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Abstract. These are notes from lectures given at the introductory workshop on higher
categories and categorification at MSRI in Feburary 2020.

Introduction

These lectures will have the following two goals:
• Introduce a class of 4-dimensional topological field theories obtained from braided
monoidal categories.
• Explain in practical terms how to work with the cobordism hypothesis in low dimen-
sions.

We will concentrate on a 4-dimensional TQFT initially defined by Crane and Yetter
[CY93]. One motivation for its study is its relationship to 4-dimensional quantum grav-
ity: quantum gravity may be viewed as a Crane–Yetter (or BF) theory with constraints. A
realization of such ideas gave rise to the Barrett–Crane [BC98] and EPRL [Eng+08] models.
Here the input braided monoidal category is the category of representations of the quantum
group Repq(SO(1, 3)) (where q is related to the cosmological constant). Another motivation
for its study is that the Crane–Yetter theory for the category Repq(G) of representations
of the quantum group is a useful organization tool for the geometric Langlands program
[KW07; BN18]. A final motivation we will mention is that when the input is a modular
tensor category, we obtain an invertible TQFT which may be viewed as an anomaly theory
for the Reshetikhin–Turaev TQFT [Wal91].

1. Top-down approach

One way to construct a TQFT is to define invariants of closed 4-manifolds, state spaces
for closed 3-manifolds, relative invariants for compact 4-manifolds with boundary and so on.
We begin with this approach.

1.1. Partition function. Let k be a field and C a k-linear modular tensor category. Recall
that this means the following:

• C is a braided monoidal category.
• The Hom-spaces are finite-dimensional vector spaces.
• C is rigid as a monoidal category, i.e. every object has a dual.
• C has a balancing (also known as a twist) θx : x→ x.
• C is a semisimple category with finitely many simple objects. Our convention is that
the unit is simple and any simple object has only scalar endomorphisms (automatic
if k is algebraically closed).
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• Any object x ∈ C such that σy,x ◦ σx,y = idx⊗y for every y ∈ C has to be a sum of the
unit object.

Let {xi} be the collection of simple objects of C.
We are going to define the partition function of the 4d TQFT on a closed oriented 4-

manifold as a state sum. Namely, for a triangulated 4-manifold M it is a sum over labelings
of simplices of the triangulation of certain weights computed from the labeling. We consider
the following labelings:

• We label a 2-simplex (a triangle) by a simple object xi.
• A 3-simplex (a tetrahedron) has 4 faces labeled by simple objects xa, xb, xc, xd. We
then label the 3-simplex by a basis vector of Hom(1, xa ⊗ xb ⊗ xc ⊗ xd).

Given a labeled triangulation, to each 4-simplex we can associate a weight W ∈ k (known
as a 15j symbol) computed using the ribbon structure on C (see [BB18, Section 5.1]). Then
the partition function is given by

(1) Z(M) =
∑

labelings of M

W.

To see that Z(M) is well-defined, on has to show independence of the above expression
from the choice of a triangulation. This can be verified by checking the invariance of Z(M)
under Pachner moves [Pac91].

If C is a modular tensor category, we denote by

dim(C) =
∑
i

dim(xi)
2

its global dimension and by

p± =
∑
i

θ±1
i dim(xi)

its Gauss sums , where θi is the value of the balancing on xi.
The following is shown in [CKY93; CKY97].

Proposition 1.1 (Crane–Yetter–Kauffman). Let M be a closed oriented manifold and C a
modular tensor category. Then

Z(M) = dim(C)χ(M)/2(p+/p−)σ(M)/2.

Remark 1.2. More generally, it is shown in [Sch17] that a fully extended invertible 4d TFT
Z is determined by two complex numbers λ1, λ2, so that the value on a closed oriented
4-manifold M is

Z(M) = λ
χ(M)
1 λ

3σ(M)
2 .

So, we see that the above state sum is a bit boring: it is simply a local way to compute
the signature and the Euler characteristic. We will see that weakening assumptions on C in
lower dimensions will give rise to a more interesting TFT.
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1.2. State spaces. For a state sum model there is a standard procedure to define state
spaces for closed oriented 3-manifolds N , so that if M is a 4-manifold with boundary ∂M ,
the partition function Z(M) is a functional Z(M) : Z(∂M)→ C.

