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Condensed matter physics:
what can materials do?

Superconductivity magnetism

topological phases




How to approach this
problem?
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Phases of matter: a paradigm for

classifying possible material behaviors
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Many different microscopic systems in a phase, but all have the same low-

temperature behavior



How to approach this
problem?

H

chemistry/
physics...

Math

material with a
complicated Hilbert
space

Spectrum of H

 Phase of matter (and low-temperature properties):
understand the ground state and the low-energy excited
states of the simplest possible H in that phase.



What does this have to do
with you? An example

= 2-Dimensional Electron Gas (2DEG) Microsc Opi cal Iy
electrons (charge 1) in
a strong magnetic
field

strong magnetic field

H (Specifics not important)

Low-lying excited states:
quasiparticles with
fractional charge (e.g 1/
21+1))




What does this have to do
with you? An example

e Quasiparticles with fractional charge are “anyons”

 Exchange them twice and the wave function changes by
a phase



What does this have to do
with you? An example

i 2-Dimensional Electron Gas (2DEG) M icroscopically

electrons (charge 1) in
a strong magnetic
field

strong magnetic field

H (Specifics not important)

Mathematical description:
anyons = simple objects
in a UMTC (with projective
U(1) symmetry action)




Summary: from materials to
math

 Material properties (at O temperature and long
lengthscales):

 Determined by ground state and low-lying excited
states (quasiparticles)

e pasically the same within a phase

» Effective description:
e Simplified Hilbert space & Hamiltonian (maybe nothing
to do with real material)

e Can be used to deduce correct mathematical structure
(e.g. UMTC)



Goals of the rest of the talk

e Introduce some (simple) Hamiltonians that describe
“fracton” phases in 3+1 d.

e Tell you some things that are understood about their
structure and how to generate more examples

* Describe some open questions about these types of
systems which may be mathematically interesting



Simple Hamiltonian warm-
up: the Toric code

Hilbert space: 2 states per
edge
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e Example of a “simple” Hamiltonian leading to a
topological phase (Particles are simple objects in D(Zs))



Simple Hamiltonian warm-
up: the Toric code

Hilbert space: 2 states per
edge
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Simple Hamiltonian warm-
up: the Toric code

Hilbert space: 2 states per

edge
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Simple Hamiltonian warm-
up: the Toric code

Hilbert space: 2 states per
edge
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Ground state: loop gas /string net
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Quasiparticles in the Toric code

H=-) B,—>» A,
p (v

C

Ay = —14

. /1
“e — particle’S

)

0

0
0
o
o
o
o

N

o o —o0 o o o o o
) o 0 o o o)(Ju_-_Bp:—

Q

o © © o o

© O © O O @ @ .
i “m — particle”

0
0
0
o

Q

|
L
o)
Q
o
(o)
o)
o)




Quasiparticles in the Toric code
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Statistics
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Statistics

S8 S8, = —1

time tQ



Statistics

S8 S8, = —1

Evolve forward in time...




Statistics

S8 S8, = —1

time tl

B, = P — 1




Statistics

S8 S8, = —1

time tz




Statistics

S8 S8, = —1
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Statistics

time t3
S, L e Space-time
process of
“braiding” (S-

matrix in UMTC)
described by the

operator product
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Simple Hamiltonians for
Fracton phases

* Fracton phase: has some features reminiscent of topological
order (UMTC), but many important differences, including

e Explicit dependence on a lattice geometry (no smooth
space-time)

* Particles with restricted mobility

e statistical (braiding-like) interactions in 3D, due to
restricted mobility

e (Goal: explore these properties and mathematical structure
through simple models. (General framework not yet known)



Vijay, Haah, Fu

Model 1: X-cube

v




Model 1: X-cube
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Commuting operators
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Model 1: X-cube

H=-) (Al + Ay + A7) - ) B

(Y

Sum of Commuting projectors




Prem, Huang, Song, Hermele

Ground state: “cage net”

H=-> (Al + A+ A7) - ) B

v

Aﬁ — Ag — Az — 41 :Even number of blue edges in each
plane at each vertex

BC = +1 : equal amplitude superposition of all
cages



Excitations of X-cube
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Notions of fusion

Pai, Hermele

g ‘ e |Like in Toric code, we have
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e But lines cannot turn corners, so
there is a distinct mx for each
value of y and z
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| * Membranes must be square, so
( s ' there’s a different e for every site.



