
EMILY PETERS: SUBFACTORS AND PLANAR ALGEBRAS, II

Last time we dove into planar algebras; today we’ll get to subfactors too.
Definition 0.1. A von Neumann algebra A is a unital, ∗-closed subalgebra of B(H), the algebra of bounded
operators on some Hilbert space, such that the double commutant A′′ of A is again A. (The double commutant
is the space of operators which commute with the things which commute with A.) A factor is a von Neumann
algebra A such that Z(A) = A ∩A′ = C · id. A subfactor is a unital inclusion of factors.

Why care about subfactors? Well, if you want to understand maps between von Neumann algebras, you
can begin by trying to decompose your algebras into smaller pieces, and subfactors are the basic building
blocks of maps.

Let S∞ denote the finitary symmetric group, i.e. the group of permutations of a countable set which leave
all but finitely many elements fixed. Alternatively, S∞ = colimn Sn. In S∞, cycle types are conjugacy classes,
as with finite symmetric groups, and therefore there are infinitely many conjugacy classes.

Let H := `2(S∞), which carries the left regular representation λ : S∞ → B(H) by
(0.2) (λ(g))ξ)(h) = ξ(g−1h).
Define the group von Neumann algebra to be L(S∞) := C[λ(S∞)]′′. Taking the double commutant is called
the von Neumann closure; L(S∞) is a von Neumann algebra, and even a factor, though there is an argument
to make here. This factor is called the hyperfinite type II1 factor.
Remark 0.3. You can make this construction for any group with an infinite number of conjugacy classes (in
fact, even if not, you still get a von Neumann algebra, but not a factor). For the free groups F2 and F3 on
two, respectively three, elements, C[λ(F2)] 6∼= C[λ(F3)], but it is a longstanding open question whether the
group von Neumann algebras are isomorphic (i.e. after von Neumann closure).

On the other hand, if G is profinite (i.e. a colimit of finite groups, as with S∞), L(G) ∼= L(S∞). (

Let G be any finite subgroup of S∞. Then we can build a subfactor: G acts on L(S∞), and the invariants
L(S∞)G ↪→ L(S∞) are a subfactor.

Given a subfactor A ⊂ B, we will build a planar algebra, at least assuming A is finite-index and
irreducible. Let X := ABB , i.e. B as an (A,B)-bimodule, with A-action implemented through the inclusion.
Correspondingly, let X := BBA.

Associated to this data we have some diagrammatics. We represent X by a vertical line shaded to the
right, and X by a vertical line shaded to the left.

(0.4)

X X

There is an evaluation map

(0.5) : X ⊗X = AB ⊗B BA = ABA −→ AAA.

In the theory of von Neumann algebras, this map is called conditional expectation, and has been well-studied.
Correspondingly, the inclusion map AAA ↪→ ABA is denoted .

Two more diagrams: a map

(0.6) : BBB −→ X ⊗X = BB ⊗A BB ,

which arises from the basic construction A ⊂ B ⊂ B ⊗A B; and the multiplication map

(0.7) : BB ⊗A B −→ BBB .
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Let Vn := End(X ⊗X ⊗ · · · ), where there are n factors of X or X. You can represent Vn by a box with n
input and output wires.

From these diagrams we have a planar algebra. But the planar algebras which come from subfactors
have extra structure. Because A and B are factors, the diagrams corresponding to the circle (two diagrams:
shaded inside, or shaded outside) are constants. We adopt the convention to normalize such that both of
them are the number FPdim(X).

There are two flavors of box, depending on whether you shade on the inside or outside; call them Vn,+ and
Vn,−, depending on which of X or X is the first factor in the tensor product. These are all finite-dimensional,
which follows from our assumption that A ↪→ B is finite index; and dim(V0,±) = 1. Moreover, we can take
isotopies in S2, rather than R2 — we can move strands through the point at infinity, as in Figure 1.

Figure 1. Moving a strand through the point at infinity on S2.

