ZHENGHAN WANG: TOPOLOGICAL ORDERS, I

This talk will be a mathematics talk about topological order (in topological phases of matter), which is
a subject close to physics. For a general reference for this talk, see [RW18]. We will focus on bosonic/spin
intrinsic order, as opposed to fermionic order or SPT phases; if this doesn’t mean anything to you, that’s OK.

When we consider topological orders in dimension 2 + 1, we mean two dimensions of space, and one of
time, so we will usually think about surfaces, and sometimes 3-manifolds. A (2 + 1)-dimensional topological
order is equivalent to a unitary topological modular functor, which is equivalent to a unitary modular tensor
category (sometimes called an anyon model in physics). There are several reasons to care about these phases.

(1) At least in theory, the ability to build topological phases of matter would allow one to build a
quantum computer, which has numerous applications to the real world, including making money.
This is being pursued in industry, e.g. by Microsoft. However, there is still much to do, in both theory
and engineering, before this can be a reality.

(2) From a theoretical physics perspective, topological phases are very interesting. These are in the
subfield of condensed-matter physics, which historically understood phases of matter via Landau’s
group symmetry-breaking paradigm; for example, crystals are understood via discrete translation
symmetries, but liquids have continuous symmetries. Phase transitions correspond to symmetry
breaking. But topological phases do not follow these rules, leading to a paradigm shift in physicists’
perspectives on phases, to the perspective of quantum symmetries.

(3) Finally, these are interesting objects in their own mathematical right.

Analogously to the relationship between Riemann sums and definite integrals, there are two perspectives on
quantum field theory that shed mathematical insight into it: one can work in the continuum (akin to the
integral) or on the lattice, which is more discrete, akin to a Riemann sum. Sometimes we use integrals to
approximate Riemann sums, even though that wasn’t the original way information flowed; likewise, these
topological phases are QFTs on the lattice, but we can study them with continuum limits. This is a part of
the general mathematical goal of understanding quantum field theory.

We will focus on two examples: the toric code and Haah’s code. The toric code is very, very well-studied —
almost any question you might ask about it has been answered. Haah’s code is newer, and poorly understood:
it’s an example of a fracton model, and we think that a proper understanding of such models will lie beyond
quantum field theory.

We will first study the toric code via its robust ground state degeneracy, which is a TQFT, and which is a
mathematically satisfying perspective even if it’s still not completely understood. In the next lecture, we’ll
study the elementary excitations, which lead to unitary modular tensor categories, a different perspective.
But there is a mathematical theorem relating unitary TQFTs in dimension 2 + 1 and unitary modular tensor
categories.

You should not just accept these definitions as final — this field is still in the process of being mathematically
codified. Some of these definitions are matters of convenience, so that we can actually get somewhere, even if
we don’t have the most correct definitions.

Definition 0.1. A quantum theory is a triple (L, B, H), where L is a finite-dimensional Hilbert space, B is
a basis of L, and H: L — L is a Hermitian operator, which thanks to B we can think of as a matrix.

The basis is an unusual ingredient when one studies QFTs, but is important in the story of quantum
information: it’s how you represent classical information.

Many quantum theories satisfying Definition 0.1 aren’t related to physics, and are therefore somewhat
useless. We focus on the examples which come from physics; after all, Definition 0.1 is trying to (partially)
axiomatize things physicists are interested in, right?

Definition 0.2. An n-dimensional quantum schema is a rule assigning to every n-dimensional manifold with
a triangulation and a finite-dimensional Hilbert space, a quantum theory.

Example 0.3. The 1-dimensional Ising chain is a 1-dimensional quantum schema. Given a circle with a
triangulation, the Hilbert space is the tensor product of copies of C? indexed by the vertices. Assume there
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are N vertices, and orient the circle so we can identify them with 1,..., N in order, and call the Hilbert
space Ly. Inside C2, let |0) and |1) be the standard basis vectors (i.e. (1,0) and (0,1), respectively). The
Hamiltonian has the form

n—1
(0.4) H=- Z Lo Lo ARy
i=1

This is physicists’ notation: let’s explan what’s going on. The Pauli matrices are the standard basis of sus:

(0.5) ot =0 = <(1) é) 0% =03 = <(1) _?) oY =0y :=1i0"0".