Namely, suppose N is a triangulated 3-manifold. We define the vector space

H(N) =
⊕

labelings of N

C.

Given a compatible triangulation of N × [0, 1] we may define a linear map
Z(N × [0, 1]) : H(N)→ H(N)

by generalizing the state sum (1) to include the boundary. We then define the state space
Z(N) = im(Z(N × [0, 1]) : H(N)→ H(N)).

Remark 1.3. A related definition of the state space Z(N) was given by Walker and Wang
[WW11] who use a dual graph to the triangulation.

If M is a triangulated 4-manifold with boundary, we have a functional
Z(M) : Z(∂M) −→ C

defined as before, but where we sum over the labelings of the interior of M .
There is an alternative presentation of the state space Z(N) due to Walker [Wal06] which

we only sketch. Here we assume that C is merely a ribbon category which is not required
to be modular or even semisimple. The informal definition of the skein module is given as
follows.

Definition 1.4. Let C be a ribbon category and N an oriented 3-manifold. The C-skein
module SkC(N) is the k-vector space spanned by C-colored ribbon graphs modulo isotopy
and local relations coming from C.

We refer to [Tur94, Section I.2] for the precise definition of a C-colored ribbon graph. The
rough idea is that it is an oriented graph (with edges being bands) embedded in N with
edges labeled by objects of C and vertices labeled by morphisms in C. Such graphs can be
interpreted in terms of the graphical calculus for ribbon categories and we impose relations
coming from such an interpretation.

Expectation 1.5. Let C be a ribbon fusion category. Then Z(N) ∼= SkC(N).

Remark 1.6. There is an analogous state-sum TQFT in 3 dimensions due to Turaev and Viro
[TV92] whose input is a spherical fusion category. There is a “state sum” definition of the
state space ZTV(Σ) for an oriented surface Σ. There is also a definition of the space of string
nets Hstring(Σ) due to Levin and Wen [LW05] which is analogous to the above definition
of the skein module SkC. It is then a theorem of Kirillov [Kir11] that there is a natural
isomorphism Hstring(Σ) ∼= ZTV(Σ). See also [Goo18] where this statement was extended to
an equivalence of 1-2-3 TQFTs.

Here are some computations of skein modules. Let us recall that if C is a k-linear category,
its Hochschild homology is given by the coend

HH0(C) =

∫ x∈C
HomC(x, x).
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Proposition 1.7. Let C be a ribbon category. Then:
• SkC(B3) ∼= SkC(S3) ∼= k.
• SkC(S2 × S1) ∼= HH0(ZMüg(C)), where ZMüg(C) is the Müger center: the full sub-
category of C of objects x ∈ C such that σy,x ◦ σx,y = idx⊗y for every y ∈ C.

1.3. Extension to lower-dimensional manifolds. We may also extend the TQFT to
lower-dimensional manifolds. Let us sketch how such an extension works in the “skein”
approach:

• Let Σ be an oriented surface and C a balanced monoidal category. The skein cate-
gory SkCatC(Σ) is the category whose objects are collections of points on Σ labeled
by objects of C and morphisms are given by the relative C-skein module of Σ× [0, 1]
where the ribbon graphs end on the given points in Σ× {0} and Σ× {1}. We refer
to [Coo19, Section 1] for more details.
• Let S be an oriented 1-manifold. The skein 2-category Sk2CatC(C) is the 2-
category with a single object, endomorphisms of which are given by the monoidal
category SkCatC(S × (0, 1)).

1.4. Relationship to the Chern–Simons theory. Let C be a modular tensor category.
Reshetikhin and Turaev [RT91; Bar+15] associate to it a 3-2-1 TQFT ZRT, so that

ZRT(S1) = C.

Remark 1.8. If we take C to be the semisimplification of the category of tilting modules over
the quantum group Uq(g) where q is a root of unity, the corresponding Reshetikhin–Turaev
theory is expected to be a formalization of the topological Chern–Simons theory [Wit89].

However, ZRT is not an oriented TQFT. Instead, it requires a choice of an additional
structure on the 3-manifold to define the partition function. This problem is known as a
framing anomaly.

Definition 1.9. Let M be an oriented 3-manifold. A p1-structure is a homotopy class of
the trivialization of the composite

M
TM−−→ BSO(3)

p1−→ K(Z, 4).

