VICTOR OSTRIK: INTRODUCTION TO FUSION CATEGORIES, I

(Note: the attached handout is by Chelsea Walton.)

In the world of classical symmetries, i.e. those given by group actions, there is a particularly nice subclass: finite groups. If you know your symmetry group is finite, you can take advantage of many simplifying assumptions. Likewise, in the setting of quantum symmetries, given by, say, C-linear tensor categories, fusion subcategories form a very nice subclass for which many simplifying assumptions hold. And indeed, if *G* is a finite group, its category of finite-dimensional representations is a fusion category.

Recall that a *monoidal category* is a category C together with a functor $\otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ and a distinguished object **1** ∈ C called the *unit*, together with natural isomorphisms implementing associativity of ⊗, via $(X \otimes Y) \otimes Z \stackrel{\cong}{\to} X \otimes (Y \otimes Z)$; and unitality of **1**, via $\mathbf{1} \otimes X \stackrel{\cong}{\to} X \stackrel{\cong}{\to} X \otimes \mathbf{1}$. These must satisfy some axioms which we won't discuss in detail here; the most important one is the *pentagon axiom* on the associator.

Today, we work over an algebraically closed field *k*, not necessarily closed. Recall that a *k-linear category* C is one for which for all objects $x, y \in \mathcal{C}$, Hom_C (x, y) is a *k*-vector space, such that composition is bilinear. A *k-linear monoidal category* is a monoidal category that is also a *k*-linear category — and we also impose the consistency condition that the tensor product is a *k*-linear functor. we will impose a few more niceness conditions before arriving at the definition of a fusion category $\frac{1}{10}$ in fact, as many as we can such that we still have examples!

In particular, we will only consider k -linear monoidal categories C such that

- all Hom-spaces are finite-dimensional over *k*,
- $\mathcal C$ is semisimple,¹
- C has only finitely many isomorphism classes of simple objects,
- **1** is indecomposable, and
- C is *rigid*, a condition on duals of objects.

A category satisfying all of these axioms is a *fusion category*.

There are three ways we can come to an understanding of these categories: through the definition, through realizations and examples, and through diagrammatics. We will also heavily use semisimplicity, through the principle that *k-linear functors out of* C *are determined by their values on simple objects, and all choices are allowed.*

Example 0.1. Our running example is $\mathcal{V}ec_{\mathbb{Z}/n}^{\omega}$, where *n* is a natural number and ω is a degree-3 cocycle for \mathbb{Z}/n , valued in k^{\times} .

The objects of $\mathcal{V}ee_{\mathbb{Z}/n}^{\omega}$ are the elements of \mathbb{Z}/n , with the tensor product $i \otimes j = i + j$. If $\omega = 1$, then we use the obvious associator, i.e. the isomorphism

(0.2)
$$
(i \otimes j) \otimes k \stackrel{\cong}{\longrightarrow} i \otimes (j \otimes k)
$$

which corresponds to the identity under the identifications with $i+j+k$ ² But in general, we can do something different: choose the map (0.2) which is $\omega(i, j, k)$ times the standard one.

A priori you can use any function $\mathbb{Z}/n \times \mathbb{Z}/n \times \mathbb{Z}/n \to k^{\times}$, but the pentagon axiom on associativity imposes the condition that ω is a cocycle.

Exercise 0.3. If you have not seen this before, verify that the pentagon axiom forces $\partial \omega = 1$.

The simplest nontrivial example³ is for $n = 2$ and

(0.4)
$$
\omega(i,j,k) \coloneqq \begin{cases} 1, & \text{if } i = 0, j = 0, \text{ or } k = 0 \\ -1, & \text{otherwise.} \end{cases}
$$

¹A *k*-linear category is *semisimple* if it's equivalent to the category of modules over $k \oplus \cdots \oplus k$, where there is a finite number of summands.

 2 These multiplication rules are really special, in that we were able to just write down an associator. This is generally not true; for general multiplication rules you're interested in, you'll have to work a little harder.

³This is nontrivial provided char(k) \neq 2.

 \mathbb{Z}/n was not special here — given any finite group *G* and a cocycle $\omega \in Z^3(G; k^\times)$, we obtain a fusion category $\mathcal{V}ec_G^{\omega}$ in the same way.

With ω as in (0.4), $\mathcal{V}ec_{\mathbb{Z}/2}^{\omega}$ looks like a new example, not equivalent to $\mathcal{V}ec_G^0$ for any G — but in order to understand that precisely, we need to discuss when two tensor categories are equivalent.

Definition 0.5. A *tensor equivalence* of tensor categories C and D is a monoidal functor $F: \mathcal{C} \to \mathcal{D}$, i.e. a functor together with data of natural isomorphisms $F(X \otimes Y) \stackrel{\cong}{\to} F(X) \otimes F(Y)$ satisfying some axioms.

