4-DIMENSIONAL TQFTS FROM BRAIDED MONOIDAL CATEGORIES

PAVEL SAFRONOV

ABSTRACT. These are notes from lectures given at the introductory workshop on higher categories and categorification at MSRI in Feburary 2020.

INTRODUCTION

These lectures will have the following two goals:

- Introduce a class of 4-dimensional topological field theories obtained from braided monoidal categories.
- Explain in practical terms how to work with the cobordism hypothesis in low dimensions.

We will concentrate on a 4-dimensional TQFT initially defined by Crane and Yetter [CY93]. One motivation for its study is its relationship to 4-dimensional quantum gravity: quantum gravity may be viewed as a Crane–Yetter (or BF) theory with constraints. A realization of such ideas gave rise to the Barrett–Crane [BC98] and EPRL [Eng+08] models. Here the input braided monoidal category is the category of representations of the quantum group $\operatorname{Rep}_q(\operatorname{SO}(1,3))$ (where q is related to the cosmological constant). Another motivation for its study is that the Crane–Yetter theory for the category $\operatorname{Rep}_q(G)$ of representations of the quantum group is a useful organization tool for the geometric Langlands program [KW07; BN18]. A final motivation we will mention is that when the input is a modular tensor category, we obtain an invertible TQFT which may be viewed as an anomaly theory for the Reshetikhin–Turaev TQFT [Wal91].

1. TOP-DOWN APPROACH

One way to construct a TQFT is to define invariants of closed 4-manifolds, state spaces for closed 3-manifolds, relative invariants for compact 4-manifolds with boundary and so on. We begin with this approach.

1.1. **Partition function.** Let k be a field and \mathcal{C} a k-linear modular tensor category. Recall that this means the following:

- C is a braided monoidal category.
- The Hom-spaces are finite-dimensional vector spaces.
- C is rigid as a monoidal category, i.e. every object has a dual.
- \mathcal{C} has a balancing (also known as a twist) $\theta_x \colon x \to x$.
- \mathcal{C} is a semisimple category with finitely many simple objects. Our convention is that the unit is simple and any simple object has only scalar endomorphisms (automatic if k is algebraically closed).

• Any object $x \in \mathcal{C}$ such that $\sigma_{y,x} \circ \sigma_{x,y} = \mathrm{id}_{x \otimes y}$ for every $y \in \mathcal{C}$ has to be a sum of the unit object.

Let $\{x_i\}$ be the collection of simple objects of \mathcal{C} .

We are going to define the partition function of the 4d TQFT on a closed oriented 4manifold as a state sum. Namely, for a triangulated 4-manifold M it is a sum over labelings of simplices of the triangulation of certain weights computed from the labeling. We consider the following labelings:

- We label a 2-simplex (a triangle) by a simple object x_i .
- A 3-simplex (a tetrahedron) has 4 faces labeled by simple objects x_a, x_b, x_c, x_d . We then label the 3-simplex by a basis vector of Hom $(1, x_a \otimes x_b \otimes x_c \otimes x_d)$.

Given a labeled triangulation, to each 4-simplex we can associate a weight $W \in k$ (known as a 15*j* symbol) computed using the ribbon structure on \mathcal{C} (see [BB18, Section 5.1]). Then the partition function is given by

(1)
$$Z(M) = \sum_{\text{labelings of } M} W.$$

To see that Z(M) is well-defined, on has to show independence of the above expression from the choice of a triangulation. This can be verified by checking the invariance of Z(M)under Pachner moves [Pac91].

If C is a modular tensor category, we denote by

$$\dim(\mathcal{C}) = \sum_{i} \dim(x_i)^2$$

its **global dimension** and by

$$p^{\pm} = \sum_{i} \theta_i^{\pm 1} \dim(x_i)$$

its **Gauss sums**, where θ_i is the value of the balancing on x_i .

The following is shown in [CKY93; CKY97].

Proposition 1.1 (Crane–Yetter–Kauffman). Let M be a closed oriented manifold and C a modular tensor category. Then

$$Z(M) = \dim(\mathfrak{C})^{\chi(M)/2} (p_+/p_-)^{\sigma(M)/2}.$$

Remark 1.2. More generally, it is shown in [Sch17] that a fully extended invertible 4d TFT Z is determined by two complex numbers λ_1, λ_2 , so that the value on a closed oriented 4-manifold M is

$$Z(M) = \lambda_1^{\chi(M)} \lambda_2^{3\sigma(M)}.$$

So, we see that the above state sum is a bit boring: it is simply a local way to compute the signature and the Euler characteristic. We will see that weakening assumptions on \mathcal{C} in lower dimensions will give rise to a more interesting TFT.

