
CLAUDIA SCHEIMBAUER: TQFTS AND HIGHER CATEGORIES

We have spent plenty of time this week on objects closely related to topological field theories, including
tensor categories and fusion categories. Today, we will begin with topological field theory and see among
other things how tensor categories appear out of this formalism.

Definition 0.1. An n-dimensional topological field theory (TFT) is a symmetric monoidal functor Z : nCob →
Vect.

Here Vect is the symmetric monoidal category of vector spaces with tensor product. nCob is a symmetric
monoidal category of bordisms:

• The objects of nCob are closed, (n− 1)-dimensional manifolds.1
• The morphisms are n-dimensional cobordisms.2 That is, a morphsim from M to N is a compact

n-dimensional manifold X with boundary, together with a diffeomorphism ∂X ∼= M qN .
• Composition is gluing of cobordisms. Crucially, this must be associative on the nose, which means

that we must identify cobordisms which are diffeomorphic rel boundary — so a morphism is in fact a
diffeomorphism class of boundary.

• The symmetric monoidal structure is disjoint union of manifolds; the unit is the empty set, which is
a compact (n− 1)-manifold.

If something you care about (e.g. some manifold invariant) is part of a TFT, that means that you can compute
it by chopping a manifold into pieces as cobordisms, computing it on those pieces, and then putting them
together, at least in principle. This is often a nice thing to have.

Remark 0.2. Why “topological?” Well, you can consider different kinds of tangential structures on the
manifolds in nCob, including orientations, spin structures, or principal G-bundles with a flat connection.
Most of what we do today will generalize to these settings.

But you can also consider other structures (arbitrary connections, Riemannian metrics, etc.), and studying
these functorial field theories as in Definition 0.1 is much harder. (

One immediate consequence of the definition of a TFT is that if X is a closed n-dimensional manifold, it
defines a cobordism ∅→ ∅, so if Z is a TFT, Z(M) is a map Z(∅)→ Z(∅). Monoidality includes data of
an isomorphism Z(∅) ∼= k, so Z(X) is a linear map k → k, identified with a number. This number, called
the partition function of X, is a diffeomorphism invariant.

Another lemma one can prove is that for any closed (n − 1)-manifold M , Z(M) is a finite-dimensional
vector space. This is reminiscent of the various finiteness conditions imposed on tensor categories this week,
and this is not a coincidence.

Example 0.3. We’ve already seen a few examples of TFTs this week. In Belaikova’s talk, we discussed the
Witten-Reshetikhin-Turaev invariants of 3-manifolds associated to a modular tensor category. If this is in
addition a spherical fusion category, these specialize to Turaev-Viro invariants, which are computed by a
state-sum construction: triangulate your manifold, then assign 6j-symbols to the tetrahedra. (

The state-sum construction has an interesting consequence: we’ve chopped our axiom up not just into
codimension-1 submanifolds, but also higher-codimension submanifolds: the edges and vertices. Can we
capture this structure in a definition?

Unfortunately, symmetric monoidal categories aren’t enough to capture these ideas. One is led to “higher
categories,” which more naturally incorporate lower-dimensional submanifolds into the cobordism category.
We also saw in a previous talk the notion of a modular functor, which assigns invariants not just to 3-
dimensional and 2-dimensional manifolds, but also to 1-dimensional manifolds. Here vector spaces are

1There are many different variants, e.g. we could ask for manifolds and bordisms to be oriented, or framed, etc., but for now
we just want smooth manifolds with no other data.

2Well, not quite — but we’ll get there in just a moment.
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assigned to surfaces, and something new is assigned to 1-manifolds. We can hope this comes from some sort
of extended TFT.

Another piece of motivation for extended TFT is: why fusion categories or modular tensor categories?
We are led to them when formalizing Turaev-Viro or Witten-Reshetikhin-Turaev invariants, but are there
others that we missed? If we understand conceptually why we get these TFTs, that will help us search for
new TFTs in other dimensions. And why the specific adjectives that we put in front of fusion categories?
Where do they come from?

To mathematically model these extended TFTs, we will add more layers of data. In a TFT as in
Definition 0.1, we have a symmetric monoidal category, and we assign things to n- and (n− 1)-dimensional
manifolds.

In an n-dimensional once-extended TFT, we replace symmetric monoidal categories with symmetric
monoidal bicategories, and we can assign data to manifolds of dimension n, n− 1, and n− 2. This has been
studied by Schommer-Pries [SP09] and Morton [Mor06].

We can further extend to something called a symmetric monoidal k-category, which assigns data to
manifolds of dimensions from n− k to n. Here we need k ≤ n.

Another thing you can do is to consider moduli spaces of cobordisms: the idea is that nearby cobordisms
should do similar things in a field theory. This leads one to a symmetric monoidal topological category
of cobordisms, or alternatively a symmetric monoidal (∞, 1)-category.3 This assigns invariants to n- and
(n− 1)-categories as usual, but we also have data in all dimensions higher than m, but because that data
corresponds to paths or isotopy of paths in a moduli space, those morphisms are all invertible. These have
been studied by Tillmann and Madsen, with key input from Galatius-Madsen-Tillmann-Weiss [GTMW09].

