
VICTOR OSTRIK: INTRODUCTION TO FUSION CATEGORIES, I

(Note: the attached handout is by Chelsea Walton.)
In the world of classical symmetries, i.e. those given by group actions, there is a particularly nice subclass:

finite groups. If you know your symmetry group is finite, you can take advantage of many simplifying
assumptions. Likewise, in the setting of quantum symmetries, given by, say, C-linear tensor categories, fusion
subcategories form a very nice subclass for which many simplifying assumptions hold. And indeed, if G is a
finite group, its category of finite-dimensional representations is a fusion category.

Recall that a monoidal category is a category C together with a functor ⊗ : C× C→ C and a distinguished
object 1 ∈ C called the unit, together with natural isomorphisms implementing associativity of ⊗, via
(X ⊗ Y )⊗ Z ∼=→ X ⊗ (Y ⊗ Z); and unitality of 1, via 1⊗X ∼=→ X

∼=→ X ⊗ 1. These must satisfy some axioms
which we won’t discuss in detail here; the most important one is the pentagon axiom on the associator.

Today, we work over an algebraically closed field k, not necessarily closed. Recall that a k-linear category
C is one for which for all objects x, y ∈ C, HomC(x, y) is a k-vector space, such that composition is bilinear.
A k-linear monoidal category is a monoidal category that is also a k-linear category — and we also impose
the consistency condition that the tensor product is a k-linear functor. we will impose a few more niceness
conditions before arriving at the definition of a fusion category — in fact, as many as we can such that we
still have examples!

In particular, we will only consider k-linear monoidal categories C such that
• all Hom-spaces are finite-dimensional over k,
• C is semisimple,1
• C has only finitely many isomorphism classes of simple objects,
• 1 is indecomposable, and
• C is rigid, a condition on duals of objects.

A category satisfying all of these axioms is a fusion category.
There are three ways we can come to an understanding of these categories: through the definition, through

realizations and examples, and through diagrammatics. We will also heavily use semisimplicity, through the
principle that k-linear functors out of C are determined by their values on simple objects, and all choices are
allowed.
Example 0.1. Our running example is VecωZ/n, where n is a natural number and ω is a degree-3 cocycle for
Z/n, valued in k×.

The objects of VecωZ/n are the elements of Z/n, with the tensor product i⊗ j := i+ j. If ω = 1, then we
use the obvious associator, i.e. the isomorphism

(0.2) (i⊗ j)⊗ k ∼=−→ i⊗ (j ⊗ k)
which corresponds to the identity under the identifications with i+j+k.2 But in general, we can do something
different: choose the map (0.2) which is ω(i, j, k) times the standard one.

A priori you can use any function Z/n × Z/n × Z/n → k×, but the pentagon axiom on associativity
imposes the condition that ω is a cocycle.
Exercise 0.3. If you have not seen this before, verify that the pentagon axiom forces ∂ω = 1.

The simplest nontrivial example3 is for n = 2 and

((0.4) ω(i, j, k) :=
{

1, if i = 0, j = 0, or k = 0
−1, otherwise.

1A k-linear category is semisimple if it’s equivalent to the category of modules over k⊕ · · · ⊕ k, where there is a finite number
of summands.

2These multiplication rules are really special, in that we were able to just write down an associator. This is generally not
true; for general multiplication rules you’re interested in, you’ll have to work a little harder.

3This is nontrivial provided char(k) 6= 2.
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Z/n was not special here — given any finite group G and a cocycle ω ∈ Z3(G; k×), we obtain a fusion
category VecωG in the same way.

With ω as in (0.4), VecωZ/2 looks like a new example, not equivalent to Vec0
G for any G — but in order to

understand that precisely, we need to discuss when two tensor categories are equivalent.
Definition 0.5. A tensor equivalence of tensor categories C and D is a monoidal functor F : C→ D, i.e. a
functor together with data of natural isomorphisms F (X ⊗ Y )

∼=→ F (X)⊗ F (Y ) satisfying some axioms.