 $\mathbf{2}$

1.2. State spaces. For a state sum model there is a standard procedure to define state spaces for closed oriented 3-manifolds N, so that if M is a 4-manifold with boundary ∂M , the partition function Z(M) is a functional $Z(M): Z(\partial M) \to \mathbb{C}$.

Namely, suppose N is a triangulated 3-manifold. We define the vector space

$$H(N) = \bigoplus_{\text{labelings of } N} \mathbf{C}$$

Given a compatible triangulation of $N \times [0, 1]$ we may define a linear map

$$Z(N \times [0,1]) \colon H(N) \to H(N)$$

by generalizing the state sum (1) to include the boundary. We then define the state space

$$Z(N) = \operatorname{im}(Z(N \times [0, 1]) \colon H(N) \to H(N)).$$

Remark 1.3. A related definition of the state space Z(N) was given by Walker and Wang [WW11] who use a dual graph to the triangulation.

If M is a triangulated 4-manifold with boundary, we have a functional

$$Z(M) \colon Z(\partial M) \longrightarrow \mathbf{C}$$

defined as before, but where we sum over the labelings of the interior of M.

There is an alternative presentation of the state space Z(N) due to Walker [Wal06] which we only sketch. Here we assume that \mathcal{C} is merely a ribbon category which is not required to be modular or even semisimple. The informal definition of the skein module is given as follows.

Definition 1.4. Let \mathcal{C} be a ribbon category and N an oriented 3-manifold. The *C-skein* module $\mathrm{Sk}_{\mathcal{C}}(N)$ is the *k*-vector space spanned by *C*-colored ribbon graphs modulo isotopy and local relations coming from \mathcal{C} .

We refer to [Tur94, Section I.2] for the precise definition of a C-colored ribbon graph. The rough idea is that it is an oriented graph (with edges being bands) embedded in N with edges labeled by objects of C and vertices labeled by morphisms in C. Such graphs can be interpreted in terms of the graphical calculus for ribbon categories and we impose relations coming from such an interpretation.

Expectation 1.5. Let \mathcal{C} be a ribbon fusion category. Then $Z(N) \cong Sk_{\mathcal{C}}(N)$.

Remark 1.6. There is an analogous state-sum TQFT in 3 dimensions due to Turaev and Viro [TV92] whose input is a spherical fusion category. There is a "state sum" definition of the state space $Z_{\rm TV}(\Sigma)$ for an oriented surface Σ . There is also a definition of the space of string nets $H^{\rm string}(\Sigma)$ due to Levin and Wen [LW05] which is analogous to the above definition of the skein module Sk_c. It is then a theorem of Kirillov [Kir11] that there is a natural isomorphism $H^{\rm string}(\Sigma) \cong Z_{\rm TV}(\Sigma)$. See also [Goo18] where this statement was extended to an equivalence of 1-2-3 TQFTs.

Here are some computations of skein modules. Let us recall that if \mathcal{C} is a k-linear category, its Hochschild homology is given by the coend

$$\mathrm{HH}_{0}(\mathcal{C}) = \int^{x \in \mathcal{C}} \mathrm{Hom}_{\mathcal{C}}(x, x).$$

Proposition 1.7. Let C be a ribbon category. Then:

- $\operatorname{Sk}_{\mathfrak{C}}(B^3) \cong \operatorname{Sk}_{\mathfrak{C}}(S^3) \cong k.$
- $\operatorname{Sk}_{\mathbb{C}}(S^2 \times S^1) \cong \operatorname{HH}_0(\mathbb{Z}_{M\ddot{u}g}(\mathbb{C}))$, where $\mathbb{Z}_{M\ddot{u}g}(\mathbb{C})$ is the Müger center: the full subcategory of \mathbb{C} of objects $x \in \mathbb{C}$ such that $\sigma_{y,x} \circ \sigma_{x,y} = \operatorname{id}_{x \otimes y}$ for every $y \in \mathbb{C}$.

1.3. Extension to lower-dimensional manifolds. We may also extend the TQFT to lower-dimensional manifolds. Let us sketch how such an extension works in the "skein" approach:

- Let Σ be an oriented surface and C a balanced monoidal category. The skein category SkCat_C(Σ) is the category whose objects are collections of points on Σ labeled by objects of C and morphisms are given by the relative C-skein module of Σ × [0, 1] where the ribbon graphs end on the given points in Σ × {0} and Σ × {1}. We refer to [Coo19, Section 1] for more details.
- Let S be an oriented 1-manifold. The *skein 2-category* $Sk2Cat_{\mathcal{C}}(C)$ is the 2-category with a single object, endomorphisms of which are given by the monoidal category $SkCat_{\mathcal{C}}(S \times (0, 1))$.

