ANNA BELIAKOVA: QUANTUM INVARIANTS OF LINKS AND 3-MANIFOLDS, II

Recall that we're in the business of studying non-semisimple quantum invariants of knots and 3-manifolds. Last time, we discussed how surgery on a framed link can turn logarithmic framed link invariants into 3-manifold invariants, as studied by Hennings (1998), Beliakova-Blanchet-Geer [BBG18], and Costantino-Geer-Patureau-Mirand [CGPM14].

First, the algebraic data that we need. Let H be a finite-dimensional Hopf algebra, such as

$$(0.1) u_{\xi} \coloneqq u_q(\mathfrak{sl}_2) \otimes_{\mathcal{A}} \mathbb{C},$$

where $\mathcal{A} := \mathbb{Z}[q^{\pm 1}]$, ξ is a p^{th} root of unity, and \mathcal{A} acts on $u_q(\mathfrak{sl}_2)$ by $q \mapsto \xi$. We can also restrict to $u^{rest} := u_{\xi}/\langle e^p, F^p, K^{2p} - 1 \rangle$; then K^p is central.

Radford showed that there exists a unique $\mu^* \in H^{\times}$, called the *integral*, such that

(0.2)
$$(\mu \otimes \mathrm{id})\Delta(x) = \mu(x)!$$

for all $x \in H$. For example, in u_{ξ} ,

(0.3)
$$\mu(E^m F^n K^\ell) = \delta_{m,p-1} \delta_{n,p-1} \delta_{\ell,p+1}$$

Theorem 0.4 (Hennings, Kauffman-Radford). Let L be a framed link and $M := S^3(L)$. Let σ_+ , resp. σ_- , be the number of positive, resp. negative eigenvalues of $\ell k(L)$. Then the Hennings invariant can be calculated as

(0.5)
$$\operatorname{Hen}(M) = \frac{\mu^{\otimes |L|}(J_L)}{\mu(J_{U_+})^{\sigma_+} \mu(J_{u_-})^{\sigma_-}}$$

The proof is surprisingly simple.

Proof. Using the Kirby move K1, write $L' = L \amalg u_+$, where u_+ indicates an unlinked unknot. Then

(0.6)
$$\operatorname{Hen}(M) = \frac{\mu^{\otimes |L|}(J_L)\mu(J_{u_+})}{\mu(J_{u_+}^{\sigma_++1})\mu(J_{u_-})^{\sigma_-}},$$

and we cancel out the factors of $\mu(J_{u_+})$ in the numerator and denominator. Now, perform the Kirby move K2 and use (0.2) and we're done.

Remark 0.7. If H is semisimple,

(0.8)
$$\mu = \sum \operatorname{qdim}(V_i) \operatorname{tr}_q^{V_i}$$

where the sum is over the isomorphism classes of irreducible modules V_i , and the Hennings invariant for H and M and the Witten-Reshetikhin-Turaev invariant for H and M coincide.

Kuperberg [Kup91] constructed a related invariant using cointegrals in a Hopf algebra.

Definition 0.9. Let H be a Hopf algebra. A *left cointegral* is an element $c \in H$ satisfying $xc = \varepsilon(x)c$ for all $x \in H$; a *right cointegral* satisfies $cx = \varepsilon(x)c$ for all $x \in H$.

A Hopf algebra in which left and right cointegrals coincide is called *unimodular*.

Kuperberg's invariant is the simplest algebraic 3-manifold invariant one can define with Hopf algebras, and this lends it its usefulness — it will probably be one of the first things we fully categorify. For example, if we chose $u_q(\mathfrak{sl}_2)$, we'd need the data of the Borel part, $\langle K, E \rangle$. Chang-Cui [CC19] showed that the Kuperberg invariant for M and H coincides with the Hennings invariant for M and $\mathcal{D}(H)$, the double of H, analogous to the relationship between Reshetikhin-Turaev invariants for a modular tensor category and Turaev-Viro invariants for its Drinfeld double.

Theorem 0.10 (Chen-Kuppum-Srinivasan [CKS09]). If $b_1(M) = 0$, the Hennings invariant of M is $|H_1(M)| WRT(M)$; otherwise, it vanishes.

Proof. Our proof sketch follows Habiro-Lê. Note: I (the notetaker) didn't follow what was written on the board; sorry about that. I think what happened was: the Hennings invariant of M ends up being $\sum_{i \in I} x_i \otimes y_i$, where $\{x_i\}$ and $\{y_i\}$ are both bases of H. This induces a Hopf pairing, sometimes called the *quantum Killing* form, by declaring $\langle x_i, y_j \rangle \coloneqq \delta_{ij}$. Hence if $x = \sum a_i y_i$, $\langle x, x_i \rangle = a_i$.

