A, a noetherian Artin-Schelter
domain generated in degree 1 (k = C).
Examples:

1 kq[x1 . . . , xn] with xjxi = qxixj for j > i.
2 R[x;σ, δ]
3 Sklyanin algebras, Down-up algebras, etc.

Why A AS regular?
Defined homologically.
Commutative AS regular ∼= to polynomial ring.
There is a growing body of results.
There are lots of interesting open problems.

Problem: Consider A filtered or (skew) Calabi-Yau



H is a Hopf algebra acting on A:

H is semi-simple Hopf algebra
H preserves the grading on A
A is an H-module algebra
The action of H on A is inner-faithful.

Problem: Consider H not finite dimensional, or
not semisimple and/or char k = p, or the grading
not preserved.



Plan: Generalize

I. Bounds on the degrees of minimal
generators of AG

II. Reflection groups

III. Subgroups of SLn(C)



I. Bounds on degrees of minimal generators of AH

β(AH) = min{k : AH generated by elements
of degree ≤ k}

Example: k[x1, . . . , xn]Sn generated by

σm :=
∑
xi1xi2 . . . xim for m = 1, . . . , n

β(k[x1, . . . , xn]Sn) = n.



Noether’s bound

Theorem (Noether (1915)) β(AG) ≤ |G|
if k has char zero or |G| <char k.

Fleischmann (2000) and Fogarty (2001)
extended to non-modular case (|G|−1 ∈ k).

Theorem (Symonds (2011))
If G is a finite group of order |G| > 1 acting
linearly on A := k[x1, . . . , xn] with n ≥ 2 then

β(AG) ≤ n(|G| − 1).
Relations among generators in degrees

≤ 2n(|G| − 1).



Noether’s bounds improvements

Noether bound can be sharp: ε = e2πi/n

A = k[x], G = (ε), AG = k[xn], |G| = n = β(AG).

Theorem (Domokos and Hegedüs (2000))
If G non-cyclic then AG can be generated by
polynomials of total degree:

≤ 3|G|/4 if |G| is even, and
≤ 5|G|/8 if |G| is odd.

Sezer (2002): Extended to non-modular case.



Göbel’s bound – involves the dimension of the representation

Theorem (Göbel (1995)) In any characteristic,
G a group of permutations of xi for i = 1, . . . , n:

β(AG) ≤ max{n,
(
n

2

)
}.



Noncommutative Example

Example: A = k−1[x, y], yx = −xy and
g : x↔ y acts on A. O(x) = x+ y

O(x2) = x2 + y2 = (x+ y)2

O(xy) = xy + yx = 0
A set of generators of AG is x+ y and x3 + y3

(or x2y + xy2). β(AG) = 3 > |G| = 2.

The Noether bound does not hold.



Skew polynomial example

[FKMP]: arXiv: 1907.06761
A = k−1[x, y], ε = e2πi/n, and G = 〈g〉

g =

(
0 ε
1 0

)
, g2 =

(
ε 0
0 ε

)
so |G| = 2n.

For n odd β(AG) = 3n
β(AG)− |G| = n

(in a 2-dimensional representation of G)

Problem: Find β(k−1[x1, . . . xn]G).



Down-up algebra example

A = k〈x, y〉/(y2x = xy2, yx2 = x2y)

Basis of the form xi(yx)jyk

g : x↔ y acts on A.

Invariants include: x+ y,
xy + yx ( or x2 + y2),

x3 + y3, x2y + xy2, (xyx+ yxy)

β(AG) = 3 > |G| = 2



Down-up example continued

A = k〈x, y〉/(y2x = xy2, yx2 = x2y)

G = 〈g〉 g =

(
0 ε
1 0

)
|G| = 2n

n odd : β(AG) = 3n

Noether’s bound fails when n is odd.



Other graded down-up algebras

Problem: Find β(AG) for A down-up.
A(α, β) generated by x, y, with relations:

y2x = αyxy + βxy2, yx2 = αxyx+ βx2y.

For A(0,−1) = k〈x, y〉/(y2x = −xy2, yx2 = −x2y)
computer computation suggest

β(AG) = 4n for n odd.

For A(0, 1) and A(2,−1), any element of GL2(k)
acts as an automorphism on A.