1.4. Relationship to the Chern–Simons theory. Let \mathcal{C} be a modular tensor category. Reshetikhin and Turaev [RT91; Bar+15] associate to it a 3-2-1 TQFT Z_{RT} , so that

$$Z_{\mathrm{RT}}(S^1) = \mathfrak{C}$$

Remark 1.8. If we take \mathcal{C} to be the semisimplification of the category of tilting modules over the quantum group $U_q(\mathfrak{g})$ where q is a root of unity, the corresponding Reshetikhin–Turaev theory is expected to be a formalization of the topological Chern–Simons theory [Wit89].

However, Z_{RT} is not an oriented TQFT. Instead, it requires a choice of an additional structure on the 3-manifold to define the partition function. This problem is known as a *framing anomaly*.

Definition 1.9. Let M be an oriented 3-manifold. A p_1 -structure is a homotopy class of the trivialization of the composite

$$M \xrightarrow{\mathrm{T}_M} \mathrm{BSO}(3) \xrightarrow{p_1} K(\mathbf{Z}, 4).$$

Let $\operatorname{Triv}_{p_1}(M)$ be the set of p_1 -structures on M.

If M is an oriented 3-manifold, we may consider the SO(6)-bundle $T_M \oplus T_M$. It has a canonical spin structure, so it gives rise to a Spin(6)-bundle which we denote by $2T_M$. The following notion is introduced in [Ati90].

Definition 1.10. Let M be an oriented 3-manifold. A *2-framing* is a homotopy class of the trivialization of

 $M \xrightarrow{2\mathrm{T}_M} \mathrm{BSpin}(6).$

Let $\operatorname{Triv}_{At}(M)$ be the set of 2-framings on M.

Theorem 1.11 (Atiyah). Triv_{p1}(M) and Triv_{At}(M) are naturally isomorphic **Z**-torsors.

Here is another possible extra structure one may consider.

4

Definition 1.12. Let M be a closed oriented 3-manifold. A *componentwise signature* structure is a choice of a bounding oriented 4-manifold for each connected component of M considered up to an oriented 5-cobordism. Let $\text{Triv}_{csan}(M)$ be the set of such.

Proposition 1.13. There is an isomorphism $3\operatorname{Triv}_{csqn}(M) \cong \operatorname{Triv}_{p_1}(M)$ of **Z**-torsors.

Given a **Z**-torsor P and a complex number $\lambda \in \mathbf{C}^{\times}$, there is a complex line λ^{P} constructed as

$$\lambda^P = \mathbf{C}[P] / \sim,$$

where we identify $p \sim \lambda^{p-q} q$ for every $p, q \in P$.

Proposition 1.14. Let C be a modular tensor category and M a closed oriented 3-manifold. Then we have an isomorphism of lines

$$Z(M) \cong \left(\sqrt{p_+/p_-}\right)^{\operatorname{Triv}_{csgn}(M)}.$$

Let M be a connected closed oriented 3-manifold. We have a canonical vector $1 \in \text{Sk}_{\mathbb{C}}(M)$ given by embedding the unknot labeled by the unit into M. If W is an oriented 4-manifold with boundary M, then it gives rise to a functional

$$Z(W)\colon Z(M)\to \mathbf{C}.$$

We then obtain the Reshetikhin–Turaev invariant of M as

$$Z_{\rm RT}(M) = Z(W)(1).$$

We refer to [Lic93; Bla+95; Wal91] for further details.

2. Bottom-up approach

2.1. Crane–Yetter as a fully extended TQFT. Our goal will be to explain a fully local (i.e. fully extended) approach to constructing the Crane–Yetter TQFT. From section 1.3 we expect the following kind of assignment:

- To the point we assign a braided monoidal category.
- To the circle we assign a monoidal category.
- To a surface we assign a category.

• ...