Let M be an integral homology sphere, so we can realize M as surgery on a knot K framed with framing ± 1 . Then $I_M = \langle r^{-1}, J_K \rangle$, where r is a *ribbon element* in H. We claim that for all $x \in H$,

(0.11)
$$\langle r^{-1}, x \rangle = \frac{\mu(x^r)}{\mu(r)},$$

and that $\Delta(r) = (r \otimes r)M$. This is because $(\mu \otimes id)\Delta(r) = \mu(r)\mathbf{1}$, so

(0.12)
$$\sum_{i} \mu(rx_i)y_i = \mu(r)\mathbf{1}$$

and therefore

(0.18)

(0.13)
$$r^{-1} = \sum_{i} \frac{\mu(rx_i)}{\mu(r)} y$$

(0.14)
$$\langle r^{-1}, x_i \rangle = \frac{\mu(rx_i)}{\mu(r)}.$$

If $b_1(M) > 0$, $S^2 \times S^1 = S^3(U_0)$, where U_0 denotes an unknot, and $J_{U_0} = \mathbf{1}$, so the Hennings invariant is $\mu(\mathbf{1}) = 0$.

This seems to spell doom for non-semisimple invariants, but not all of them are killed. This leads one to introduce *modified traces*, following Geer-Patureau (2008), functions t_P : End $P \to k$, where P is an H-module, such that $t_P(fg) = t_P(gf)$ and t_P satisfies the *partial trace property* in Figure 1.

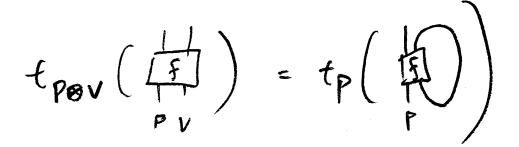


FIGURE 1. The partial trace property.

Remark 0.15. Now taking the invariant J_K as usual, this kind of invariant lands in

Theorem 0.17 (Beliakova-Blanchet-Gainutdinov [BBG17]). Let H be a unimodular pivotal Hopf algebra. Then for $f \in \text{End}_H(H)$,

$$\operatorname{tr}_H(f) = \mu_g(f(1))$$

where g is the pivotal element: $\mu_g(x) = \mu(gx)$. In particular, the modified trace is uniquely determined.

Then, Beliakova-Blanchet-Geer [BBG18] used this to define more invariants for a knot K_P in a 3-manifold $M = S^3(L)$: the invariant is $(\mu^{\otimes |L|} \otimes t_P) J_{L \cup K_P}$. These invariants were extended to a TQFT by De Renzi, Geer, and Patureau-Mirand [DRGPM18].

In the last few minutes, we'll discuss CGP invariants. Consider the Hopf algebra

(0.19)
$$u^{\text{unrolled}} \coloneqq \langle K, E, F, H \rangle / \langle E^p, F^p \rangle.$$

Given $\lambda \in \mathbb{C}$, we have a *p*-dimensional irreducible u^{unrolled} -module V_{λ} , though thanks to some redundancy, really the classification is in $\mathbb{C}/2\mathbb{Z}$. This leads to an invariant of a manifold together with a cohomology class $\lambda \in H^n(M; \mathbb{C}/2\mathbb{Z})$, given by

(0.20)
$$\operatorname{CGP}(M,\lambda) \coloneqq \sum_{k=0}^{p-1} d^{mod}(V_{\lambda+2k}) J_K(V_{\lambda+2k})$$

This is a surprisingly simple description of this kind of invariant, which is nice. At p = 2, this specializes to the Alexander polynomial and Reidemeister torsion. Blanchet, Costantino, Geer, and Patureau-Mirand [BCGPM16] extended this invariant to a TQFT in which the order of the Dehn twist is trivial. The S- and T-matrices of this TQFT are related to work of Gukov and collaborators.

References

- [BBG17] Anna Beliakova, Christian Blanchet, and Azat M. Gainutdinov. Modified trace is a symmetrised integral. 2017. https://arxiv.org/abs/1801.00321. 2
- [BBG18] Anna Beliakova, Christian Blanchet, and Nathan Geer. Logarithmic Hennings invariants for restricted quantum sl(2). Algebr. Geom. Topol., 18(7):4329–4358, 2018. https://arxiv.org/abs/1705.03083. 1, 2
- [BCGPM16] Christian Blanchet, Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand. Non semi-simple TQFTs from unrolled quantum sl(2). In Proceedings of the Gökova Geometry-Topology Conference 2015, pages 218–231. Gökova Geometry/Topology Conference (GGT), Gökova, 2016. https://arxiv.org/abs/1605.07941. 3
- [CC19] Liang Chang and Shawn X. Cui. On two invariants of three manifolds from Hopf algebras. Adv. Math., 351:621–652, 2019. https://arxiv.org/abs/1710.09524. 1
- [CGPM14] Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand. Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol., 7(4):1005–1053, 2014. https://arxiv.org/abs/ 1202.3553. 1
- [CKS09] Qi Chen, Srikanth Kuppum, and Parthasarathy Srinivasan. On the relation between the WRT invariant and the Hennings invariant. Math. Proc. Cambridge Philos. Soc., 146(1):151–163, 2009. https://arxiv.org/abs/0709.2318.
- [DRGPM18] Marco De Renzi, Nathan Geer, and Bertrand Patureau-Mirand. Renormalized Hennings invariants and 2+1-TQFTs. Comm. Math. Phys., 362(3):855–907, 2018. 2
- [Kup91] Greg Kuperberg. Involutory Hopf algebras and 3-manifold invariants. Internat. J. Math., 2(1):41-66, 1991. https://arxiv.org/abs/math/9201301.1