Choose cocycles ω and ω' for \mathbb{Z}/n , and let's consider tensor functors $F: \mathcal{V}ec_{\mathbb{Z}/n}^{\omega'} \to \mathcal{V}ec_{\mathbb{Z}/n}^{\omega'}$. Furthermore, let's assume *F* is the identity on objects, so the data of *F* is the natural isomorphism $F(X \otimes Y) \cong F(X) \otimes F(Y)$. This is a choice of an element of k^{\times} for every pair of objects, subject to some additional conditions:

Proposition 0.6. *F is a tensor functor iff* $\omega = \omega' \cdot \partial \psi$ *.*

Corollary 0.7. $\mathcal{V}ee_{\mathbb{Z}/n}^{\omega} \simeq \mathcal{V}ee_{\mathbb{Z}/n}^{\omega'}$ *if* ω *and* ω' *are cohomologous.*

Recall that $H^3(\mathbb{Z}/n; k^\times) \cong \mathbb{Z}/n$, so we have *n* possibilities, some of which might coincide. If *F* isn't the identity on objects, it's fairly easy to see that as a function on objects, identified with a function $\mathbb{Z}/n \to \mathbb{Z}/n$, we must get a group homomorphism; if *F* is to be an equivalence, this homomorphism must be an isomorphism. One can run a similar argument as above and obtain a nice classification result.

Proposition 0.8. The tensor equivalence classes of tensor categories $\mathbb{V}ec_{\mathbb{Z}/n}^{\omega}$ are in bijection with the orbits $H^3(\mathbb{Z}/n; k^{\times})$ / Aut (\mathbb{Z}/n) *, via the map sending* ω *to its class in cohomology.*

The action of $Aut(\mathbb{Z}/n) = (\mathbb{Z}/n)^{\times}$ on $H^3(\mathbb{Z}/n; k^{\times}) \cong \mathbb{Z}/n$ is not the first action you might write down! Given $a \in (\mathbb{Z}/n)^{\times}$ and $s \in H^3(\mathbb{Z}/n; k^{\times})$, the action is

$$
(0.9) \t\t\t a \cdot s = a^2 s.
$$

This is a standard fact from group cohomology.

Now let's discuss some realizations of fusion categories. If *H* is a semisimple Hopf algebra, then $C \coloneqq \mathcal{R}e p_H^{fa}$ is a fusion category. Let $F: \mathcal{C} \to \mathcal{V}ec$ denote the forgetful functor to finite-dimensional vector spaces. It turns out that one can reconstruct C as a fusion category from *F*, and in fact any fusion category C with a tensor functor to $\mathcal{V}ec$ is equivalent to $\mathcal{R}ep_H^{fd}$ for some Hopf algebra *H*. The data of the tensor functor to $\mathcal{V}ec$ is crucial!

Example 0.10. For example, $\mathcal{V}ec_{\mathbb{Z}/n} \simeq \mathcal{R}e p_{\mathbb{Z}/n}^{fd}$; we saw in the previous lecture that representations of \mathbb{Z}/n are equivalent to modules over the Hopf algebra $k[\mathbb{Z}/n] := k[x]/(x^n - 1)$, with comultiplication $\Delta(x) := x \otimes x$.

However, if ω is nontrivial, $\mathcal{V}ec^{\omega}_{\mathbb{Z}/n}$ admits no tensor functor to $\mathcal{V}ec$, and therefore cannot be seen using Hopf algebras. One can try to generalize the reconstruction program, using quasi-Hopf algebras, weak Hopf algebras, etc. (

Bimodules provide another approach to realizations: we look for a ring *R* and a tensor functor $F: \mathcal{C} \to$ Bimod_R. Applying this to $\mathcal{V}ec_{\mathbb{Z}/n}^{\omega}$, we get (R, R) -bimodules $F(i)$ for each $i \in \mathbb{Z}/n$ and isomorphisms *F*(*i*) ⊗*R F*(*j*) $\stackrel{\cong}{\to}$ *F*(*i* + *j*). In particular, each *F*(*i*) is (tensor-)invertible.

Example 0.11. An *inner automorphism* of a ring *R* is conjugation by some $r \in R^{\times}$. Inner automorphisms form a normal subgroup of Aut(*R*), and the quotient is called the *outer automorphism group* of *R* and denoted Out(*R*). An *outer action* of a group *G* on a ring *R* is a group homomorphism $\varphi: G \to \text{Out}(R)$.

Given an outer automorphism θ of R , one obtains an (R, R) -bimodule R_{θ} , whose left action is the R -action on *R* by left multiplication, and whose right action is $r \cdot x = r\theta(x)$. We need to choose an element in Aut(*R*) mapping to θ to make this definition, but different choices lead to isomorphic bimodules.

Anyways, given an outer action of \mathbb{Z}/n on *R*, we obtain (R, R) -bimodules $R_{\varphi(i)}$ indexed by the objects $i \in \mathcal{V}ec_{\mathbb{Z}/n}$ and isomorphisms between $R_{\varphi(i)} \otimes R_{\varphi(j)} \stackrel{\cong}{\to} R_{\varphi(i+j)}$. This data stitches together into a tensor functor $\mathcal{V}ec_{\mathbb{Z}/n} \to \mathcal{B} \text{imod}_R$.

Diagrammatics represents the objects of a fusion category C as points, and morphisms as lines. One can then impose relations on certain morphisms, and therefore diagrammatics provide a generators-and-relations approach to the structure of a given fusion category. Next time, we'll see how to do this for $\mathcal{V}ec_{\mathbb{Z}/n}^{\omega}$, and see more examples.

REFERENCES

