
CRIS NEGRON: FINITE TENSOR CATEGORIES AND HOPF ALGEBRAS: A
SAMPLING

Today, we work over an algebraically closed field k.

Example 0.1 (Small quantum groups). Small quantum groups are important examples of Hopf algebras. Let
k = C and let g be a simple Lie algebra. Choose Cartan data for g, so that we have a set ∆ of positive roots,
and choose q ∈ C× of order p. The small quantum group associated to this data is the algebra generated by
Eα, Fα, Kα for α ∈ ∆ subject to the q-Serre relations

Epα = F pα = Kp
α − 1 = 0(0.2a)

KαEβK
−1
α = q〈α,β〉Eα(0.2b)

KαFβK
−1
α = q−〈α,β〉Fα.(0.2c)

This is a finite-dimensional, non-semisimple Hopf algebra.
Let uq(b), called the quantum Borel, denote the subalgebra of uq(g) generated by the Kα and Eα elements;

this is also finite-dimensional and non-semisimple. Let G ⊆ uq(b) be the subgroup generated by the Kα

elements. (

One might ask: how much information is lost when we move from a Hopf algebra to its tensor category of
representations?

Recall that a tensor category is an abelian, k-linear, rigid monoidal category C whose objects all have finite
length, whose Hom spaces are finite-dimensional over k, and whose unit is simple.

Definition 0.3. Call C finite if it has finitely many simple objects and enough projectives.

This implies C is tensor equivalent to a category of representations of a finite-dimensional algebra. For
example, the representation categories of uq(g) and uq(b) are finite tensor categories.

Definition 0.4. If C is semisimple and has finitely many simple objects, call C fusion.

There’s a sequence of nested inclusions

(0.5)
{representations of finite groups over C} ⊆ {fusion categories}

⊆ {finite tensor categories}
⊆ {tensor categories}.

For example, RepSLn
is a tensor category that is not finite.

For Hopf algebras, taking the category of representations lands in tensor categories, and we can study how
tensor equivalences of representation categories can be thought of in the language of Hopf algebras. This is
sort of asking, what happens as the boundary of this map fron Hopf algebras to tensor categories?

Definition 0.6. A Drinfeld twist of a Hopf algebra A is a unit J ∈ A⊗A satisfying
(0.7) (ε⊗ 1)H = (1⊗ ε)J = 1
and the cocycle condition
(0.8) (∆⊗ 1)(J)(J ⊗ 1) = (1⊗∆)(J)(1⊗ J).

Given a Drinfeld twist J , we can build some new things.
• First, a new Hopf algebra denoted AJ , which is the same as A except the comultiplication is modified

to ∆J := J∆(–)J .
• We also get a new fiber functor FJ : RepA → Vect, which is the usual forgetful functor on objects

and morphisms, but whose monoidal structure is modified: when defining the map
(0.9) FJ(V )⊗ FJ(W )→ FJ(V ⊗W ),

take the usual map, then apply J .
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Theorem 0.10. When A is a finite-dimensional Hopf algebra, all fiber functors RepA → Vect arise from
Drinfeld twists in this way.

Theorem 0.11 (Ng-Schauenberg). Let A and B be finite-dimensional Hopf algebras such that RepA ' RepB
as tensor categories. Then there is a Drinfeld twist J of A such that, as Hopf algebras, B ∼= AJ .

Example 0.12 (Negron [Neg18]). Specializing to A = uq(b), an equivalence RepB ' Repuq(b) leads to an
alternating bicharacter J ∈ Alt(G∨) ⊂ Tw(uq(b)), such that B ∼= uq(b)J . Since Alt(G∨) is a finite set, this is
particularly nice. (

As we heard in Rowell’s talk, the notion of being the category of representations of a Hopf algebra is not
invariant under tensor equivalence, and more generally, Hopf algebra representation categories are not closed
under reasonable operations on the class of tensor categories.

For example, if a group G acts on a tensor category C, then we can equivariantize, building a new tensor
category CG, the category of objects V ∈ C with compatible structural isomorphisms g · V ∼=→ V for all g ∈ G.
An embedding Vect ↪→ C induces an embedding RepG ↪→ CG.

Theorem 0.13 (Drinfeld-Gilyaki-Nikshych-Ostrik [DGNO10]). Equivariantization defines a bijection between
tensor equivalence classes of tensor categories with a G-action and tensor categories with a specified embedding
of RepG.

This ultimately implies that even if C admits a fiber functor (as representation categories of Hopf algebras
must), CG might not, because there are categories containing RepG but not admitting a fiber functor.

Tensor categories have connections with 2d conformal field theory, hence vertex operator algebras.
• Given a rational conformal field theory (equivalently, a rational vertex operator algebra), Y. Huang

shows how to extract a modular fusion category.
• Given a logathmic conformal field theory, a series of papers by Huang-Lepowski-Zhang construct a

modular tensor category, maybe with some additional assumptions. See in particular [HLZ11].
The upshot is that given an finite logarithmic vertex operator algebra V , its category of representations is a
finite, braided tensor category which is nondegenerate and pivotal (hence ribbon).1

Example 0.14. Given a simple Lie algebra g over C and p ∈ Z+, one can construct a non-rational vertex
operator algebra denoted Wp(g), which is cut out of a lattice model by an action of uq(n) by something called
short-screening operations. This was studied by Lentner and others.

These are understood in type A1 and, at p = 2, type Bn: Wp(sl2) is the triplet model of Kausch (1991),
and W2(Bn) is the symplectic fermion model of Kausch [Kau00]. As established by Flandoli-Lentner [FL18],
these have non-semisimple, modular representation theories. (

Conjecture 0.15. There is a modular equivalence F⊗ from the category of representations of uq(g) to the
category of representations of Wp(g), where q := exp(iπ/p).

This is mostly done for g = sl2, but is completely open in general.

Remark 0.16. You should be careful with what’s precisely meant by uq(g). See work of Negron and several
others. (

To finish, let’s talk a little bit about cohomology. Suppose C is a finite, but not semisimple, tensor category.
Then let ProjC denote the subcategory of projective objects in C; this has finitely many indecomposables
P1, . . . , Pn, canonically labeled by the isomorphism classes of simple objects. ProjC has a strong fusion rule,
with

(0.17) Pi ⊗ Pj ∼=
⊕

k

P
⊕Nk

ij

k

for some natural numbers Nk
ij . In fact, something stronger is true: ProjC can be described by discrete/number-

theoretic data. But what happens on the rest of C?
The stable category of C is StabC := C/ProjC. This is not an abelian category, though it is triangulated —

in particular, it has a shift functor Σ: StabC→ StabC. This data is regulated by geometry and continuous

1NOTE by the notetaker: I missed a few of the references starting at this point of the talk. Sorry about that.
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invariants, called support theory or tensor-triangulated geometry, related to the Proj variety of End∗Stab C(1).
There’s a lot more that could be said about this approach to the stable category, but that is a story for
another day.
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