We may organize braided monoidal categories into a Morita 4-category BrTens (see [Hau17; Sch14a; JS17; BJS18]) as follows:

- Its objects are braided monoidal categories A.
- 1-morphisms from \mathcal{A} to \mathcal{B} are given by monoidal categories \mathcal{C} together with a braided monoidal functor $\mathcal{A} \otimes \mathcal{B}^{\sigma op} \to Z_{Dr}(\mathcal{C})$ into the Drinfeld center. In this case we will say that \mathcal{C} is an $\mathcal{A} \otimes \mathcal{B}^{\sigma op}$ -monoidal category.
- 2-morphisms from ${}_{\mathcal{A}}\mathcal{C}_{\mathcal{B}}$ to ${}_{\mathcal{A}}\mathcal{D}_{\mathcal{B}}$ are given by $(\mathcal{C}, \mathcal{D})$ -bimodule categories compatible with the action of \mathcal{A} and \mathcal{B} on \mathcal{C} and \mathcal{D} .
- 3-morphisms are given by functors of bimodule categories.
- 4-morphisms are given by natural transformations.

Remark 2.1. The above definition makes sense for braided monoidal objects of an arbitrary symmetric monoidal 2-category. We may then further specify that 2-category to be the 2-category of locally presentable k-linear categories with k-linear colimit-preserving functors as morphisms in which case we recover the definition of [BJS18]. In these notes the background 2-category will not be made explicit.

We will also need the (∞, n) -category $\operatorname{Bord}_n^{\operatorname{or}}$ of *n*-dimensional bordisms whose objects are compact oriented 0-manifolds, 1-morphisms are oriented 1-cobordisms and so on up to dimension n, (n + 1)-morphisms are diffeomorphisms of *n*-dimensional cobordisms, (n + 2)morphisms are isotopies and so on. We refer to [Lur09; CS19] for more details.

We expect the Crane–Yetter theory to define a functor

$$Z \colon \operatorname{Bord}_4^{\operatorname{or}} \to \operatorname{BrTens}.$$

Constructing such a functor directly would amount to providing an infinite collection of data. We will, however, use the cobordism hypothesis [BD95; Lur09] to give a hands-on construction of such a functor.

2.2. Cobordism hypothesis.

Definition 2.2. Let \mathcal{C} be a symmetric monoidal (∞, n) -category. We say *it has adjoints* if every object is dualizable and every k-morphism has left and right adjoints for every 0 < k < n.

Definition 2.3. Let \mathcal{C} be a symmetric monoidal (∞, n) -category. An object $x \in \mathcal{C}$ is *kdualizable* if there is a symmetric monoidal (∞, k) -subcategory $\mathcal{C}' \subset \mathcal{C}$ such that $x \in \mathcal{C}'$ and \mathcal{C}' has adjoints. For k = n we say $x \in \mathcal{C}$ is *fully dualizable*.

Recall that a k-manifold M has an n-framing (here $k \leq n$) if the n-dimensional vector bundle $T_M \oplus \underline{\mathbb{R}}^{n-k}$ is equipped with a trivialization. Let $\operatorname{Bord}_n^{fr}$ be the symmetric monoidal (∞, n) -category of bordisms equipped with an n-framing. If \mathcal{C}, \mathcal{D} are symmetric monoidal (∞, n) -categories, we denote by $\operatorname{Fun}^{\otimes}(\mathcal{C}, \mathcal{D})$ the (∞, n) -category of symmetric monoidal functors from \mathcal{C} to \mathcal{D} .

We have the following important result [BD95; Lur09].

Theorem 2.4 (Cobordism hypothesis). Let \mathcal{C} be a symmetric monoidal (∞, n) -category. The functor

$$\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{fr}, \mathfrak{C}) \longrightarrow \mathfrak{C}$$
$$Z \mapsto Z(\operatorname{pt})$$

establishes an equivalence of (∞, n) -categories

 $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathfrak{C}) \cong (\mathfrak{C}^{\operatorname{fd}})^{\sim},$

where $(\mathcal{C}^{\mathrm{fd}})^{\sim}$ is the ∞ -groupoid of fully dualizable objects in \mathcal{C} .

Let us try to unpack what a 2-dualizable object $x \in \mathcal{C}$ is:

• $x \in \mathcal{C}$ is a dualizable object. That is, it admits a dual $x^{\vee} \in \mathcal{C}$, a coevaluation morphism coev: $\mathbf{1} \to x \otimes x^{\vee}$ and an evaluation morphism $x^{\vee} \otimes x \to \mathbf{1}$ such that the composites

$$x \xrightarrow{\operatorname{coev} \otimes \operatorname{id}} x \otimes x^{\vee} \otimes x \xrightarrow{\operatorname{id} \otimes \operatorname{ev}} x$$

and

 $x^{\vee} \xrightarrow{\operatorname{id} \otimes \operatorname{coev}} x^{\vee} \otimes x \otimes x^{\vee} \xrightarrow{\operatorname{ev} \otimes \operatorname{id}} x^{\vee}$

are equivalent to the identities.