Choose cocycles ω and ω′ for Z/n, and let’s consider tensor functors F : VecωZ/n → Vecω
′

Z/n. Furthermore,
let’s assume F is the identity on objects, so the data of F is the natural isomorphism F (X⊗Y ) ∼= F (X)⊗F (Y ).
This is a choice of an element of k× for every pair of objects, subject to some additional conditions:
Proposition 0.6. F is a tensor functor iff ω = ω′ · ∂ψ.
Corollary 0.7. VecωZ/n ' Vecω

′

Z/n if ω and ω′ are cohomologous.

Recall that H3(Z/n; k×) ∼= Z/n, so we have n possibilities, some of which might coincide. If F isn’t the
identity on objects, it’s fairly easy to see that as a function on objects, identified with a function Z/n→ Z/n,
we must get a group homomorphism; if F is to be an equivalence, this homomorphism must be an isomorphism.
One can run a similar argument as above and obtain a nice classification result.
Proposition 0.8. The tensor equivalence classes of tensor categories VecωZ/n are in bijection with the orbits
H3(Z/n; k×)/Aut(Z/n), via the map sending ω to its class in cohomology.

The action of Aut(Z/n) = (Z/n)× on H3(Z/n; k×) ∼= Z/n is not the first action you might write down!
Given a ∈ (Z/n)× and s ∈ H3(Z/n; k×), the action is
(0.9) a · s = a2s.

This is a standard fact from group cohomology.
Now let’s discuss some realizations of fusion categories. If H is a semisimple Hopf algebra, then C := Repfd

H

is a fusion category. Let F : C→ Vec denote the forgetful functor to finite-dimensional vector spaces. It turns
out that one can reconstruct C as a fusion category from F , and in fact any fusion category C with a tensor
functor to Vec is equivalent to Repfd

H for some Hopf algebra H. The data of the tensor functor to Vec is
crucial!
Example 0.10. For example, VecZ/n ' Repfd

Z/n; we saw in the previous lecture that representations of Z/n
are equivalent to modules over the Hopf algebra k[Z/n] := k[x]/(xn− 1), with comultiplication ∆(x) := x⊗ x.

However, if ω is nontrivial, VecωZ/n admits no tensor functor to Vec, and therefore cannot be seen using
Hopf algebras. One can try to generalize the reconstruction program, using quasi-Hopf algebras, weak Hopf
algebras, etc. (

Bimodules provide another approach to realizations: we look for a ring R and a tensor functor F : C→
BimodR. Applying this to VecωZ/n, we get (R,R)-bimodules F (i) for each i ∈ Z/n and isomorphisms
F (i)⊗R F (j)

∼=→ F (i+ j). In particular, each F (i) is (tensor-)invertible.
Example 0.11. An inner automorphism of a ring R is conjugation by some r ∈ R×. Inner automorphisms
form a normal subgroup of Aut(R), and the quotient is called the outer automorphism group of R and denoted
Out(R). An outer action of a group G on a ring R is a group homomorphism ϕ : G→ Out(R).

Given an outer automorphism θ of R, one obtains an (R,R)-bimodule Rθ, whose left action is the R-action
on R by left multiplication, and whose right action is r · x = rθ(x). We need to choose an element in Aut(R)
mapping to θ to make this definition, but different choices lead to isomorphic bimodules.

Anyways, given an outer action of Z/n on R, we obtain (R,R)-bimodules Rϕ(i) indexed by the objects
i ∈ VecZ/n and isomorphisms between Rϕ(i) ⊗ Rϕ(j)

∼=→ Rϕ(i+j). This data stitches together into a tensor
functor VecZ/n → BimodR. (

Diagrammatics represents the objects of a fusion category C as points, and morphisms as lines. One can
then impose relations on certain morphisms, and therefore diagrammatics provide a generators-and-relations
approach to the structure of a given fusion category. Next time, we’ll see how to do this for VecωZ/n, and see
more examples.
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