

Quantum symmetries and phases of matter: a physicist's perspective

Fiona Burnell
University of Minnesota— Twin Cities

Condensed matter physics: what can materials do?

Superconductivity

semiconductors

magnetism

topological phases

How to approach this problem?

Spectrum of H

complicated Hilbert

space

Phases of matter: a paradigm for classifying possible material behaviors

Many different microscopic systems in a phase, but all have the same lowtemperature behavior

How to approach this problem?

 Phase of matter (and low-temperature properties): understand the ground state and the low-energy excited states of the simplest possible H in that phase.

What does this have to do with you? An example

Microscopically, electrons (charge 1) in a strong magnetic field

Low-lying excited states: quasiparticles with fractional charge (e.g 1/(2l+1))

What does this have to do with you? An example

- Quasiparticles with fractional charge are "anyons"
- Exchange them twice and the wave function changes by a phase

What does this have to do with you? An example

Microscopically, electrons (charge 1) in a strong magnetic field

H

(Specifics not important)

Mathematical description: anyons = simple objects in a UMTC (with projective U(1) symmetry action)

Summary: from materials to math

- Material properties (at 0 temperature and long lengthscales):
 - Determined by ground state and low-lying excited states (quasiparticles)
 - basically the same within a phase
- Effective description:
 - Simplified Hilbert space & Hamiltonian (maybe nothing to do with real material)
 - Can be used to deduce correct mathematical structure (e.g. UMTC)

Goals of the rest of the talk

- Introduce some (simple) Hamiltonians that describe "fracton" phases in 3+1 d.
- Tell you some things that are understood about their structure and how to generate more examples
- Describe some open questions about these types of systems which may be mathematically interesting

• Example of a "simple" Hamiltonian leading to a topological phase (Particles are simple objects in $D(\mathbb{Z}_2)$)

Hilbert space: 2 states per edge

$$\sigma_i^z \in \{-1, 1\}$$

Abuse of notation!

State: σ^z = Eigenvalue

Operator: σ^z = Pauli matrix

$$\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma^x \sigma^z = -\sigma^z \sigma^x$$

Hilbert space: 2 states per edge

$$B_P = \prod_{i \in \partial p} \sigma_i^x \qquad A_v = \prod_{i \in {}^*v} \sigma_i^z$$
$$\sigma^x \sigma^z = -\sigma^z \sigma^x$$
$$[A_v, B_p] = 0$$

Hilbert space: 2 states per edge

$$B_P = \prod_{i \in \partial p} \sigma_i^x \qquad A_v = \prod_{i \in {}^*v} \sigma_i^z$$

$$H = -\sum_{p} B_{p} - \sum_{v} A_{v}$$

Hamiltonian: commuting projectors

Ground state: loop gas /string net

$$H = -\sum_{p} B_{p} - \sum_{v} A_{v}$$

$$B_p = \prod_{i \in \partial p} \sigma_i^x = 1 \qquad A_v = \prod_{i \in {}^*v} \sigma_i^z = 1$$

Quasiparticles in the Toric code

$$H = -\sum_{p} B_{p} - \sum_{v} A_{v}$$

Quasiparticles in the Toric code

$$B_P = \prod_{i \in \partial p} \sigma_i^x$$

$$A_v = \prod_{i \in {}^*v} \sigma_i^z$$

$$\sigma_i^z \sigma_i^x = -\sigma_i^x \sigma_i^z$$

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$
 time t_0

$$A_v = -1$$

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$

Evolve forward in time...

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$
 time t_1

$$B_p = -1 \times B_p = -1$$

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$
 time t_2

$$S_p^{-1}S_v^{-1}S_pS_v = -1$$

$$\sum_{S_p^{-1}}^{\text{time } t_3}$$

 Space-time process of "braiding" (Smatrix in UMTC) described by the operator product

$$S_p^{-1} S_v^{-1} S_p S_v = -1$$

Simple Hamiltonians for Fracton phases

- Fracton phase: has some features reminiscent of topological order (UMTC), but many important differences, including
 - Explicit dependence on a lattice geometry (no smooth space-time)
 - Particles with restricted mobility
 - statistical (braiding-like) interactions in 3D, due to restricted mobility
- Goal: explore these properties and mathematical structure through simple models. (General framework not yet known)