• The coevaluation morphism coev has an infinite chain of right adjoints coev^R, coev^{RR}, ... and left adjoints coev^L, coev^{LL}, ... and similarly for the evaluation morphism.

So, the cobordism hypothesis (theorem 2.4) is not entirely satisfying from a computational perspective since already in dimension 2 we need to check an infinite amount of conditions. However, the evaluation map ev: $x^{\vee} \otimes x \to 1$ is dual to the coevaluation map coev: $1 \to x \otimes x^{\vee}$. So, coev is right-adjointable iff ev is left-adjointable. This observation can be strengthened to the following statement (see [Lur09, Proposition 4.2.3] and [Pst14, Theorem 3.9]).

Theorem 2.5. Let \mathcal{C} be a symmetric monoidal $(\infty, 2)$ -category. An object $x \in \mathcal{C}$ is 2-dualizable iff the following conditions are satisfied:

- (1) It is dualizable.
- (2) The evaluation and coevaluation morphisms ev, coev admit right adjoints ev^{R} , $coev^{R}$.

We will also need a similar statement for 3-dualizable objects (see [Ara17]).

Theorem 2.6. Let \mathcal{C} be a symmetric monoidal $(\infty, 3)$ -category. An object $x \in \mathcal{C}$ is 3-dualizable iff the following conditions are satisfied:

- (1) It is dualizable.
- (2) The evaluation and coevaluation morphisms ev, coev admit right adjoints ev^{R} , $coev^{R}$.
- (3) The unit and counit 2-morphisms η_{ev} , ϵ_{ev} , η_{coev} , ϵ_{coev} admit right adjoints.

2.3. Oriented cobordism hypothesis. There is an SO(n)-action on $Bord_n^{fr}$ given by acting on the *n*-framing $T_M \oplus \underline{\mathbb{R}}^{n-k} \cong \underline{\mathbb{R}}^n$. This induces an action on $Fun^{\otimes}(Bord_n^{fr}, \mathcal{C})$ and hence, by the cobordism hypothesis (theorem 2.4), on the ∞ -groupoid of fully dualizable objects.

Theorem 2.7 (Oriented cobordism hypothesis). Let \mathcal{C} be a symmetric monoidal (∞, n) -category. There is an equivalence of (∞, n) -categories

$$\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{or}}, \mathfrak{C}) \cong ((\mathfrak{C}^{\operatorname{fd}})^{\sim})^{\operatorname{SO}(n)},$$

where $((\mathfrak{C}^{\mathrm{fd}})^{\sim})^{\mathrm{SO}(n)}$ is the ∞ -groupoid of homotopy $\mathrm{SO}(n)$ -fixed points on $(\mathfrak{C}^{\mathrm{fd}})^{\sim}$.

The data of an SO(2)-action on the ∞ -groupoid $(\mathcal{C}^{fd})^{\sim}$ consists of a map

$$\mathbf{CP}^{\infty} \cong \mathrm{BSO}(2) \to (\mathfrak{C}^{\mathrm{fd}})^{\sim}.$$

In particular, the induced map on π_2 sends the generator of $\pi_2(BSO(2)) \cong \mathbb{Z}$ to a natural automorphism $S_x: x \to x$ for every object $x \in C^{\mathrm{fd}}$ which is known as the *Serre automorphism*.

Proposition 2.8. Suppose $x \in \mathcal{C}$ is a 2-dualizable object. The composite

$$x \xrightarrow{\operatorname{ev}^{\mathbf{R}} \otimes \operatorname{id}} x \otimes x^{\vee} \otimes x \xrightarrow{\operatorname{id} \otimes \operatorname{ev}} x$$

coincides with the Serre automorphism $S_x: x \to x$. The composite

$$x \xrightarrow{\operatorname{coev} \otimes \operatorname{id}} x \otimes x^{\vee} \otimes x \xrightarrow{\operatorname{id} \otimes \operatorname{coev}^{\mathsf{R}}} x$$

is the inverse of the Serre automorphism.

In a similar way, the data of an SO(3)-action gives rise to the Serre automorphism as before. However, since $\pi_2(BSO(3)) \cong \mathbb{Z}/2$, the square of the Serre automorphism has a trivialization known as the Radford isomorphism. We refer to [Sch14b] for further details.

2.4. **2-dualizability.** Our next goal is to establish when a braided monoidal category $\mathcal{C} \in$ BrTens is 2-dualizable, 3-dualizable and so on, so that it defines a functor $\operatorname{Bord}_n^{\operatorname{fr}} \to \operatorname{BrTens}$.

