
SARAH WITHERSPOON: HOPF ALGEBRAS, I

Our perspective on Hopf algebras, their actions on rings and modules, and the structures on their categories
of rings and modules, will be to think of them as generalizations of group actions and representations;
groups actions are symmetries in the usual sense, and Hopf algebra actions are often related to “quantum
symmetries.”

We’re not going to give the full definition of a Hopf algebra, because it would require drawing a lot of
commutative diagrams, but we’ll say enough to give the picture.

Throughout this talk we work over a field k; all tensor products are of k-vector spaces.

Definition 0.1. A Hopf algebra is an algebra A together with k-linear maps ∆: A → A ⊗ A, called
comultiplication; ε : A→ k, called the counit; and S : A→ A, called the coinverse. These maps must satisfy
some properties, including that ε is an algebra homomorphism and that S is an anti-automorphism, i.e. that
S(xy) = S(y)S(x).

The definition is best understood through examples.

Example 0.2.
(1) Let G be a group. Then the group algebra k[G] is a Hopf algebra, where for all g ∈ G, ∆(g) := g ⊗ g,

ε(g) := 1, and S(g) := g−1. This is a key example that allows us to generalize ideas from group
actions to Hopf algebra actions: whenever we define a notion for Hopf algebras, when we implement
it for k[G] it should recover that notion for groups.

(2) Let g be a Lie algebra over k. Then its universal enveloping algebra U(g) is a Hopf algebra, where
for all x ∈ g, ∆(x) := x⊗ 1 + 1⊗ x, ε(x) := 0, and S(x) := −x. Since ε is an algebra homomorphism,
ε(1U(g)) = 1.

For example,
(0.3) U(sl2) = k〈e, f, h | ef − fe = h, he− eh = 2e, hf − fh = −2f〉,

given explicitly by the basis of sl2

((0.4) e :=
(

0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

Both of these examples are classical, in that they’ve been known for a long time. But more recently, in the
1980s, people discovered new examples, coming from quantum groups.

Example 0.5 (Quantum sl2). Let q ∈ k× \ {±1}. Then, given a simple Lie algebra g, we can define a
“quantum group,” Uq(g), which is a Hopf algebra. For example, for sl2,

(0.6) Uq(sl2) = k

〈
E, F, K±1 | EF − FE = K −K−1

q − q−1 , KE = q2EK, KF = q−2EK

〉
,

with comultiplication
∆(E) := E ⊗ 1 + K ⊗ E(0.7a)
∆(F ) := F ⊗K−1 + 1⊗ F(0.7b)

∆(K±1) := K±1 ⊗K±1(0.7c)

and counit ε(E) = ε(F ) = 0 and ε(K) = 1. This generalizes to other simple g, albeit with more elaborate
data. (

Example 0.8 (Small quantum sl2). Let q be an nth root of unity. Then, as before, given a simple Lie algebra
g, we can define a Hopf algebra uq(g), called the small quantum group for g and q, which is a finite-dimensional
vector space over k; for sl2, this is

((0.9) uq(sl2) = Uq(sl2)/(En, F n, Kn − 1).
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Before we continue, we need some useful notation for comultiplication, called Sweedler notation. Let A be
a Hopf algebra and a ∈ A; then we can symbolically write

(0.10) ∆(a) =
∑

(a)

a1 ⊗ a2.

Comultiplication in a Hopf algebra is coassociative, in that as maps A→ A⊗A⊗A,

(0.11) (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

Therefore when we iterate comultiplication, we can symbolically write

(0.12) (id⊗∆) ◦∆(a) =
∑

(a)

a1 ⊗ a2 ⊗ a3

without worrying about parentheses.

Actions on rings. Hopf algebra actions on rings generalize group actions on rings by automorphisms and
actions of Lie algebras on rings by derivations. If a group G acts on a ring R, then for all g ∈ G and r, r′ ∈ R,

g(rr′) = (gr)(gr′)(0.13a)
g(1R) = 1R.(0.13b)

In k[G], our Hopf algebra avatar of G, ∆(g) = g ⊗ g, and ε(g) = 1.
If a Lie algebra g acts on a ring R by derivations, then for all x ∈ g and r, r′ ∈ R,

x · (rr′) = (x · r)r′ + r(x · r′)(0.14a)
x · (1R) = 0.(0.14b)

In U(g), our Hopf algebra avatar of g, ∆(x) = x⊗ 1 + 1⊗ x, and ε(x) = 0. These two examples suggest how
we should implement a general Hopf algebra action on a ring: comultiplication tells us how to act on the
product of two elements, and the counit tells us how to act on 1.

Definition 0.15. Let A be a Hopf algebra and R be a k-algebra. An A-module algebra structure on R is
data of an A-module structure on R such that for all a ∈ A and r, r′ ∈ R,

a · (rr′) =
∑

(a)

(a1 · r)(a2 · r)(0.16a)

a · (1R) = ε(a)1R.(0.16b)

Thus a group action as in (0.13) defines an action of the Hopf algebra k[G], and a Lie algebra action as
in (0.14) defines an action of the Hopf algebra U(g).

