
JAMES TENER: SEGAL CFTS

This will be a relatively introductory talk on the mathematics of CFTs, beginning with the definitions for
functorial CFT, then passing to vertex operator algebras, chiral theories, and, near the end, the relationship
to conformal nets. We will focus on two-dimensional CFTs.

We would like to model 2d CFTs as symmetric monoidal functors from a bordism category to some
category of vector spaces. The objects of the bordism catgory should be compact, smooth 1-manifolds, and
the morphisms (appropriate isomorphism classes of) oriented compact surfaces with a conformal structure,
i.e. an equivalence class of metrics under conformal transformations. In dimension 2, this is made simpler
by the fact that on closed surfaces, a conformal structure is equivalent to a complex structure. The target
category will be something like topological vector spaces, maybe Hilbert spaces, maybe Fréchet spaces. The
axioms for this were written down by Segal [Seg88].

However, this isn’t exactly what we’ll talk about in this talk. These are “full CFTs,” but we’ll focus on
“chiral CFTs,” as in Terry Gannon’s talk. Confusingly, researchers on both full and chiral CFTs both just call
their subjects CFTs.

Anyways, in a full CFT, let Σ be a pair of pants with a specified conformal structure; if V := V (S1)
denotes the topological vector space assigned to a circle, this assigns a map V ⊗ V → V . We take as an
ansatz from physics that V splits as

(0.1) V =
⊕

λ∈Λ
Vλ ⊗ Ṽλ,

where the Vλ pieces are the chiral pieces of V , and Ṽλ are the anti-chiral pieces.
But really, we should expect a family of vector spaces associated to a circle, and many different maps

between them, since we have many different conformal structures. Segal axiomatizes this as a weak CFT.
You can reshape this data into a category of vector spaces and maps between them, and this is the genesis of
the idea that you can extract a modular tensor category from a CFT; we will zoom in on the tensor unit of
that tensor category, obtaining a simpler structure called a vertex operator algebra.

The definition of a vertex operator algebra (VOA) is not very enlightening, so instead we’ll discuss the
meaning of the axioms, which should make it easier to parse and digest the definition on Wikipedia. The
point of a VOA is to axiomatize a chiral CFT in the vaccum sector (i.e. corresponding to the tensor unit),
and restricted to conformal surfaces of genus zero. We’ll give a geometrically-motivated definition of a VOA.

Definition 0.2. A vertex operator algebra (VOA) is data of a topological vector space V and data of, for all
genus-zero n-punctured Riemann surfaces with parameterized boundary Σ, a map
(0.3) ZΣ : V ⊗(n−1) −→ V,

satisfying some axioms, notably that gluing of Riemann surfaces is sent to composition of the ZΣ maps. We
also ask that this mutliplication depends holomorphically on Σ: any such Riemann surface is biholomorphic
to a subset of C, so you can imagine taking a family given by translating by w for w ∈ C; then we ask that
the multiplication map is a holomorphic function in w.

Unlike what you might be used to in TFT, the maps for diffeomorphic but not isomorphic surfaces are
not equivalent! In fact, if you had topological invariance rather than holomorphic invariance, this notion
of a VOA rapidly collapses to that of a commutative algebra — so you can think of VOAs as things like
commutative algebras, but complexified: we have a complex parameter space of multiplications, which vary
holomorphically.

Remark 0.4. You can describe these as holomorphic algebras for a certain operad, though that’s a nontrivial
theorem. (

If you want to understand the Wikipedia definition of a VOA, work with the two-holed annulus, and
expand formally around the puncture. This gives you functions Y (sL0–, w)rL0–, which satisfy some axioms,
and these are what appear in the dictionary definition of a VOA.
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Example 0.5 (WZW model). Pick a simple complex finite-dimensional Lie algebra g and a positive integer
k called the level. The level defines a certain infinite-dimensional representation V of the loop algebra
Lg := C∞(S1, g), called the vacuum representation of level k. (

Given Σ, a pair of pants with a conformal structure, we want to define a map ZΣ : V ⊗ V → V such that
for all f ∈ Ohol.(Σ; g),
(0.6) f |∂outΣ · ZΣ(v1 ⊗ v2) = ZΣ(f |∂inΣ · v1 ⊗ v2) + ZΣ(v1 ⊗ f |∂outΣ · v2).
Equation (0.6) is called the Segal commutation relations. We will eventually be able to do this up to a
complex scalar; that problem is resolved using central charge.

To obtain the maps satisfying the Segal commutation relations, we will use a trick called holomorphic
induction. The idea is that “ZΣ satisfies the Segal relations” makes sense, and we can try to do something
universal. So we can ask for a pair of u ∈ V and ZΣ such that all other such pairs satisfying the Segal
condition factor through (u, Σ). A chiral CFT is essentially a formalization of what axioms these are supposed
to satisfy — “supposed to” because there’s an issue with the fact that we’d like the representation to have
positive energy again, but this is not actually known to be true.

Anyways, this leads one to the definition (or a sketch of the definition) of a Segal CFT.
• We want for all C∞ closed 1-manifolds S, a category C(S) equipped with a functor C(S)→ TopVect
(or maybe Fréchet or Hilbert spaces), and
• for all compact Riemann surface bordisms Σ, a functor FΣ : C(Sin)→ C(Sout), and a map ZΣ : Vλ →

VFΣ(λ).
This is the first thing you’d write down if you wanted a generalization of topological field theory but for more
than one vector space. But we need another axiom to control how this behaves in families of Σ; one way to
guarantee this is via a third axiom,

• for every annulus A with parameterized boundary, an isomorphism TAFA ∼= id, with a positive-energy
condition.

The first two axioms stitch together into a functor from a bordism category not to Vect, but to a category of
concrete categories, i.e. equipped with a functor to TopVect.1 This is called a weak CFT.

This structure induces a VOA on the vector space assigned to the disc. So this is quite a bit of structure,
and would also encode a great deal of the associated representation theory coming from a given CFT. Thus
these are quite difficult to construct.

In the last part of this lecture, we will make contact with the idea of conformal nets, a different approach
to conformal field theory. We will try to go from a VOA (as defined geometrically above) to a conformal net.
This forces us to restrict to unitary CFTs, so Hilbert spaces, rather than just topological vector spaces. To
do this, we will need to pass through a conjecture on when we can pass from pairs of pants to all Riemann
surfaces. Take an (n + 1)-punctured genus 0 Riemann surface and identify some subset of the incoming
boundary with some subset of the outgoing boundary; call such a space an extended n-to-1 Riemann surface.

Conjecture 0.7. Reasonable VOAs take values on extended n-to-1 Riemann surfaces, i.e. given only the
data we had before, there is a canonical way to assign invariants to these spaces.

This is a step in the direction towards extended CFT (in the higher-categorical sense). You should think
of the extension as unique because nonsingular surfaces are dense in the space of extended surfaces. This is
sort of an analysis question, asking whether a limit exists. Recent work of the speaker attempts to use this
and then build conformal nets.

Theorem 0.8 (Tener [Ten19]). For all WZW models, this produces conformal nets.

Work continues on the general setting, and on related questions.
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1There’s a slight category number mismatch here, which we’re not going to worry about right now.
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