Let Trivp1(M) be the set of p1-structures on M .

If M is an oriented 3-manifold, we may consider the SO(6)-bundle TM ⊕ TM . It has a
canonical spin structure, so it gives rise to a Spin(6)-bundle which we denote by 2TM . The
following notion is introduced in [Ati90].

Definition 1.10. Let M be an oriented 3-manifold. A 2-framing is a homotopy class of
the trivialization of

M
2TM−−→ BSpin(6).

Let TrivAt(M) be the set of 2-framings on M .

Theorem 1.11 (Atiyah). Trivp1(M) and TrivAt(M) are naturally isomorphic Z-torsors.

Here is another possible extra structure one may consider.
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Definition 1.12. Let M be a closed oriented 3-manifold. A componentwise signature
structure is a choice of a bounding oriented 4-manifold for each connected component of
M considered up to an oriented 5-cobordism. Let Trivcsgn(M) be the set of such.

Proposition 1.13. There is an isomorphism 3Trivcsgn(M) ∼= Trivp1(M) of Z-torsors.

Given a Z-torsor P and a complex number λ ∈ C×, there is a complex line λP constructed
as

λP = C[P ]/ ∼,
where we identify p ∼ λp−qq for every p, q ∈ P .

Proposition 1.14. Let C be a modular tensor category and M a closed oriented 3-manifold.
Then we have an isomorphism of lines

Z(M) ∼=
(√

p+/p−

)Trivcsgn(M)

.

LetM be a connected closed oriented 3-manifold. We have a canonical vector 1 ∈ SkC(M)
given by embedding the unknot labeled by the unit into M . If W is an oriented 4-manifold
with boundary M , then it gives rise to a functional

Z(W ) : Z(M)→ C.

We then obtain the Reshetikhin–Turaev invariant of M as

ZRT(M) = Z(W )(1).

We refer to [Lic93; Bla+95; Wal91] for further details.

2. Bottom-up approach

2.1. Crane–Yetter as a fully extended TQFT. Our goal will be to explain a fully local
(i.e. fully extended) approach to constructing the Crane–Yetter TQFT. From section 1.3 we
expect the following kind of assignment:

• To the point we assign a braided monoidal category.
• To the circle we assign a monoidal category.
• To a surface we assign a category.
• ...

We may organize braided monoidal categories into a Morita 4-category BrTens (see [Hau17;
Sch14a; JS17; BJS18]) as follows:

• Its objects are braided monoidal categories A.
• 1-morphisms from A to B are given by monoidal categories C together with a braided
monoidal functor A ⊗ Bσop → ZDr(C) into the Drinfeld center. In this case we will
say that C is an A⊗Bσop-monoidal category .
• 2-morphisms from ACB to ADB are given by (C,D)-bimodule categories compatible
with the action of A and B on C and D.
• 3-morphisms are given by functors of bimodule categories.
• 4-morphisms are given by natural transformations.



6 PAVEL SAFRONOV

Remark 2.1. The above definition makes sense for braided monoidal objects of an arbitrary
symmetric monoidal 2-category. We may then further specify that 2-category to be the 2-
category of locally presentable k-linear categories with k-linear colimit-preserving functors as
morphisms in which case we recover the definition of [BJS18]. In these notes the background
2-category will not be made explicit.

We will also need the (∞, n)-category Bordor
n of n-dimensional bordisms whose objects

are compact oriented 0-manifolds, 1-morphisms are oriented 1-cobordisms and so on up to
dimension n, (n+ 1)-morphisms are diffeomorphisms of n-dimensional cobordisms, (n+ 2)-
morphisms are isotopies and so on. We refer to [Lur09; CS19] for more details.

We expect the Crane–Yetter theory to define a functor
Z : Bordor

4 → BrTens.

Constructing such a functor directly would amount to providing an infinite collection of
data. We will, however, use the cobordism hypothesis [BD95; Lur09] to give a hands-on
construction of such a functor.

2.2. Cobordism hypothesis.

Definition 2.2. Let C be a symmetric monoidal (∞, n)-category. We say it has adjoints
if every object is dualizable and every k-morphism has left and right adjoints for every
0 < k < n.