We begin with the following statement (see [Lur09; Sch14a]).

Theorem 2.9. Any object $\mathcal{C} \in BrTens$ is 2-dualizable.

In fact, the corresponding functor $\operatorname{Bord}_2^{\operatorname{fr}} \to \operatorname{BrTens}$ may be constructed using the theory of factorization homology [AF15], i.e. the value of the TFT on a surface S is $\int_S \mathcal{C}$. So, we have constructed a 2-1-0 part of a 4d TFT.

Remark 2.10. Factorization homology is defined for all surfaces S, not necessarily compact. Moreover, it satisfies a useful gluing axiom (excision) which allows one to compute it using a cover of S. We refer to [BBJ18a; BBJ18b] for many computations of the value of the Crane–Yetter TFT on surfaces.

We will now write out concretely the dualizability data following [GS18; BJS18]. Given a braided monoidal category \mathcal{C} we denote by $\mathcal{C}^{\sigma op}$ the same monoidal category equipped with the opposite braiding, i.e. with the braiding

$$\sigma_{y,x}^{-1} \colon x \otimes y \to y \otimes x$$

Lemma 2.11. Suppose C is a monoidal category. Then there is a braided monoidal equivalence

(2)
$$Z(\mathcal{C}^{\otimes op}) \cong Z(\mathcal{C})^{\sigma op}$$

Moreover, there is a natural braided monoidal functor

If we denote objects of $Z_{Dr}(\mathcal{C})$ by pairs $(x, \alpha_x \colon x \otimes (-) \xrightarrow{\sim} (-) \otimes x)$, then it sends

$$x \boxtimes \mathbf{1} \mapsto (x, \sigma_{x, -}), \qquad \mathbf{1} \boxtimes x \mapsto (x, \sigma_{-, x}^{-1}).$$

Theorem 2.12. Every object $\mathcal{C} \in \text{BrTens}$ is dualizable. The dual is given by $\mathcal{C}^{\sigma \text{op}}$. The evaluation and coevaluation are given by \mathcal{C} viewed as a $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}}$ -monoidal category via $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}} \to Z_{\text{Dr}}(\mathcal{C})$.

Theorem 2.13. Every 1-morphism $\mathcal{A} \xrightarrow{\mathbb{C}} \mathcal{B}$ in BrTens, i.e. an $\mathcal{A} \otimes \mathcal{B}^{\sigma op}$ -monoidal category \mathbb{C} , has a right adjoint given by $\mathbb{C}^{\otimes op}$, the same category with the opposite monoidal structure and equipped with a braided monoidal functor $\mathcal{B} \otimes \mathcal{A}^{\sigma op} \to Z_{Dr}(\mathbb{C})^{\sigma op} \cong Z_{Dr}(\mathbb{C}^{\otimes op})$. The unit $\eta: \mathcal{A} \to \mathbb{C} \otimes_{\mathbb{B}} \mathbb{C}^{\otimes op}$ is given by \mathbb{C} as an $(\mathcal{A}, \mathbb{C} \otimes_{\mathbb{B}} \mathbb{C}^{\otimes op})$ -bimodule category. The counit $\epsilon: \mathbb{C}^{\otimes op} \otimes_{\mathcal{A}} \mathbb{C} \to \mathbb{B}$ is given by \mathbb{C} as a $(\mathbb{C}^{\otimes op} \otimes_{\mathcal{A}} \mathbb{C}, \mathbb{B})$ -bimodule category.

Let $\mathcal{C} \in \text{BrTens}$ be a braided monoidal category. From the above description of adjoints we may compute the Serre automorphism as follows. By theorem 2.12 the evaluation 1morphism is \mathcal{C} viewed as a $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}}$ -monoidal category via (3). By theorem 2.13 its right adjoint is $\mathcal{C}^{\otimes \text{op}}$ viewed as a $\mathcal{C}^{\sigma \text{op}} \otimes \mathcal{C}$ -monoidal category via

$$\mathfrak{C}^{\operatorname{\sigmaop}} \otimes \mathfrak{C} \xrightarrow{(3)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C})^{\operatorname{\sigmaop}} \xrightarrow{(2)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C}^{\otimes \operatorname{op}}).$$