MSRI Lechure 2 -1non-semisimple Quantum Muraviants of links and 3-may 4 Surgery Chip orient? 3-mil framed f linas in f S3 Urest J.d Unnolla "netegration d'Hennings 198 (logarithmuic) avariants) B-Blanchet-Geer Costantino-Geer-Pahireau (CGP) for Hennings and BBG D Algebraic data H f. dem villon Hopf algebra u rot = < e, F("), K) 9=5/ Main example: 5=1; e= {13, E= (v-v')E ie, F, K-1, weight vector all modules have integral worghts" K C Z (U Kest) invertible, K = = 1 "Small" is where KP

-2-Boox Radford on Hapf algebras F! LEH* (LOID) S(X) = Le(X) & VXEH Example: $\mu(E^m F^n K^e) = \sigma_{m,p-1} \delta_{n,p-1} \delta_{e,p+1}$ This: (Hennings, Kauffman-Radford) let H=SUL) KI & line compon $Hen (M) = \frac{\mu(J_{L})}{\mu(J_{u_{+}})^{6+}} \frac{\mu(J_{u_{-}})}{\mu(J_{u_{-}})^{6+}} \frac{fonolog}{fM}$ 6 # meg. eigenvalues of UK(4). L'= LUU+ K1: Proof; pe (JL) ANCH) $\mu(J_{\mathcal{U}_{x}})^{\sigma_{x}+\chi}\mu(J_{\mathcal{U}_{x}})^{6-}$ K2: to pe $(Moid) \Delta(x)$ 16 A(2)1

Remark: F another construction due to (198) using integral + connegual CEH H is animodular of $\chi \cdot c = \varepsilon(x) c$ $\frac{\partial f}{\partial t}$ $c \cdot x = \varepsilon(x) c$ $v_{ij} t$ left inter is vight. Set (A) (R) "Involutive Sid Advantage: minimal algebraic data, no Struchene neguin braiching and vitton Bevel subalgebra works. Chang - Cui $K_{up}(H,H) = Hen(M, D(H))$ 177 If H is femisimple (Kerler) '95 µ= Egolim V; trg WRT(M) - Hen (M) Kup (M) - Hen (M # - M) > Hen (11) Books like a nou-service. generalization, however Them (Chen - Kuppum - Srinivasan) '07 ef 6, (M)=0 $Hen(M) = \begin{cases} |H_{4}(M)| & WRT(M) \\ 0 \end{cases}$ B; (M) >0

$$\frac{-\gamma-\psi}{\mu_{s}} = \frac{-\gamma-\psi}{\mu_{s}} = \frac{-\gamma$$

@ Case B,>0 $\int_{M} = 1 \quad \mu(f_{y^{\circ}}) = 0$ $s^{2} \times s^{2} = s^{3}(4)$ the upn-semisimple story? Q: Does of hill A: No: H= OP; VSEELD PEH-pmod O Improvement. Popt - R f Popt - R 臣)=0 Modified track { this End p - K} peH-proved Solution: · + (fg) = = (gf) · tpor (H) = tp (A) VCH-mod L Knots JK H trank Remark: Californicair that

9 HH3 (H) = {xy-ys(x) x, y = 4] t factorizes through HHo (H), but os compatible with categorical trace @ BBG avariant. M-S(2) $BBG(M,K_p) = (\mu^{\otimes K_p})(\mathcal{J}_{L \cup K_p})$ non-and if b, >0, if we add an unnot Thm (B- Blanchet - Gainet demar) & unimodular pirotal H $t_{H}(f) = \mu_{g}(f(t)) \quad \forall f \in End_{H}$ g pivo tal element Hg (x) = H(gx) a particle trace property suifable to define Way - Semina Moonay Covol: If H-mod is semisingle (minisodular pirolag) (=> #15 categorical trace #0 other to = Mg.

unrolled = Us/er, FP> 3 CEP $if K'=1 \implies A''=1$ here we have non-makey. weights What happens? Ku= AU We have $\lambda \in \mathbb{C}$! to AEC irrep proj. Va of diver p $\lambda \in H^{1}(M, C|22)$ $t_{\chi}(i\partial_{\chi}) = d(\chi)$ modified demonstra $CGP(M, \lambda) := Z d(V_{AP2R}) J_{K}(V_{AP2R}) \qquad (normalized) \\ U = Z d(V_{AP2R}) J_{K}(V_{AP2R}) \qquad (normalized) \\ U = D. Lopes \\ U = D. Lopes$ (0) at p=2 De(H) Reidemissien lovering = corresponding (0) at p=2 De(H) Reidemissien lovering = corresponding (BCGP (BCGP (BCGP (DEGP) (3 Gunov & observe S, T matrices from non-semi TRFT in Mair construction. @ On going project with B. Blanchet we are relating Jr (Vare) to a we use recurs to make expansion of Habiro deformed cyclobomic expansion of these deformed hope to have a universal version of these and hope forther fast of the transform to invariants relate top with the top of the days of two man