Broer bound for commutative polynomials

A = k[x1, . . . , xn]
k[f1, . . . , fn] a subring of primary invariants.

β(AG) ≤
∑n

j=1 deg(fj)− n
Theorem [KKZ](2014)
A quantum polynomial algebra of dimension n,
H semisimple Hopf algebra, and C ⊂ AH ⊂ A,
C a graded iterated Ore extension
C = k[f1][f2 : τ2, δ2] . . . [fn : τn, δn],
AC finitely generated, deg fi > 1 for at least 2
distinct i’s then β(AH) ≤

∑
deg fi − n.



Permutation actions – Generalization of Gobel’s Theorem

Theorem [KKZ](2014): A = k−1[x1, . . . , xn]
β(ASn) = 2n− 1 (generators:
sk = O(x21 · · ·x2k−1xk), k = 1, . . . , n)
β(AAn) = 2n− 3 (generators:
sk, k = 1, . . . , n− 1, and O(x1x2 · · ·xn)
β(AG) ≤ 3n2/4 for G permutations.
β(AG) ≤ n2 for G a subgroup of Sn o {±1}



Questions:
Is β(AG) biggest for cyclic groups?
Is β(AG) a function of just |G|, or does it also
depend on the dimension of the
representation?
Is β(AG) a linear function of |G|, of the
dimension of the representation?
Does the dim H play the same role as |G|?
Can β(AH) be larger when H is not
semisimple? What happens in char p?
What about β(Q(A)H)?



II. Reflection Groups

Let k be a field of characteristic zero.

Theorem (1954). The ring of invariants k[x1, · · · , xn]G
under a finite group G is a polynomial ring if and only if G
is generated by reflections.

A linear map g on V is called a reflection of V if all but one
of the eigenvalues of g are 1,
i.e. dim V g = dim V − 1.

Example: Transposition permutation matrices are
reflections, and Sn is generated by reflections.



Question:

What groups (Hopf algebras) are “reflection
groups (Hopf algebras)” for A?

Definition: H is a reflection Hopf algebra for A
if AH is AS regular.



Reflection Groups: S2?

Invariants under a symmetric group

Example: S2 = 〈g〉, for g =
[
0 1
1 0

]
, acts on A = k−1[u, v]

and AS2 is generated by

P1 = u+ v and P2 = u3 + v3

The generators are NOT algebraically independent.
AS2 is NOT AS-regular
(but it is a hyperplane in an AS regular algebra).

The transposition (1, 2) is NOT a “reflection".



Reflection Group: What is a reflection?

Definition of “reflection": Want Ag AS regular

All but one eigenvalue of g is 1 ;

[Jing-Zhang (1997)] The trace function of g acting on A of
dimension n has a pole of order n− 1 at t = 1, where

TrA(g, t) =
∞∑
k=0

trace(g|Ak)t
k

=
1

(1− t)n−1q(t)
for q(1) 6= 0.



Reflection Groups: Examples illustrating the definition of reflection.

Examples :G =< g > on A = k−1[u, v] (vu = −uv):

(a) g =
[
εn 0
0 1

]
, T rA(g, t) =

1

(1− t)(1− εnt)
,

Ag = k〈un, v〉 is AS regular (classical reflection).

(b) g =
[
0 1
1 0

]
, T rA(g, t) =

1

1 + t2
,

Ag is NOT AS regular.

(c) g =
[
0 −1
1 0

]
, T rA(g, t) =

1

(1− t)(1 + t)
,

Ag = k[u2 + v2, uv] is AS regular (“mystic reflection").



Reflection Groups: Examples that are not classical reflection groups

Example: The binary dihedral groups of order 4`
generated by

g1 =

(
λ 0
0 λ−1

)
and g2 =

(
0 1
−1 0

)
for λ a primitive 2`th root of unity, acts on A = k−1[x, y].

AG = k[xy, x2` + y2`].



Shephard-Todd-Chevalley Theorem: H=kG A = skew polynomials

[KKZ] (2010)
G is a reflection group for A = kqij [x1, · · · , xn] iff G is
generated by “reflections”.