There are two monoidal equivalences

$$F_1, F_2 \colon \mathfrak{C} \xrightarrow{\sim} \mathfrak{C}^{\otimes \mathrm{op}} :$$

both have the identity underlying functor and the monoidal structure given by either the braiding or its inverse. Therefore, the right adjoint to evaluation is given by the composite

$$\mathfrak{C} \otimes \mathfrak{C}^{\operatorname{\sigmaop}} \xrightarrow{\operatorname{flip}} \mathfrak{C}^{\operatorname{\sigmaop}} \otimes \mathfrak{C} \xrightarrow{(3)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C})^{\operatorname{\sigmaop}} \xrightarrow{(2)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C}^{\otimes \operatorname{op}}) \xrightarrow{F_i} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C}).$$

The underlying functor coincides with the underlying functor for coev, but the monoidal structure turns out to be twisted. We denote by

$$F_2^{-1}F_1: \mathfrak{C} \xrightarrow{\sim} \mathfrak{C}$$

the identity functor equipped with the monoidal structure given by $\sigma_{y,x} \circ \sigma_{x,y}$. It is not difficult to see that it is braided monoidal.

Proposition 2.14. For a braided monoidal category \mathcal{C} the Serre automorphism $S_{\mathcal{C}} \colon \mathcal{C} \to \mathcal{C}$ is the $\mathcal{C} \otimes \mathcal{C}^{\text{op}}$ -monoidal category \mathcal{C} via

$$\mathfrak{C} \otimes \mathfrak{C}^{\operatorname{\sigmaop}} \xrightarrow{F_2^{-1} F_1 \otimes \operatorname{id}} \mathfrak{C} \otimes \mathfrak{C}^{\operatorname{\sigmaop}} \xrightarrow{(3)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C})$$

or, equivalently, via

$$\mathfrak{C} \otimes \mathfrak{C}^{\operatorname{\sigmaop}} \xrightarrow{\operatorname{id} \otimes F_1^{-1} F_2} \mathfrak{C} \otimes \mathfrak{C}^{\operatorname{\sigmaop}} \xrightarrow{(3)} \operatorname{Z}_{\operatorname{Dr}}(\mathfrak{C}).$$

2.5. **3-dualizability.** In the previous section we have seen that every braided monoidal category $\mathcal{C} \in$ BrTens is 2-dualizable. We will now analyze the conditions for \mathcal{C} to be 3-dualizable.

It will be convenient to introduce the following notation.

Definition 2.15. Let \mathcal{C} be a braided monoidal category. The monoidal category $HC(\mathcal{C})$ is

$$\mathrm{HC}(\mathfrak{C}) = \mathfrak{C}^{\otimes \mathrm{op}} \otimes_{\mathfrak{C} \otimes \mathfrak{C}^{\sigma \mathrm{op}}} \mathfrak{C}.$$

Remark 2.16. Since $HC(\mathcal{C})$ is defined as a relative tensor product, it is not easy to write objects of $HC(\mathcal{C})$ (or functors *into* $HC(\mathcal{C})$), but it is easy to write functors out of $HC(\mathcal{C})$. For instance, $HC(\mathcal{C})$ -module categories are the same as \mathcal{C} -braided module categories, see [BBJ18b, Theorem 3.11]. If \mathcal{C} is cp-rigid (see [BJS18, Definition 4.1] for what this means), $HC(\mathcal{C})$ is equivalent to the Drinfeld center $Z_{Dr}(\mathcal{C})$ as a plain category. However, the two monoidal structures are different (for instance, the monoidal structure on $HC(\mathcal{C})$ is not braided unless \mathcal{C} is symmetric).

From theorem 2.12 we have the following coevaluation and evaluation morphisms:

• coev: $\mathbf{1} \to \mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}}$ is \mathcal{C} as a $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}}$ -monoidal category.

• ev: $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}} \to \mathbf{1}$ is \mathcal{C} as a $\mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}}$ -monoidal category.

From theorem 2.13 the above maps are right-adjointable with the following unit and counit morphisms:

- η_{coev} is \mathcal{C} as a $(\mathbf{1}, \text{HC}(\mathcal{C}))$ -bimodule category.
- ϵ_{coev} is \mathcal{C} as a $(\mathcal{C}^{\otimes \text{op}} \otimes \mathcal{C}, \mathcal{C} \otimes \mathcal{C}^{\sigma \text{op}})$ -bimodule category.
- η_{ev} is \mathfrak{C} as a $(\mathfrak{C} \otimes \mathfrak{C}^{\sigma \text{op}}, \mathfrak{C} \otimes \mathfrak{C}^{\otimes \text{op}})$ -bimodule category.
- ϵ_{ev} is \mathcal{C} as an (HC(\mathcal{C}), **1**)-bimodule category.

