VICTOR OSTRIK: INTRODUCTION TO FUSION CATEGORIES, 1

(Note: the attached handout is by Chelsea Walton.)

In the world of classical symmetries, i.e. those given by group actions, there is a particularly nice subclass:
finite groups. If you know your symmetry group is finite, you can take advantage of many simplifying
assumptions. Likewise, in the setting of quantum symmetries, given by, say, C-linear tensor categories, fusion
subcategories form a very nice subclass for which many simplifying assumptions hold. And indeed, if G is a
finite group, its category of finite-dimensional representations is a fusion category.

Recall that a monoidal category is a category C together with a functor ®: € x € — € and a distinguished
object 1 € € called the unit, together with natural isomorphisms implementing associativity of ®, via
XeY)eZz S5Xx® (Y ® Z); and unitality of 1, via 1 ® X 5 X 5 X ® 1. These must satisfy some axioms
which we won’t discuss in detail here; the most important one is the pentagon aziom on the associator.

Today, we work over an algebraically closed field k, not necessarily closed. Recall that a k-linear category
C is one for which for all objects z,y € €, Home(z,y) is a k-vector space, such that composition is bilinear.
A k-linear monoidal category is a monoidal category that is also a k-linear category — and we also impose
the consistency condition that the tensor product is a k-linear functor. we will impose a few more niceness
conditions before arriving at the definition of a fusion category — in fact, as many as we can such that we
still have examples!

In particular, we will only consider k-linear monoidal categories € such that

e all Hom-spaces are finite-dimensional over k,

e C is semisimple,!

C has only finitely many isomorphism classes of simple objects,
1 is indecomposable, and

C is rigid, a condition on duals of objects.

A category satisfying all of these axioms is a fusion category.

There are three ways we can come to an understanding of these categories: through the definition, through
realizations and examples, and through diagrammatics. We will also heavily use semisimplicity, through the
principle that k-linear functors out of C are determined by their values on simple objects, and all choices are
allowed.

Example 0.1. Our running example is Vecy; /n» Where n is a natural number and w is a degree-3 cocycle for
Z/n, valued in k*.

The objects of Vecy,, are the elements of Z/n, with the tensor product i ® j =i+ j. If w =1, then we
use the obvious associator, i.e. the isomorphism

(0.2) (i) k—i®(®k)
which corresponds to the identity under the identifications with i+ j + k.2 But in general, we can do something
different: choose the map (0.2) which is w(3, j, k) times the standard one.

A priori you can use any function Z/n x Z/n x Z/n — k>, but the pentagon axiom on associativity
imposes the condition that w is a cocycle.

Exercise 0.3. If you have not seen this before, verify that the pentagon axiom forces dw = 1.
The simplest nontrivial example® is for n = 2 and

L ifi=0 i=0 b= 0
(04) w(ivjvk) = Y .’ J o <
—1, otherwise.

LA k-linear category is semisimple if it’s equivalent to the category of modules over k@ - - - @ k, where there is a finite number
of summands.

2These multiplication rules are really special, in that we were able to just write down an associator. This is generally not
true; for general multiplication rules you’re interested in, you’ll have to work a little harder.

3This is nontrivial provided char(k) # 2.



Z/n was not special here — given any finite group G and a cocycle w € Z3(G; k), we obtain a fusion
category Vec¢ in the same way.

With w as in (0.4), Vecy,, looks like a new example, not equivalent to Vecy, for any G — but in order to
understand that precisely, we need to discuss when two tensor categories are equivalent.

Definition 0.5. A tensor equivalence of tensor categories € and D is a monoidal functor F': € — D, i.e. a
functor together with data of natural isomorphisms F(X ® Y) = F(X) ® F(Y) satisfying some axioms.

Choose cocycles w and w’ for Z/n, and let’s consider tensor functors I': Vecy,, — Vec%;n. Furthermore,
let’s assume F' is the identity on objects, so the data of F' is the natural isomorphism F(XQ®Y) = F(X)QF(Y).
This is a choice of an element of k* for every pair of objects, subject to some additional conditions:

Proposition 0.6. F is a tensor functor iff w = w’ - 9.
Corollary 0.7. Vec,,, ~ Vecjz";n if w and w' are cohomologous.

Recall that H3(Z/n; k*) = Z/n, so we have n possibilities, some of which might coincide. If F isn’t the
identity on objects, it’s fairly easy to see that as a function on objects, identified with a function Z/n — Z/n,
we must get a group homomorphism; if F' is to be an equivalence, this homomorphism must be an isomorphism.
One can run a similar argument as above and obtain a nice classification result.

Proposition 0.8. The tensor equivalence classes of tensor categories Vec%/n are in bijection with the orbits
H3(Z/n; k*)/ Aut(Z/n), via the map sending w to its class in cohomology.

The action of Aut(Z/n) = (Z/n)* on H3(Z/n;k*) = Z/n is not the first action you might write down!
Given a € (Z/n)* and s € H3(Z/n;k*), the action is

(0.9) a-s=a’s.

This is a standard fact from group cohomology.

Now let’s discuss some realizations of fusion categories. If H is a semisimple Hopf algebra, then C := fRep’;;l
is a fusion category. Let F': € — Vec denote the forgetful functor to finite-dimensional vector spaces. It turns
out that one can reconstruct € as a fusion category from F', and in fact any fusion category € with a tensor
functor to Vec is equivalent to Rep’;? for some Hopf algebra H. The data of the tensor functor to Vec is
crucial!

Example 0.10. For example, Vecy,, ~ .‘Rep’;d/n; we saw in the previous lecture that representations of Z/n
are equivalent to modules over the Hopf algebra k[Z/n] := k[z]/(z™ — 1), with comultiplication A(z) =z ® .

However, if w is nontrivial, Vec /n admits no tensor functor to Vec, and therefore cannot be seen using
Hopf algebras. One can try to generalize the reconstruction program, using quasi-Hopf algebras, weak Hopf
algebras, etc. <

Bimodules provide another approach to realizations: we look for a ring R and a tensor functor F': € —
Bimodg. Applying this to Vecy,,, we get (R, R)-bimodules F'(i) for each i € Z/n and isomorphisms

F(i)®r F(j) 5 F(i+ j). In particular, each F(i) is (tensor-)invertible.

Example 0.11. An inner automorphism of a ring R is conjugation by some r € R*. Inner automorphisms
form a normal subgroup of Aut(R), and the quotient is called the outer automorphism group of R and denoted
Out(R). An outer action of a group G on a ring R is a group homomorphism ¢: G — Out(R).

Given an outer automorphism 6 of R, one obtains an (R, R)-bimodule Ry, whose left action is the R-action
on R by left multiplication, and whose right action is r - z = rf(x). We need to choose an element in Aut(R)
mapping to 6 to make this definition, but different choices lead to isomorphic bimodules.

Anyways, given an outer action of Z/n on R, we obtain (R, R)-bimodules R, ;) indexed by the objects

i € Vecgzy, and isomorphisms between R, ;) @ Ry 5 Ry (i4+4)- This data stitches together into a tensor
functor Vecyz, — Bimodg. <

Diagrammatics represents the objects of a fusion category C as points, and morphisms as lines. One can
then impose relations on certain morphisms, and therefore diagrammatics provide a generators-and-relations
approach to the structure of a given fusion category. Next time, we’ll see how to do this for Vecy /n» and see
more examples.
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