Finally, you can combine these into the notion of fully extended TFT, where you combine moduli spaces
and extended TFT, in a symmetric monoidal (∞, n)-category. We assign things in all dimensions, and
above dimension n everything we define is invertible. There are different models of symmetric monoidal
(∞, n)-categories and the appropriate generalizations of nCob, due to work of Lurie [Lur09], Calaque-
Scheimbauer [CS19], Verity, and Ayala-Francis-Rozenblyum.

In these various kinds of extended TFT, the cobordism category is some sort of symmetric monoidal higher
category, and the target category, generalizing Vect, must also be the same kind of symmetric monoidal
higher category. Whatever we put there should allow us to recover the notion of an ordinary TFT from an
extended one, in the same way that these cobordism higher categories should contain the data of nCob.

For example, let Bord2,1,0 denote the symmetric monoidal bicategory of 0-manifolds, 1-manifolds (with
boundary), and 2-manifolds (with corners). Consider the morphism category Bord2,1,0(∅,∅) — its objects
are closed 1-manifolds, and its morphisms are (diffeomorphism classes of) compact bordisms between them —
so this is just 2Cob again! So if C is a suitable symmetric monoidal bicategory to use for extended TFT, then
in any TFT Z : Bord2,1,0 → C, we can restrict to Bord2,1,0(∅,∅), i.e. the ordinary bordism category, and Z
maps this to ΩC := C(1, 1). Thus we need ΩC ' Vect.

Example 0.4. Here are two symmetric monoidal bicategories C with ΩC ' Vect as desired, and which are
useful targets for once-extended TFT.

• The Morita bicategory Alg1(Vect) is the bicategory whose objects are algebras over k, whose 1-
morphisms A → B are (B, A)-bimodules, and whose 2-morphsims are bimodule homomorphisms.
ΩAlg1(Vect) is the symmetric monoidal category of (k, k)-bimodules, which is the same thing as
vector spaces.
• The bicategory of k-linear categories LinCatk has for its objects the (finite, or finitely presented)

k-linear categories, for 1-morphisms the k-linear functors, and for 2-morphims the k-linear natural
transformations. The unit is Vect, and a k-linear functor Vect → Vect determines and is determined
by where it sends k, which can be an arbitrary vector space; hence ΩLinCatk ' Vect. (

Example 0.5. For another example, Alg1(LinCatk) is a symmetric monoidal (∞, 3)-category, and is a
natural target for three-dimensional TFT, and is useful for understanding Turaev-Viro theory. The objectds
are monoidal k-linear categories (which includes tensor categories); the 1-morphisms are k-linear bimodule
categories; the 2-morphisms are k-linear bimodule functors; and the 3-morphisms are k-linear bimodule
natural transformations. (

3These are sometimes just called symmetric monoidal ∞-categories.
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Ok, what about higher n? In general, we can take some category Algn(C) of higher algebras of some sort.
Calaque-Scheimbauer [CS19] do this geometrically, and Haugseng [Hau17] does this with ∞-operads. This
can be extended further in the spirit of Example 0.4, as done by Johnson-Freyd and Scheimbauer [JFS17].

Definition 0.6. A fully extended TFT is a symmetric monoidal functor Z : Bordn,...,0 → C, where C is some
symmetric monoidal (∞, n)-category.

Theorem 0.7 (Cobordism hypothesis). The map Z 7→ Z(pt) defines an equivalence from the symmetric
monoidal (∞, n)-category of fully extended TFTs valued in C to the symmetric monoidal (∞, n)-groupoid of
units of n-dualizable objects in C.

This theorem was conjectured by Baez-Dolan [BD95], and proven in dimension 2 by Schommer-Pries [SP09],
Pstrągowski [Pst14], and Hopkins-Lurie. In general it’s sketched by Lurie [Lur09] and Ayala-Francis [AF17],
with closely related work by Harpaz and Schommer-Pries.

This leads to a strategy for finding fully extended TFTs: first, find an interesting symmetric monoidal
(∞, n)-category C, e.g. via Algn(C) as above; then, find n-dualizable objects in C.

Example 0.8. Douglas, Schommer-Pries, and Snyder [DSPS13] studied this for the 3-category of tensor
categories inside Alg1(LinCatk), provided k is algebraically closed of characteristic zero. In particular, they
showed that fusion categories are 3-dualizable, leading to fully extended 3d TFTs. (To get Turaev-Viro, you
need to do something else to descend from framings to orientations.)4 (

Here are some other related results.
• Brandenberg-Chirvasitu-Johnson-Freyd [BCJF15] show that LinCatk, having enough compact pro-

jectives implies 2-dualizability.
• Brochier-Jordan-Snyder [BJS18] showed that a fusion category in Alg1(LinCat)k is 3-dualizable, and

that a fusion-category in Alg2(LinCat)k (the 4-category of braided k-linear categories) is 4-dualizable,
so we get 4-dimensional framed TFTs.