[Bazlov and Berenstein](2014) (“Demystification")
If G is a reflection group for A = kqij [x1, · · · , xn], then
there is a classical reflection group G′ with kG ∼= kG′ as
algebras.



Questions:
When is the following generalization of the
Shephard-Todd-Chevalley Theorem true:
AG is AS regular if and only if G is generated by
“reflections"?
Do some AS regular algebras have other kinds of
reflections?
What if char k = p?

Example: Jordan Plane A = k〈x, y〉/(xy − yx− y2) with
char k = 2. The transvection g with g.x = x+ y and
g.y = y has A〈g〉 = k〈x2, y〉 so g so is a reflection for A.



[FKMW] arXiv 1810.12935, 1907.06763:

Hopf algebras H that act on a quadratic AS regular
algebra of dimension 2 or 3 as a Hopf Reflection Algebra:
Examples:

(Masuoka) A4m

(Masuoka) B4m

(Pansera) H2n2

(Kashina) Some of the 16 dimensional Hopf algebras
Problem: Find all reflection Hopf algebras for
A = k−1[u, v].



Dual reflection groups: [KKZ](2017), [CKZ] (2017),
[CKZ] arXiv 1801.09020

H = kG◦ = kG is a commutative algebra.

H acts inner faithfully on A if and only if
A1 = Sg1 ⊕ · · · ⊕ Sgn where {gi} generate G.

A is graded by G and AH = Ae.

When Ae is AS regular we call G a dual reflection group
for A.



Dual reflection groups: Example

Example: G = D8 is a dual reflection group for
A = k±1[u,w][v;σ], where σ(u) = aw, σ(w) = bu,
and D8 grading u 7→ r, v 7→ rρ, w 7→ rρ2.
Relations in A:

wu = ±uw grade ρ2

vu = awv grade ρ3

vw = buv; grade ρ
The invariant subring is

AH = Ae
∼= k[u2, w2][v2;σ′]

an AS regular algebra.



Necessary conditions for G to be a dual
reflection group:

A = AH ⊕⊕g 6=eugAH

Let p(t) := 1 +
∑
g 6=e

t`(g) (the Poincaré polynomial)

p(1) = |G|

HAH(t) =
HA(t)

p(t)
so p(t)

is a product of cyclotomic polynomial.,



Dual reflection groups: Recall D8 example

For H = kD8 acting on A = k〈u, v, w〉
(group grades) r rρ rρ2

(A has PBW basis of the form uiwjvk, B := AH)
A = B⊕uB⊕vB⊕wB⊕uvB⊕uwB⊕wvB⊕uwvB

e r rρ rρ2 ρ ρ2 ρ3 rρ3

p(t) = 1 + 3t+ 3t2 + t3 = (1 + t)3

p(1) = 8

HB(t) =
1

(1− t)3(1 + t)3
=

1

(1− t2)3



Work with Kent Vashaw:
Consider G of order 16.

Look at all minimal generating sets of G.
Find the Poincaré polynomial of the
generating set.
See the relations that would be imposed on
A.
Do any relations give A AS regular?
Is Ae regular?



For G the semidihedral group of order 16 with
generating set with p(t) = (1 + t)4

A := k〈x1, x2, x3, x4〉/(relations below)

x23 = x1x2 (grade c), x24 = x2x1 (grade cd)

x1x3 = x2x4 (grade acd), x3x1 = x2x3 (grade a)
x1x4 = x4x2 (grade ad), x4x1 = x3x2 (grade ac).
Peter Goetz proved that A is AS regular.

Ae = k[x21, x22, x3x4, x4x3], commutative
polynomial ring,

HAH(t) =
1

(1− t)4(1 + t)4
=

1

(1− t2)4
.



Problem: Classify all dual reflection groups



III.Generalization of SLn(C)
Homological Determinant (Jørgensen and Zhang (2000)):
Scalar associated to a map in local cohomology (the
determinant for polynomial rings).

hdet : H → k a homomorphism.

Generalized Watanabe’s Theorem[KKZ] (2009):
AH is AS-Gorenstein when H has hdet ◦S = ε
(trivial homological determinant).

Morally: Hopf actions on A with trivial homological
determinant should behave like actions of subgroups of
SLn(C) on k[x1, . . . , xn].