Definition 2.3. Let C be a symmetric monoidal (∞, n)-category. An object x ∈ C is k-
dualizable if there is a symmetric monoidal (∞, k)-subcategory C′ ⊂ C such that x ∈ C′

and C′ has adjoints. For k = n we say x ∈ C is fully dualizable .

Recall that a k-manifold M has an n-framing (here k ≤ n) if the n-dimensional vector
bundle TM ⊕Rn−k is equipped with a trivialization. Let Bordfrn be the symmetric monoidal
(∞, n)-category of bordisms equipped with an n-framing. If C,D are symmetric monoidal
(∞, n)-categories, we denote by Fun⊗(C,D) the (∞, n)-category of symmetric monoidal func-
tors from C to D.

We have the following important result [BD95; Lur09].

Theorem 2.4 (Cobordism hypothesis). Let C be a symmetric monoidal (∞, n)-category.
The functor

Fun⊗(Bordfrn ,C) −→ C

Z 7→ Z(pt)

establishes an equivalence of (∞, n)-categories

Fun⊗(Bordfr
n ,C) ∼= (Cfd)∼,

where (Cfd)∼ is the ∞-groupoid of fully dualizable objects in C.

Let us try to unpack what a 2-dualizable object x ∈ C is:
• x ∈ C is a dualizable object. That is, it admits a dual x∨ ∈ C, a coevaluation
morphism coev : 1→ x⊗ x∨ and an evaluation morphism x∨ ⊗ x→ 1 such that the
composites

x
coev⊗id−−−−→ x⊗ x∨ ⊗ x id⊗ev−−−→ x
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and
x∨

id⊗coev−−−−→ x∨ ⊗ x⊗ x∨ ev⊗id−−−→ x∨

are equivalent to the identities.
• The coevaluation morphism coev has an infinite chain of right adjoints coevR, coevRR, . . .
and left adjoints coevL, coevLL, . . . and similarly for the evaluation morphism.

So, the cobordism hypothesis (theorem 2.4) is not entirely satisfying from a computational
perspective since already in dimension 2 we need to check an infinite amount of conditions.
However, the evaluation map ev : x∨ ⊗ x → 1 is dual to the coevaluation map coev : 1 →
x ⊗ x∨. So, coev is right-adjointable iff ev is left-adjointable. This observation can be
strengthened to the following statement (see [Lur09, Proposition 4.2.3] and [Pst14, Theorem
3.9]).

Theorem 2.5. Let C be a symmetric monoidal (∞, 2)-category. An object x ∈ C is 2-
dualizable iff the following conditions are satisfied:

(1) It is dualizable.
(2) The evaluation and coevaluation morphisms ev, coev admit right adjoints evR, coevR.

We will also need a similar statement for 3-dualizable objects (see [Ara17]).

Theorem 2.6. Let C be a symmetric monoidal (∞, 3)-category. An object x ∈ C is 3-
dualizable iff the following conditions are satisfied:

(1) It is dualizable.
(2) The evaluation and coevaluation morphisms ev, coev admit right adjoints evR, coevR.
(3) The unit and counit 2-morphisms ηev, εev, ηcoev, εcoev admit right adjoints.

2.3. Oriented cobordism hypothesis. There is an SO(n)-action on Bordfrn given by act-
ing on the n-framing TM ⊕ Rn−k ∼= Rn. This induces an action on Fun⊗(Bordfrn ,C) and
hence, by the cobordism hypothesis (theorem 2.4), on the ∞-groupoid of fully dualizable
objects.

Theorem 2.7 (Oriented cobordism hypothesis). Let C be a symmetric monoidal (∞, n)-
category. There is an equivalence of (∞, n)-categories

Fun⊗(Bordor
n ,C) ∼= ((Cfd)∼)SO(n),

where ((Cfd)∼)SO(n) is the ∞-groupoid of homotopy SO(n)-fixed points on (Cfd)∼.

The data of an SO(2)-action on the ∞-groupoid (Cfd)∼ consists of a map

CP∞ ∼= BSO(2)→ (Cfd)∼.

In particular, the induced map on π2 sends the generator of π2(BSO(2)) ∼= Z to a natural
automorphism Sx : x→ x for every object x ∈ Cfd which is known as the Serre automor-
phism .