Pai, Hermele
You, Devakul, FJB, Sondhi

Statistical processes:

(1) » (2) ® e This is different from
| statistics associated with 2D
7 @\ topological phases: extra

articles are created at
1/ o~ o= 0}

intermediate times

f * But we call it statistics
because it is invariant under
(3) ® (4) a (restricted) family of
geometric distortions

= / ~o * The membrane cannot be
l 7 © pulled over the line if we

require that the fractons are
never close to the lineon



You, Devakul, FJB, Sondhi
Ma, Hermele

Model 2: Twisted X-cube
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Model 2: Twisted X-cube

Commuting operators

Al B.,B:




Why the phases?
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* A similar adaptation of the toric code gives a twisted Z»

gauge theory

e Connections to distinct phases of matter with no
topological order and the same Z> symmetry



Ground state: cage net

* (Here the relative - sign is important!)



Twisted X-cube excitations

* As before, we get membrane operators creating

fractons, and line operators creating lineons, mobile in
only 1 dimension

e New kind of “statistical” process:

Difference between the
/ two processes: right and
| J L P I

r eft twists differ by a sign!

Twisting lineon left Twisting lineon right



Haah 2011

Model 3: Haah code
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Model 3: Haah code
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Excitations of Haah’s code

71
/:
z1 ' 77
| & €T )
! ® — " doesn’t commute
11
" s de an sl
) 17
7
7
\Z
17 A ,
1Z Z1
2 | y |
ZI | 7 & | Z7
| |
' 17 11
P SRR N — - A e e e e o -
, 17 . 17
7 7
7 7
| Iz
17 A | | VA Z1

Makes a tetrahedron of 4 cubes no longer in ground state



Excitations of Haah’s code

* Only immobile
particles (fractons)

e These occur at the
“boundary” of a
fractal-like structure

e “statistics”: (2
kinds of excitations,
made by fractal
arrays of g%, o)

e Fusion: distinct
particle for each site



Summary: models

e X-cube, twisted X-cube:

* immobile “fracton” particles at corners of membranes,
and 1-d “lineon” particles at ends or corners of lines

e Some generalized notion of statistics (braiding-like
process) between these; possible in 3+1 d due to
restricted mobility

e “Type I” fracton model

 Haah code:
e Fractons at boundary of fractal structure
e “Type II” fracton model



Type | models: hints at the
underlying structure

e How to make X-cube from the Toric code:

e 3 stacks of
decoupled, 2
(spatial)
dimensional Toric
code models

Ma, Hermele;
Slagle, Aasen, Williamson




Type | models: hints at the
underlying structure

e How to make X-cube from the Toric code:
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Type | models: hints at the
underlying structure

e How to make X-cube from the Toric code:

P e g
Xxi Xx(! 1z
....... .)S( E xl 3 77
X : X T 7 Z ............ f ......
X XX
X4 zZ
Xl e, 7
X XX
. Qe
B.=1] B, A,
pEO.

e |If we can get rid of terms with a single X operator (make them
cost a lot of energy), we can get from decoupled stacks to X-
cube



Alternative picture of the
constraint “no single X operators™:

[Slagle, Aasen, Williamson]

e TQFT’s in different planes are “sewn together” by membranes

e Membranes are closed, or can end on edges with odd
numbers of Z= -1



Type | models: hints at the
underlying structure

e (General construction:

e Stacks of topological phases
along various directions

* Impose some conditions linking
them together (energetically)

e Obtain a Type-I| fracton model

Ma, Hermele;
Slagle, Aasen, Williamson



Type | models: many things
missing in the general picture

* How to do the coupling correctly for general topological
order (UMTQC)? This is important for understanding non-

abelian examples.

* We know of examples [Devakul, Shirley, Wang] that cannot
be obtained in this way. This suggests an underlying more
general structure we don’t yet understand.

e Do we have a complete list of possible statistical processes?

* Lattice geometry (choice of stacks) is very important. Are
these models necessarily defined on discrete geometries?

Why?



Other amusing directions ...

e Topological order can come from gauging a symmetry.
Different symmetry actions (3-cocycles) yield different
answers. Can also make new topological orders from old
ones by introducing a symmetry action and gauging it (if
there are no obstructions).

* Fracton orders can come from gauging a subsystem
symmetry. (We do not know whether examples not of this
form exist). Different symmetry actions (3-cocycles) lead
to different fracton orders. Can we similarly “extend”
fracton orders through symmetry?



Fracton phases of matter:
let’s discuss!

* Fracton order: a new type of mathematical structure, with
simple objects that have fusion properties and some
statistical interactions (distinct from braiding)

e Some can be obtained from stacks of topologically
ordered phases, by trivializing certain excitations

e Geometry plays an important role, key to restricted
mobility and statistics