Permutation Actions on k−1[x1 . . . , xn]

If g is a 2-cycle and A = k−1[x1 . . . , xn] then hdet(g) = 1.

For ALL groups G of n× n permutations, AG is
AS-Gorenstein.

Not true for commutative polynomial ring – e.g.

C[x1, x2, x3, x4]〈(1,2,3,4)〉

is not Gorenstein while

C−1[x1, x2, x3, x4]〈(1,2,3,4)〉

is AS-Gorenstein.



When A has dimension 2 and hdet trivial:
CKWZ H have been classified

(“Quantum binary polyhedral groups”)
CKWZ AH is a hypersurface in an AS regular

algebra of dimension 3
(“Quantum Kleinian singularities”)

CKWZ There is a McKay coorespondence
CKMW Matrix factorizations corresponding to MCM

modules



Auslander’s Theorem

Let G be a “small” subgroup of GLn(k) (finite
with no reflections), and let A = k[x1, . . . , xn].
Then the skew-group ring A#G is isomorphic to
EndAG(A) as algebras ((a#g)(x) = ag(x)).



Pertinency – Bao, He, Zhang (2016)

grade(AM ) = j(AM) := min{i : ExtiA(M,A) 6= 0}
Assume that A is GK-Cohen-Macaulay
j(M) + GKdim(M) = GKdim(A)

Def. The pertinency of the H-action on A is

p(A,H) := GKdimA−GKdim((A#H)/(1A# ∫)).

Theorem: TFAE for GKdimA ≥ 2:
Auslander’s Theorem: A#H ∼= EndAH (A) naturally.
p(A,H) ≥ 2



Auslander’s Theorem holds for:
CKWZ H semisimple acting on A (AS regular dim 2) with

trivial hdet
BHZ Group actions on U(g) with trivial hdet for certain g

GKMW Permutation actions on A = k−1[x1, . . . , xn]
GKMW Permutation of x, y, z in generic 3-dim Sklyanin

algebra
GHZ Group actions on most Noetherian graded down-up

algebras with trivial homological determinant
CKZ Group coactions on Noetherian graded down-up

algebras with trivial homological determinant
C Group actions by “small groups” acting on AS regular

algebras of dim 2



Question: Does Auslander’s Theorem hold for
Hopf actions with trivial homological
determinant acting on an AS regular algebra?



Commutative Graded Isolated Singularity

R = k[x1, . . . , xn]/I is a graded isolated singularity if Rp is
regular for all homogeneous prime ideals p 6= (x1, . . . , xn).

Theorem (Iyama-Yoshino): For G ⊆SLn(k). Then
k[x1, . . . , xn]G is a graded isolated singularity if and only if
for all e 6= g ∈ G have no eigenvalues = 1.

Examples: A = k[x1, x2, x3]

G = 〈(1 2 3)〉: AG NOT an isolated singularity.
‘

G = 〈

 ω 0 0
0 ω 0
0 0 ω

〉: AG IS an isolated singularity.



Pertinency and Graded Isolated Singularity

tailsB = grB/gr0B.

Theorem [BHZ]: When p(A,H) =GKdim(A),
then tailsAH has finite gldim, and hence is a
graded isolated singularity (Mori-Ueyama
(2016)).



Let Vn = k−1[x1, . . . , xn].
The following AG have isolated singularities:

GKMW Permutation of x, y, z on generic 3-dim Sklyanin
algebra

GKMW 〈(1 2)(3 4), (1 3)(2 4)〉 acting on V4,
GKMW 〈(1 2)(3 4) · · · (2n− 1 2n)〉 acting on V2n

CYZ Cyclic permutation for Vn when n = 2apb for p ≥ 7.

ALL groups have an element with eigenvalue 1, in
contrast to the commutative case.



[CYZ] Conjecture: Cyclic permutation for Vn is isolated
singularity if and only if n not divisible by 3 or 5. True for
n < 77.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
p 2 2 4 4 5 7 8 8 9 11 [8,11] 13 14

2, 2, 4, 4, 5, 7, 8, 8, 9, 11 is not in Online
Encyclopedia of Integer Sequences!



Question:

When is AH a graded isolated singularity?



THANKS !