Proposition 2.8. Suppose x ∈ C is a 2-dualizable object. The composite

x
evR⊗id−−−−→ x⊗ x∨ ⊗ x id⊗ev−−−→ x
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coincides with the Serre automorphism Sx : x→ x. The composite

x
coev⊗id−−−−→ x⊗ x∨ ⊗ x id⊗coevR

−−−−−→ x

is the inverse of the Serre automorphism.

In a similar way, the data of an SO(3)-action gives rise to the Serre automorphism as
before. However, since π2(BSO(3)) ∼= Z/2, the square of the Serre automorphism has a
trivialization known as the Radford isomorphism. We refer to [Sch14b] for further details.

2.4. 2-dualizability. Our next goal is to establish when a braided monoidal category C ∈
BrTens is 2-dualizable, 3-dualizable and so on, so that it defines a functor Bordfr

n → BrTens.
We begin with the following statement (see [Lur09; Sch14a]).

Theorem 2.9. Any object C ∈ BrTens is 2-dualizable.

In fact, the corresponding functor Bordfr
2 → BrTens may be constructed using the theory

of factorization homology [AF15], i.e. the value of the TFT on a surface S is
∫
S
C. So, we

have constructed a 2-1-0 part of a 4d TFT.

Remark 2.10. Factorization homology is defined for all surfaces S, not necessarily compact.
Moreover, it satisfies a useful gluing axiom (excision) which allows one to compute it using
a cover of S. We refer to [BBJ18a; BBJ18b] for many computations of the value of the
Crane–Yetter TFT on surfaces.

We will now write out concretely the dualizability data following [GS18; BJS18]. Given a
braided monoidal category C we denote by Cσop the same monoidal category equipped with
the opposite braiding, i.e. with the braiding

σ−1
y,x : x⊗ y → y ⊗ x.

Lemma 2.11. Suppose C is a monoidal category. Then there is a braided monoidal equiva-
lence

(2) Z(C⊗op) ∼= Z(C)σop.

Moreover, there is a natural braided monoidal functor

(3) C⊗ Cσop −→ ZDr(C).

If we denote objects of ZDr(C) by pairs (x, αx : x⊗ (−)
∼−→ (−)⊗ x), then it sends

x� 1 7→ (x, σx,−), 1� x 7→ (x, σ−1
−,x).

Theorem 2.12. Every object C ∈ BrTens is dualizable. The dual is given by Cσop. The
evaluation and coevaluation are given by C viewed as a C⊗ Cσop-monoidal category via C⊗
Cσop → ZDr(C).

Theorem 2.13. Every 1-morphism A
C−→ B in BrTens, i.e. an A⊗Bσop-monoidal category

C, has a right adjoint given by C⊗op, the same category with the opposite monoidal structure
and equipped with a braided monoidal functor B ⊗ Aσop → ZDr(C)σop ∼= ZDr(C

⊗op). The
unit η : A → C ⊗B C⊗op is given by C as an (A,C ⊗B C⊗op)-bimodule category. The counit
ε : C⊗op ⊗A C→ B is given by C as a (C⊗op ⊗A C,B)-bimodule category.
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Let C ∈ BrTens be a braided monoidal category. From the above description of adjoints
we may compute the Serre automorphism as follows. By theorem 2.12 the evaluation 1-
morphism is C viewed as a C ⊗ Cσop-monoidal category via (3). By theorem 2.13 its right
adjoint is C⊗op viewed as a Cσop ⊗ C-monoidal category via

Cσop ⊗ C
(3)−→ ZDr(C)σop (2)−→ ZDr(C

⊗op).

There are two monoidal equivalences

F1, F2 : C
∼−→ C⊗op :

both have the identity underlying functor and the monoidal structure given by either the
braiding or its inverse. Therefore, the right adjoint to evaluation is given by the composite

C⊗ Cσop flip−→ Cσop ⊗ C
(3)−→ ZDr(C)σop (2)−→ ZDr(C

⊗op)
Fi−→ ZDr(C).

The underlying functor coincides with the underlying functor for coev, but the monoidal
structure turns out to be twisted. We denote by

F−1
2 F1 : C

∼−→ C

the identity functor equipped with the monoidal structure given by σy,x ◦ σx,y. It is not
difficult to see that it is braided monoidal.