• Gwilliam-Scheimbauer [GS18] showed that in Algn(C), under mild assumptions on C, all objects are
dualizable.

• Douglas-Reutter [DR18] conjecture that fusion 2-categories are 4-dualizable in Alg1(2Catk).
So we understand some things and are still learning others. Here are a few things we are still working on.

• Well, actually working with these TFTs, rather than knowing they’re defined, is not necessarily made
any easier by the cobordism hypothesis. Working with the TFTs that the work above has shown
exists is still largely open.

• The target (∞, n)-categories considered are not the only ones we might be interested in. What does
the cobordism hypothesis say for other categories?

• Some field theories aren’t fully extended, and we’d have to modify this framework. For example,
relative field theories, related to boundary conditions, are studied by Stolz-Teichner and Freed-
Teleman [FT14].
• If you’re only k-dualizable for k < n, then you can build a “categorified TFT” which assigns invariants

up to dimension k, but not farther. Less is known about these theories.
• What about other tangential structures? We know that in dimension 3, oriented theories are related

to pivotal and spherical structures, by work of Douglas, Schommer-Pries, and Snyder [DSPS13]. But
pretty much everything else here is open.

References
[AF17] David Ayala and John Francis. The cobordism hypothesis. 2017. https://arxiv.org/abs/1705.02240. 3
[BCJF15] Martin Brandenburg, Alexandru Chirvasitu, and Theo Johnson-Freyd. Reflexivity and dualizability in categorified

linear algebra. Theory Appl. Categ., 30:Paper No. 23, 808–835, 2015. https://arxiv.org/abs/1409.5934. 3
[BD95] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys.,

36(11):6073–6105, 1995. https://arxiv.org/abs/q-alg/9503002. 3
[BDSPV15] Bruce Bartlett, Christopher L. Douglas, Christopher J. Schommer-Pries, and Jamie Vicary. Modular categories as

representations of the 3-dimensional bordism 2-category. 2015. https://arxiv.org/abs/1509.06811. 3

4And Reshetikhin-Turaev TFTs, which arise from modular tensor categories, aren’t fully extended. There is work of Bartlett,
Douglas, Schommer-Pries, and Vicary [BDSPV15] producing it in a similar vein.

3



[BJS18] Adrien Brochier, David Jordan, and Noah Snyder. On dualizability of braided tensor categories. 2018. https:
//arxiv.org/abs/1804.07538. 3

[CS19] Damien Calaque and Claudia Scheimbauer. A note on the (∞, n)-category of cobordisms. Algebr. Geom. Topol.,
19(2):533–655, 2019. https://arxiv.org/abs/1509.08906. 2, 3

[DR18] Christopher L. Douglas and David J. Reutter. Fusion 2-categories and a state-sum invariant for 4-manifolds. 2018.
https://arxiv.org/abs/1812.11933. 3

[DSPS13] Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder. Dualizable tensor categories. 2013.
https://arxiv.org/abs/1312.7188. 3

[FT14] Daniel S. Freed and Constantin Teleman. Relative quantum field theory. Comm. Math. Phys., 326(2):459–476, 2014.
https://arxiv.org/abs/1212.1692. 3

[GS18] Owen Gwilliam and Claudia Scheimbauer. Duals and adjoints in higher Morita categories. 2018. https://arxiv.
org/abs/1804.10924. 3

[GTMW09] Søren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss. The homotopy type of the cobordism category.
Acta Math., 202(2):195–239, 2009. https://arxiv.org/abs/math/0605249. 2

[Hau17] Rune Haugseng. The higher Morita category of En-algebras. Geom. Topol., 21(3):1631–1730, 2017. https://arxiv.
org/abs/1412.8459. 3

[JFS17] Theo Johnson-Freyd and Claudia Scheimbauer. (Op)lax natural transformations, twisted quantum field theories,
and “even higher” Morita categories. Adv. Math., 307:147–223, 2017. https://arxiv.org/abs/1502.06526. 3

[Lur09] Jacob Lurie. On the classification of topological field theories. Current Developments in Mathematics, 2008:129–280,
2009. https://arxiv.org/abs/0905.0465. 2, 3

[Mor06] Jeffrey C. Morton. Double bicategories and double cospans. 2006. https://arxiv.org/abs/math/0611930. 2
[Pst14] Piotr Pstrągowski. On dualizable objects in monoidal bicategories, framed surfaces and the cobordism hypothesis.

2014. https://arxiv.org/abs/1411.6691. 3
[SP09] Christopher John Schommer-Pries. The classification of two-dimensional extended topological field theories. PhD

thesis, University of California, Berkeley, 2009. https://arxiv.org/abs/1112.1000. 2, 3

4




