
ERIC ROWELL: AN INTRODUCTION TO MODULAR TENSOR CATEGORIES, I

In this lecture, we’ll begin with definitions and basic examples of modular tensor categories, and then use
them in the next lecture. But first, let’s discuss the whys of modular tensor categories.

We’re often interested in knot and link invariants which are pictorial in nature, e.g. computed using
a diagram. Another seemingly unrelated application is to study statistical-mechanical systems. Witten
introduced TQFT into this story, extending the Jones polynomial to 3-manifold invariants using physics.
Lately, there are interesting condensed-matter pheomena in topological phases. All of these are goverened by
modular tensor categories in different ways, and in related ones.
Definition 0.1. Let C be a fusion category. A braiding on C (after which it’s called a braided fusion category)
is data of a natural transformation cX,Y : X ⊗ Y ∼=→ Y ⊗ X satisfying some relations called the hexagon
identities.

You can think of cX,Y as taking strands labeled by the objects X and Y , and laying the X strand over
the Y strand. The hexagon identities arise by comparing the two strands

(0.2) and

.

Because the braiding is implemented via a natural transformation, it is functorial: we can braid morphisms
as well as objects.
Example 0.3. Given a finite group G, RepG is a braided fusion category. Let V and W be representations;
then the braiding cV,W (v ⊗ w) := w ⊗ v. (

Definition 0.4. Let C be a braided fusion category. The symmetric center or Müger center of C is the
subcategory C′ of x ∈ C such that cX,Y cY,X = idX for all Y ∈ C.

For example, the symmetric center of RepG is once again RepG.
Exercise 0.5. Why is the symmetric center of C a braided fusion category? In particular, why is it closed
under tensor products?
Definition 0.6. If the symmetric center of C is itself, we call C symmetric.1 If the symmetric center of C is
generated by the unit object (equivalently, C′ ' Vect), we call C nondegenerate.

Here, “generated by the unit object” means every object is isomorphic to a direct sum of copies of the unit.
Now let’s put some more adjectives in front of these structures. These will make the structure nicer, as

usual, but are interesting enough to have examples.
Definition 0.7. Let C be a braided fusion category. A twist on C is a choice of θ ∈ Aut(idC).

Diagrammatically, we think of the twist as acting by the diagram in the first Reidemeister move, except
we place right over left, not left over right. By looking at a picture of the twist on X ⊗ Y , and untangling the
picture, you can prove the balancing equation
(0.8) θX⊗Y = cX,Y ◦ θX ⊗ θY .

Diagrams make it easier to picture these relations, but aren’t strictly necessary. For example, the evaluation
map dX : X∗ ⊗X → 1 is represented by a diagram _ labeled by X, and coevaluation bX : 1→ X∗ ⊗X is
represented by a diagram ^ labeled by X. Since braided categories aren’t necessarily symmetric, one must
be careful with left versus right duals.

1Notice that being symmetric is a property of braided fusion categories.
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Definition 0.9. A ribbon structure on a braided fusion category C is a twist such that (θX)∗ = θX∗ .

Here’s where it’s useful to use ribbon diagrams rather than string diagrams: really we want to keep track
of the normal framings of the strings in our diagrams (thought of as embedded in R3), and ribbons provide a
clean way to understand that.

Let Irr(C) denote the set of isomorphism classes of irreducible objects in C. This is always a finite set; the
rank of C is #Irr(C). Choose representatives x1, . . . , xr of the isomorphism classes of simple objects; then, by
Schur’s lemma, Aut(Xi) ∼= C×. Let θi ∈ C× denote the twist of Xi.

Now we have all the words we need to define modular tensor categories.

Definition 0.10. A modular tensor category is a nondegenerate ribbon fusion category.

There are other, equivalent definitions.

Definition 0.11. A pivotal structure on a fusion category C is a natural isomorphism j : X
∼=→ X∗∗.

If a pivotal structure satisfies a certain niceness condition, it’s called spherical. Then:
• A braided fusion category with a pivotal structure automatically has a twist.
• If that pivotal structure is spherical, the twist defines a ribbon structure.
• A nondegenerate braided fusion category with a spherical structure is a modular tensor category.

This still hasn’t quite made contact with the usual definition.
If C is a ribbon fusion category, it has a canonical trace on End(X), valued in End(1) ∼= C. The dimension

of an object X ∈ C is tr(idX).

Definition 0.12. The S-matrix of a ribbon fusion category is the matrix with entries Sij := tr(cXi,Xj
◦cXj ,Xi

)
for Xi, Xj ∈ Irr(C).

Theorem 0.13 (Brugières-Müger). A ribbon tensor category C is modular if and only if the S-matrix is
invertible.

Now let’s turn to examples.

Example 0.14. Let G be a finite abelian group and VecG be the category of G-graded vector spaces. These
were discussed previously in ??, albeit in a slightly different way.

Let c : G×G→ C× be a bicharacter of G, i.e. for all g, h, k ∈ G,
(0.15) c(gh, k) = c(g, k)c(h, k).

Then we obtain a braiding on VecG by c : g ⊗ h→ h⊗ g by

(0.16) θg(v ⊗ w) = c(g, h)w ⊗ v.
For the twist, use θg := c(g, g). This defines a ribbon tensor category, and it is modular iff det((c(g, h)c(h, g))g,h) 6=
0.

Exercise 0.17. In particular, let G := Z/3 and w be a generator. Show that c(w,w) = exp(2πi/3) extends
to a bicharacter that defines a modular tensor structure on C := VecG. Show that we cannot obtain a modular
structure on VecZ/2 in this way, however.

We can produce a modular structure on VecZ/2 in a different way: let z be a generator, and define
c(z, z) := i and c(1, z) = c(z, 1) = c(1, 1) = 1. This defines a modular tensor category structure on Vecω

Z/2
whenever ω is cohomologically nontrivial; this category is of considerable interest in physics, where it’s known
as the semion category. (

If you tried to generalize this to G nonabelian, you would not be able to write down a braiding, because
g ⊗ h 6∼= h⊗ g.

If all simple objects in C are invertible, C is called a pointed fusion category. It turns out these have been
classified, and the underlying monoidal tensor category id Vecω

G for some finite group G and some cocycle ω.
If in addition C is braided, then G is abelian, and we can ask about the converse.

Theorem 0.18. If |G| is odd, Vecω
G admits a braiding iff ω is cohomologically trivial.
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When |G| is even, things are more complicated, as we saw above, but the answers are known. For
Z/2, we can get RepZ/2, and for c(z, z) = −1, we obtain sVec. Both of these are symmetric. One can
generalize: Deligne [Del02] classified symmetric fusion categories, showing they’re all equivalent to RepG or
RepG(z), where z ∈ G is central and order 2 (giving a super-vector space structure on G-representations).
Symmetric fusion categories equivalent to RepG are called Tannakian; those equivalent to RepG(z) are called
super-Tannakian.

References
[Del02] P. Deligne. Catègories tensorielles. volume 2, pages 227–248. 2002. Dedicated to Yuri I. Manin on the occasion of his

65th birthday. 3

3




