ERIC ROWELL: AN INTRODUCTION TO MODULAR TENSOR CATEGORIES, II

Last time, we discussed a few different kinds of tensor categories, in particular pointed ribbon fusion
categories and pointed modular tensor categories. Both of these have been classified; the classification
amounts to finding compatible twists on Vecg with various braidings.

Theorem 0.1 ([EGNO15]).

(1) Pointed ribbon fusion categories up to equivalence are classified by data of a finite abelian group G
and a quadratic form q: G x G — C*.

(2) Pointed modular tensor categories are classified by (G, q) as above, subject to the condition that q is
nondegenerate.

The data of (G, q) is often called a pre-metric group, and if g is nondegenerate, it’s called a metric group.
The quadratic form determines the 2-cocycle that specified the braiding, via

02) B(g.h) = 19)ah)

a(gh)
This is all very nice, but we would like some more interesting examples, so we turn to quantum groups C(g, ¢).
Here g is a simple Lie algebra and € is the category of modules over U,(g), where ¢ := exp(mi/m <). For
m =1, g can be ADE type; for m = 2, of BCF type; and for m = 3, g = go. Setting up the category involves
some technical details, but can be done, and we obtain modular categories!

Example 0.3. Let’s take g = so5 and £ = 5, so ¢ = ¢™/10. The objects in € are described by a Weyl chamber
for g, but ¢ = 5 imposes that we kill all objects above a certain line. In this we have the standard representation
V, the adjoint representation A, and an object at coordinates (1/2,1/2) with quantum dimension v/5. The
level (in the notation of the previous talk) of this category is 2, so sometimes it’s also denoted SO(5)2. <

Example 0.4. Let’s consider C(sl3,5). Now we look at a ray within the one-dimensional root space, and
only keep the first three objects, S at 1, A at 7, and the unit. The fusion rules are A%? = 1@ A, and S92 >~ 1.
Thus this category actually splits as a Deligne tensor product of the subcategory generated by S, which is
called the semion category, and the subcategory generated by A, which is called the Fibonacci category. Both
of these are fundamental examples. <

Example 0.5. C(sly,4) is an Ising category. Its simple objects are 1, o, and 1. Here dim(c) = /2,
dim(¢)) = 1, 6, = €>™/8 and 6, = —1. This o particle was the first nonabelian anyon discovered, and it’s
reminiscent (though not the same as) to a Majorana fermion. The S-matrix is

1 V2 1
(0.6) S=1v2 0 —=v2]. <
1 =2 1

We’ve described examples of modular categories via their modular data: the S-matrix and also the T-matriz
T;; = 0;;0,. Stay tuned for a talk later this weey by Colleen Delaney with more details.

The modular group SL»(Z) is generated by two matrices S = (9 =} ) and T = (} 1 ). The S- and T-matrices
appearing in the data of a modular category satisfy relations that imply they define a projective representation
® of SLy(Z).

Theorem 0.7 (Ng-Schauenburg [NS10]). The image of such a representation ® is finite. In fact, if N is the
order of T, then ® factors over SLa(Z/n).

Classifying fusion categories is too difficult in general, but modular categories have more adjectives in
front of them. Maybe we can classify them, at least for a fixed rank r that’s not too large. Or even, how
many of them are there?

Here m is important; if you leave it out, you’ll always get a ribbon category, but not necessarily a modular one.
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A good first step is to consider the field Ko := Q(s;;), which sits inside Q(6;). Since T has finite order,
Q(8;) is a cyclotomic extension Q((y) for some primitive N*! root of unity (. These are particularly nice
Galois extensions in that:

(1) Since Q — Q(#;) is a cyclotomic extension, Gal(Q(6;)/Q) is abelian, and in particular always solvable.
(2) Since we're looking at rank r, the T-matrix is r X r, so we get an embedding Gal(Kq/Q) —
Aut(Irr(€)) = S,.
(3) There is some k such that Gal(Q({n)/Ko) = (Z/2).
Thus we have a recipe for classifying modular categories of rank r.

(1) Choose an abelian subgroup A of S,.. Then, using the above facts, classify all possible S-matrices
which yield the Galois group Gal(Q(Ky/Q) =2 A C S,.. For many choices of A, there are no possible
S-matrices.

(2) The Verlinde formula determines the fusion rules from the S-matrix.

(3) Finally, an analogue of Ocneanu rigidity (??) informs us that there are finitely many modular tensor
categories with fixed fusion rules.

This has worked completely up to rank 5 so far, and is also effective in rank 6. One general question, which
is still open, is if you fix a fusion category, how do you classify its possible modular structures? We know
there can only be finitely many, but that theorem is nonconstructive. In special cases, things are known;
for example, a result of Kazhdan-Wenzl [KW93] allows us to solve this for C(sl,,¢). More recent work of
Nikshych [Nik19] establishes how to classify the possible braidings given fixed fusion rules. And spherical
structures on a modular tensor categories are understood: they’re given by invertible objects with order at
most 2.

Theorem 0.8 (Rank-finiteness (Bruillard-Ng-Rowell-Wang [BNRW16])). There are finitely many modular
tensor categories of a fixed rank r.

The proof ultimately relies on results in analytic number theory, which is interesting.

Moving on, let € be a braided fusion category and B,, denote the braid group on n strands. Given an
object X € C, the braiding defines a map v: B,, — Aut(X®"); if o; denotes the braid that switches braids i
and 7 + 1, then

(0.9) W(oy) = id?}(’:_l) ® cx.x ® idg?_i_l),
Aut(X®") acts on
(0.10) HY = @ Hom(y,X®"),

Y elrr(C)

so we get a representation px : B, — GL(H.X). In addition to being an interesting braid group representation
on its own, this representation is important for implementing gates in topological quantum computation.
It’s natural to ask whether the image of px is finite.

Definition 0.11. We say that X € € has property F' if the image of px is finite.

The Ising category (or rather, its nontrivial simple object) has property F, but the Fibonacci category
does not.

Definition 0.12. Let X be an object in a fusion category € and Nx be the matrix of fusion with X on
Irr(C), i.e.

The Frobenius-Perron dimension of X, denoted FPdim(X), is the largest eigenvalue of Nx. If X is simple
and FPdim(X)?2 € Z, X is called weakly integral.

Over 10 years ago, the speaker conjectured that X is weakly integral iff it has property F. This is known
in special cases.
e For pointed fusion categories, this is essentially an exercise.
e For group-theoretical braided fusion categories (e.g. Rep(D“@)), this is due to Etingof-Rowell-
Witherspoon [ERWO08].
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e For quantum groups C(g, ¢), this is known, thanks to work of Jones, Freedman, Larsen, Wang, Rowell,
and Wenzl.

e Recently, this conjecture has been verified for weakly group-theoretical braided fusion categories by
Green-Nikshych [GN19]. There is a different conjecture that weakly group-theoretical is equivalent to
weakly integral.

This veracity of this conjecture is closed under taking Deligne tensor products, Drinfeld doubles, and a few
other useful operations.

There are still many interesting open questions! For example, from a nondegenerate braided fusion category,
one canextract an invariant called the Witt group, and this seems to be a rich and interesting invariant that
we are still in the process of understanding.
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