Proposition 2.14. For a braided monoidal category C the Serre automorphism SC : C→ C

is the C⊗ Cσop-monoidal category C via

C⊗ Cσop F−1
2 F1⊗id
−−−−−−→ C⊗ Cσop (3)−→ ZDr(C)

or, equivalently, via

C⊗ Cσop id⊗F−1
1 F2−−−−−−→ C⊗ Cσop (3)−→ ZDr(C).

2.5. 3-dualizability. In the previous section we have seen that every braided monoidal
category C ∈ BrTens is 2-dualizable. We will now analyze the conditions for C to be 3-
dualizable.

It will be convenient to introduce the following notation.

Definition 2.15. Let C be a braided monoidal category. The monoidal category HC(C) is

HC(C) = C⊗op ⊗C⊗Cσop C.

Remark 2.16. Since HC(C) is defined as a relative tensor product, it is not easy to write
objects of HC(C) (or functors into HC(C)), but it is easy to write functors out of HC(C).
For instance, HC(C)-module categories are the same as C-braided module categories, see
[BBJ18b, Theorem 3.11]. If C is cp-rigid (see [BJS18, Definition 4.1] for what this means),
HC(C) is equivalent to the Drinfeld center ZDr(C) as a plain category. However, the two
monoidal structures are different (for instance, the monoidal structure on HC(C) is not
braided unless C is symmetric).

From theorem 2.12 we have the following coevaluation and evaluation morphisms:
• coev : 1→ C⊗ Cσop is C as a C⊗ Cσop-monoidal category.
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• ev : C⊗ Cσop → 1 is C as a C⊗ Cσop-monoidal category.
From theorem 2.13 the above maps are right-adjointable with the following unit and counit

morphisms:
• ηcoev is C as a (1,HC(C))-bimodule category.
• εcoev is C as a (C⊗op ⊗ C,C⊗ Cσop)-bimodule category.
• ηev is C as a (C⊗ Cσop,C⊗ C⊗op)-bimodule category.
• εev is C as an (HC(C),1)-bimodule category.

To analyze their right-adjointability, it will be convenient to use the following statement
(see [BJS18, Proposition 5.17] and [Lur17, Proposition 4.6.2.13]).

Proposition 2.17. Let A,B ∈ BrTens be braided monoidal category, C,D : A → B be
A⊗Bσop-monoidal categories and M : C⇒ D a (C,D)-bimodule category. Then M is right-
adjointable iff M is dualizable as a D-module category.

With the help of the above statement and theorem 2.6 we finally arrive at the following
characterization of 3-dualizable objects.

Theorem 2.18. A braided monoidal category C ∈ BrTens is 3-dualizable iff the following
conditions are satisfied:

(1) C is dualizable as a plain category.
(2) C is dualizable as a C⊗ C⊗op-module category.
(3) C is dualizable as an HC(C)-module category.

The above characterization can be made a bit more explicit by introducing the notion of
semi-rigidity (see [Gai15, Appendix D], [BN09, Section 3]).

Definition 2.19. A monoidal category C is semi-rigid if it is dualizable as a plain category
and the tensor functor C⊗C→ C viewed as a morphism of C⊗C⊗op-module categories admits
a right adjoint.

Remark 2.20. Suppose C is a locally-presentable monoidal category which has enough com-
pact projectives. Then C is semi-rigid iff all compact projective objects are dualizable [BJS18,
Proposition 4.1].

The following is shown in [BJS18].

Theorem 2.21. Let C ∈ BrTens be a semi-rigid braided monoidal category. Then it is
3-dualizable.

The previous characterization allows one to construct many functors Bordfr
3 → BrTens,

i.e. 3-dimensional TQFTs.

Example 2.22. Suppose C = Repq(G) is the C[q, q−1]-linear category of representations of
the Lusztig integral form of the quantum group. Choosing a root of q, we may endow
C with a balanced monoidal structure. By [APW91] it has enough compact projectives.
Moreover, every finite-dimensional representation is dualizable, so C is cp-rigid. Therefore,
it defines a 3-2-1-0 part of a 4d TFT. It is expected to be a mathematical formalization of
the Kapustin–Witten 4d TFT [KW07; BN18].
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Example 2.23. Suppose C is a modular tensor category. Since it is semisimple, it clearly
has enough compact projectives. Moreover, it is obviously cp-rigid. Therefore, it defines a
3-2-1-0 part of a 4d TFT. It is invertible and expected to coincide with the Crane–Yetter 4d
TFT.
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