Example 0.17. The quantum analogue of the sl2-action on k[x, y], thought of as (functions on the) plane,
there is an action of Uq(sl2) on the quantum plane

(0.18) R := k〈x, y | xy = qyx〉.

This is a deformation of k[x, y], which is the case q = 1. The explicit data of the action is

E · x = 0 F · x = y K±1 · x = q±1x(0.19)
E · y = x F · y = 0 K±1y = q∓1y.(0.20)

One has to check that this extends to an action satisfying Definition 0.15, but it does, and R is an A-module
algebra. Here E and F act as skew-derivations, e.g.

(0.21) E · (rr′) = (E · r)r′ + (K · r)(E · r′)

for all r, r′ ∈ R. (
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Given a Hopf algebra action of A on R in this sense, we can construct two useful rings: the invariant
subring
(0.22) RA := {r ∈ R | a · r = ε(a) · r for all a ∈ A},
and the smash product ring R # A, which as a vector space is R⊗A, with multiplication given by

(0.23) (r ⊗ a)(r′ ⊗ a′) :=
∑

(a)

r(a1 · r′)⊗ a2a′.

The smash product ring knows the A-module algebra structure on R. Often, rings we’re interested in for
other reasons are smash product rings of interesting Hopf algebra actions, and identifying this structure is
useful.

Example 0.24. The Borel subalgebra of Uq(sl2) is k〈E, K±1 | KE = q−2K〉. This is isomorphic to the
smash product k[E] # k〈K〉, where k〈K〉 is the group algebra of the free group on the single generator K.

In fact, there’s a sense in which Uq(sl2) is a deformation of k[E, F ] # k〈K〉: in this smash product ring, E
and F commute, and we deform this to Uq(sl2), in which they don’t commute. (

Modules. Given a Hopf algebra A, what is the structure of its category of modules? The first thing we can
do is take the tensor product of A-modules U and V using comultiplication: for a ∈ A, u ∈ U , and v ∈ V ,

(0.25) a · (u⊗ v) =
∑

(a)

a1 · u⊗ a2 · v.

Moreover, k has a canonical A-module structure via the counit: a · x := ε(a)x for a ∈ A and x ∈ k. Finally, if
U is an A-module, its vector space dual U∗ := Homk(U, k) has an A-module structure via S: for all a ∈ A,
u ∈ U , and f ∈ U∗, (a · f)(u) := f(S(a)u).

The existence of tensor products, duals, and the ground field in the world of Hopf algebra modules is a
nice feature: these aren’t always present for a general associative algebra. Moreover, these constructions
interact well with each other.

(1) Coassociativity of ∆ implies the tensor product is associative: for A-modules U , V , and W , we have
a natural isomorphism U ⊗ (V ⊗W )

∼=→ (U ⊗ V )⊗W .
(2) In any Hopf algebra A, we have the condition

(0.26)
∑

(a)

ε(a1)a2 =
∑

(a)

a1ε(a2)

for any a1, a2 ∈ A. This implies k, as an A-module, is the unit for the tensor product: we have
natural isomorphisms k ⊗ U ∼= U ∼= U ⊗ k for an A-module U .

(3) Suppose U is an A-module which is a finite-dimensional k-vector space. Then it comes with data of a
coevaluation map c : k → U ⊗ U∗ sending

(0.27) 1 7−→
∑

i

ui ⊗ u∗i ,

where {ui} is a basis for U over k and {u∗i } is its dual basis; this map turns out to be independent of
basis. We also have an evaluation map e : U∗ ⊗ U → k sending f ⊗ u 7→ f(u). Now, not only are
these A-module homomorphisms, but the composition

(0.28) U
c⊗idU // U ⊗ U∗ ⊗ U

idU⊗e // U

is the identity map.

Definition 0.29. A tensor category, or monoidal category is a category C together with a functor⊗ : C×C→ C,
an object 1 ∈ C called the unit, and natural isomorphisms U⊗(V ⊗W ) ∼= (U⊗V )⊗W and 1⊗U ∼= U ∼= U⊗1
for all objects U , V , and W in C, subject to some coherence conditions.

Our key examples of tensor categories are the category of modules over a Hopf algebra A, as well as the
subcategory of finite-dimensional modules.

If the coinverse of A is invertible, which is always the case when A is finite-dimensional over k, then
C = ModA is a rigid tensor category, meaning that every object U has a right dual ∗U := Homk(U, k), which
means the composition (0.28) is the identity.
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Remark 0.30. Notations for left and right duals differ. We’re following [EGNO15], but Bakalov-Kirillov [BK01]
use a different convention; be careful! (

Some Hopf algebras’ categories of modules have additional structure or properties: they might be semisimple,
or braided, or even symmetric. This amounts to additional information on the Hopf algebra itself.
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