These are Hermitian matrices which square to the identity.
The notation o7 means that o acts on the C? at vertex i, and acts by the identity on the remaining
factors, i.e. by d®Id®---®c* ®--- ®id. <

Given a quantum theory, the eigenvalues of the Hamiltonian A\g < Ay < ... are called energies of the
theory, and the nonzero eigenvectors of Ay are called ground states. Nonzero eigenvectors for other eigenvalues
are called excited states.

Here’s the most important definition (albeit, again, not quite the real definition).

Definition 0.6. An n-dimensional Hamiltonian schema is (sharply) gapped if there is a constant ¢ > 0 such
that for all n-manifolds and triangulations, in the quantum system assigned by the schema, the eigenvalues
of the Hamiltonian satisfy Ay — A\ > c.

Crucially, ¢ does not depend on the triangulation. Sharply gapped schemas are almost topological.

Tentative definition 0.7. An n-dimensional Hamiltonian schema is topological if it’s gapped, and if there
exists a unitary topological modular functor (i.e. a unitary TQFT-like object in dimension 2 + 1, which is
once-extended, but isn’t necessary finite enough to assign partition functions to all 3-manifolds) Z such that
for any closed 2-manifold X, Z(X) is isomorphic to the space of ground states of the Hamiltonian schema on
Y for any triangulation.

We expect that a topological Hamiltonian schema represents mathematically a topological phase of matter.

Definition 0.8. A topological phase of matter is a path component of the space of topologically ordered
Hamiltonians.

Unfortunately, we’re not yet sure what the space of topologically ordered Hamiltonians is, but we want to
say that two Hamiltonians are equivalent if there’s a path deforming one into the other, through topological
Hamiltonian schema — in particular, the path cannot close the gap: ¢ must always be greater than some
€ > 0. Understanding this carefully in general would require opening the can of worms called renormalization.

The toric code is the model organism in topological phases. If you want to understand just about anything
about topological phases of matter, you should probably begin by thinking about it for this example.

Example 0.9 (Toric code). The toric code, first studied by Kitaev [Kit03], realizes the topological order
given by untwisted Z/2-Dijkgraaf-Witten theory, corresponding to the modular tensor category D(Z/2),
with four simple objects {1,e,m, ¢} withe®e=m@m=9v®¢Y =1and e®m=m® e =1 and twists
91:9620m=1and9¢:—1.1

The toric code schema begines with a closed surface Y and a triangulation (or more generally, a cellulation),
which is often just taken to be the torus with a cellulation given by a square tiling of the plane. The Hilbert
space L is a tensor product of C2? over all of the edges in the cellulation. Thus L is canonically identified
with the group algebra for the group (Z/2)F!, if E is the set of edges.

The Hamiltonian is

(0.10) H=- Y A,- Y Bp

all vertices v all faces P

1So the anyon 1 is a fermion, but this is still a bosonic phase, because we started with bosonic spins, or mathematically,
vector spaces and not super vector spaces.
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for some operators A, and Bp we will define.? A, is the tensor product of ¢ on all of the edges adjacent
to v, and the identity on the remaining edges. Bp is the tensor product of o on all edges in JP, and the
identity on the remaining edges.

Here are three important properties of the toric code.

(1) All A, and Bp operators commute with each other. This is clear for A, and A,, and for Bp and Bp,
since we just have a bunch of 0% or ¢ operators, or for A, and Bp when v € P, but the interesting
bit is when v and P are adjacent; then o” and ¢% don’t commute, but they anticommute, and there is
an even number of edges affected by both A, and Bp, so two minuses make a plus and [A,, Bp] = 0.

(2) The space of ground states of this model on a closed surface ¥ is canonically identified with the space
of C-valued functions on H;(X;Z/2). This uses the fact that the Hamiltonian is frustration-free, which
means that the ground states are precisely those stabilized by all A, and Bp operators. Looking at
Bp gives you cycles; then looking at A, kills boundaries.

(3) The elementary excitations for the toric code form the unitary modular tensor category D(Z/2). <

Exercise 0.11. Modify the toric code to
(0.12) H=) e4,+) eBp,
v P

where €1,9 € {£1}. Which of these phases are topologically ordered, and which aren’t? If you understand
that, you probably understand this lecture very well.
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2Why “P”?7 Because in the physics literature, faces are often referred to as plaquettes.
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