Model 1: X-cube

Model 1: X-cube

$$\sigma_i^z \in \{-1, 1\}$$

$$B_c = \prod_{i \in \partial c} \sigma_i^x$$

Commuting operators

$$A_v^i, B_c$$

$$A_v^z = \prod_{i \in {}^{*xy}v} \sigma_i^z$$

Model 1: X-cube

$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

Sum of Commuting projectors

$$B_c = \prod_{i \in \partial c} \sigma_i^x$$

$$A_v^z = \prod_{i \in {}^{*xy}v} \sigma_i^z$$

Ground state: "cage net"

$$H = -\sum_{v} (A_v^x + A_v^y + A_v^z) - \sum_{c} B_c$$

$$A^x_v = A^y_v = A^z_v = +1 \quad \text{: Even number of blue edges in each}$$

plane at each vertex

$$B_c = +1 \;\;$$
 : equal amplitude superposition of all cages

Excitations of X-cube

$$B_c = \prod_{i \in \partial c} \sigma_i^x$$

$$A_v^z = \prod_{i \in *^{xy}v} \sigma_i^z$$

Membrane operator:
$$\hat{M} = \prod_{i} \sigma_{i}^{z}$$

line operator:
$$\hat{l} = \prod_{i} \sigma_i^x$$

Notions of fusion

Pai, Hermele

Like in Toric code, we have

$$e_i \times e_i = 1$$

$$m_i^a \times m_i^a = 1$$

- But lines cannot turn corners, so there is a distinct m^x for each value of y and z
- Membranes must be square, so there's a different e for every site.

Pai, Hermele You, Devakul, FJB, Sondhi

Statistical processes:

- This is different from statistics associated with 2D topological phases: extra particles are created at intermediate times
- But we call it statistics because it is invariant under a (restricted) family of geometric distortions
- The membrane cannot be pulled over the line if we require that the fractions are never close to the lineon

Model 2: Twisted X-cube

$$\sigma_i^z \in \{-1, 1\}$$

on each edge

Model 2: Twisted X-cube

Commuting operators

$$A_v^i, B_c, B_p^i$$

$$B_p^z = (i)^n \prod_i \sigma_i^x \qquad B_c = (i)^n \prod_i \sigma_i^x$$

$$B_c = (i)^n \prod_i \sigma_i^{\alpha}$$

Why the phases?

$$B_p^z = (i)^n \prod_i \sigma_i^x \qquad B_c = (i)^n \prod_i \sigma_i^x$$

$$B_c = (i)^n \prod_i \sigma_i^x$$

- A similar adaptation of the toric code gives a twisted Z₂ gauge theory
- Connections to distinct phases of matter with no topological order and the same Z₂ symmetry

Ground state: cage net

• (Here the relative - sign is important!)

Twisted X-cube excitations

- As before, we get membrane operators creating fractons, and line operators creating lineons, mobile in only 1 dimension
- New kind of "statistical" process:

Model 3: Haah code

$$\sigma_i^z \in \{-1, 1\}$$
$$\tau_i^z \in \{-1, 1\}$$

4 states at each site

Model 3: Haah code

Excitations of Haah's code

Makes a tetrahedron of 4 cubes no longer in ground state

Excitations of Haah's code

- Only immobile particles (fractons)
- These occur at the "boundary" of a fractal-like structure
- "statistics": (2 kinds of excitations, made by fractal arrays of σ^x, σ^z)
- Fusion: distinct particle for each site

Summary: models

- X-cube, twisted X-cube:
 - immobile "fracton" particles at corners of membranes, and 1-d "lineon" particles at ends or corners of lines
 - Some generalized notion of statistics (braiding-like process) between these; possible in 3+1 d due to restricted mobility
 - "Type I" fracton model
- Haah code:
 - Fractons at boundary of fractal structure
 - "Type II" fracton model

How to make X-cube from the Toric code:

 3 stacks of decoupled, 2 (spatial) dimensional Toric code models

> Ma, Hermele; Slagle, Aasen, Williamson

How to make X-cube from the Toric code:

How to make X-cube from the Toric code:

 If we can get rid of terms with a single X operator (make them cost a lot of energy), we can get from decoupled stacks to Xcube

Alternative picture of the constraint "no single X operators":

[Slagle, Aasen, Williamson]

- TQFT's in different planes are "sewn together" by membranes
- Membranes are closed, or can end on edges with odd numbers of Z= -1

- General construction:
 - Stacks of topological phases along various directions

- Impose some conditions linking them together (energetically)
- Obtain a Type-I fracton model

Type I models: many things missing in the general picture

- How to do the coupling correctly for general topological order (UMTC)? This is important for understanding nonabelian examples.
- We know of examples [Devakul, Shirley, Wang] that cannot be obtained in this way. This suggests an underlying more general structure we don't yet understand.
- Do we have a complete list of possible statistical processes?
- Lattice geometry (choice of stacks) is very important. Are these models necessarily defined on discrete geometries? Why?

Other amusing directions ...

- Topological order can come from gauging a symmetry.
 Different symmetry actions (3-cocycles) yield different answers. Can also make new topological orders from old ones by introducing a symmetry action and gauging it (if there are no obstructions).
- Fracton orders can come from gauging a subsystem symmetry. (We do not know whether examples not of this form exist). Different symmetry actions (3-cocycles) lead to different fracton orders. Can we similarly "extend" fracton orders through symmetry?

Fracton phases of matter: let's discuss!

- Fracton order: a new type of mathematical structure, with simple objects that have fusion properties and some statistical interactions (distinct from braiding)
- Some can be obtained from stacks of topologically ordered phases, by trivializing certain excitations
- Geometry plays an important role, key to restricted mobility and statistics