FInally, we have a positivity constraint: if a, b ∈ Vn,±, 〈a, b〉 := tr(b∗a) is positive (provided a, b 6= 0). As
before, ∗ is reflection across a horizontal line.

Call a planar algebra satisfying these three additional constraints a subfactor planar algebra.
Theorem 0.8 (Jones). The planar algebras coming from subfactors are subfactor planar algebras.
Theorem 0.9 (Popa). All subfactor planar algebras arise from subfactors.

However, both constructions are sadly non-functorial.
The subfactor planar algebra associated to a subfactor is a nice invariant of a subfactor, but is not the

only interesting one. The first invariant associated to a subfactor is Jones’ index,
(0.10) [B : A] := dimA B.

This is equal to FPdim(X)2. Actually making sense of this dimension can be a little funny, and you may
have to dip into some analysis, but it can be done.

Jones proved a theorem characterizing the possible indices which made people sit up and take notice.
Theorem 0.11 (Jones [Jon83]). The index is either of the form 4 cos2(π/n), for n = 3, 4, 5, . . . , or is an
element of [4,∞], and all of these can arise.

The indices of the form 4 cos2(π/n) are “classical,” less surprising, but the new, continuous ones are
stranger.

The principal graph of a subfactor is another useful invariant — in fact, its ability to remember important
information but not too much has led some people to think of it as the “Goldilocks invariant.” It encodes
the fusion rules of a tensor category. Consider a decomposition of X ⊗X ⊗X ⊗ · · · ⊗X into irreducible
bimodules, then build a graph depicting –⊗X±. For example, if we had the rules

X ⊗X = Z1 ⊕ 1(0.12a)
Z1 ⊗X = X ⊕ Z2 ⊕ Z2(0.12b)
Z2 ⊗X = Z3 ⊗X = Z1,(0.12c)

we would obtain the graph

(0.13) 1 X Z1

Z2

Z3
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Using this, we can build a unitary tensor category from a subfactor/subfactor planar algebra. Unitarity
means that each Hom space has a positive Hermitian form, and consequently all dimensions are positive.
The objects of this category are the irreducible bimodules obtained from X ⊗X ⊗ · · · ⊗X±, the morphisms
are the relevant planar diagrams, and the tensor product is disjoint union of diagrams.

And this is a helpful tool for studying these tensor catgories. For small subfactor planar algebras,
FPdim(X) =

√
[B : A] tells you about the growth rate of {Vn,±} (assuming here that the subfactor is

finite-depth or amenable). Under these assumptions, the principal graph is of ADE type, but — and a
lot of work went into this — the ADE graphs that arise are Dn for n even, E6, and E8. One can also get
extended Dynkin diagrams. These are the cases where the index is 4 cos2(π/n) for some n, so Haagerup
asked what nontrivial principal graphs can arise in the next simplest setting, where the index is above
4, but not by much. Figure 2 delineates the possible graphs. Bisch [Bis98] showed Bi doesn’t work: its

Figure 2. Haagerup’s graphs for the case when the index is a little more than 4.

fusion rules are nonassociative. Asaeda-Haagerup [AH99] constructed subfactors realizing H0 and AH ; then
Asaeda-Yasuda [AY09] showed that Hi for i ≥ 2 cannot be realized.

This leaves one case, H1.

Theorem 0.14 (Bigelow-Morrison-Peters-Snyder [BMPS12]). There is a planar algebra realizing the graph
H1.

This algebra is called the extended Haagerup planar algebra. It is a positive planar algebra generated, as a
planar algebra, by S ∈ V8 with some relations. It has Frobenius-Perron dimension about equal to 2.09218,
which indicates we’re just barely in the region of continuous index. The relations are described by pictures,
as in Figure 3.

You can write down any random set of relations, and will probably get something zero or infinite. The
work that went into Theorem 0.14 was showing that this is finite, and interesting.
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Figure 3. Diagrammatics for relations in the extended Haagerup planar algebra.
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