To analyze their right-adjointability, it will be convenient to use the following statement (see [BJS18, Proposition 5.17] and [Lur17, Proposition 4.6.2.13]).

Proposition 2.17. Let $\mathcal{A}, \mathcal{B} \in Br$ Tens be braided monoidal category, $\mathcal{C}, \mathcal{D} \colon \mathcal{A} \to \mathcal{B}$ be $\mathcal{A} \otimes \mathcal{B}^{\text{rop}}$ -monoidal categories and $\mathcal{M} \colon \mathcal{C} \Rightarrow \mathcal{D}$ a $(\mathcal{C}, \mathcal{D})$ -bimodule category. Then \mathcal{M} is right-adjointable iff \mathcal{M} is dualizable as a \mathcal{D} -module category.

With the help of the above statement and theorem 2.6 we finally arrive at the following characterization of 3-dualizable objects.

Theorem 2.18. A braided monoidal category $\mathcal{C} \in BrTens$ is 3-dualizable iff the following conditions are satisfied:

- (1) C is dualizable as a plain category.
- (2) \mathfrak{C} is dualizable as a $\mathfrak{C} \otimes \mathfrak{C}^{\otimes \mathrm{op}}$ -module category.
- (3) \mathcal{C} is dualizable as an HC(\mathcal{C})-module category.

The above characterization can be made a bit more explicit by introducing the notion of semi-rigidity (see [Gai15, Appendix D], [BN09, Section 3]).

Definition 2.19. A monoidal category \mathcal{C} is *semi-rigid* if it is dualizable as a plain category and the tensor functor $\mathcal{C} \otimes \mathcal{C} \to \mathcal{C}$ viewed as a morphism of $\mathcal{C} \otimes \mathcal{C}^{\otimes \text{op}}$ -module categories admits a right adjoint.

Remark 2.20. Suppose \mathcal{C} is a locally-presentable monoidal category which has enough compact projectives. Then \mathcal{C} is semi-rigid iff all compact projective objects are dualizable [BJS18, Proposition 4.1].

The following is shown in [BJS18].

Theorem 2.21. Let $\mathcal{C} \in Br$ Tens be a semi-rigid braided monoidal category. Then it is 3-dualizable.

The previous characterization allows one to construct many functors $\text{Bord}_3^{\text{fr}} \to \text{BrTens}$, i.e. 3-dimensional TQFTs.

Example 2.22. Suppose $\mathcal{C} = \operatorname{Rep}_q(G)$ is the $\mathbb{C}[q, q^{-1}]$ -linear category of representations of the Lusztig integral form of the quantum group. Choosing a root of q, we may endow \mathcal{C} with a balanced monoidal structure. By [APW91] it has enough compact projectives. Moreover, every finite-dimensional representation is dualizable, so \mathcal{C} is cp-rigid. Therefore, it defines a 3-2-1-0 part of a 4d TFT. It is expected to be a mathematical formalization of the Kapustin–Witten 4d TFT [KW07; BN18].

10

REFERENCES

Example 2.23. Suppose C is a modular tensor category. Since it is semisimple, it clearly has enough compact projectives. Moreover, it is obviously cp-rigid. Therefore, it defines a 3-2-1-0 part of a 4d TFT. It is invertible and expected to coincide with the Crane–Yetter 4d TFT.

References

- [AF15] D. Ayala and J. Francis. "Factorization homology of topological manifolds". J. Topol. 8.4 (2015), pp. 1045–1084. arXiv: 1206.5522 [math.AT].
- [APW91] H. H. Andersen, P. Polo, and K. X. Wen. "Representations of quantum algebras". *Invent. Math.* 104.1 (1991), pp. 1–59.
- [Ara17] M. Araújo. "Coherence for 3-dualizable objects". PhD thesis. University of Oxford, 2017.
- [Ati90] M. Atiyah. "On framings of 3-manifolds". Topology 29.1 (1990), pp. 1–7.
- [Bar+15] B. Bartlett, C. Douglas, C. Schommer-Pries, and J. Vicary. "Modular categories as representations of the 3-dimensional bordism 2-category" (Sept. 2015). arXiv: 1509.06811 [math.AT].
- [BB18] M. Bärenz and J. Barrett. "Dichromatic state sum models for four-manifolds from pivotal functors". *Comm. Math. Phys.* 360.2 (2018), pp. 663–714. arXiv: 1601.03580 [math-ph].
- [BBJ18a] D. Ben-Zvi, A. Brochier, and D. Jordan. "Integrating quantum groups over surfaces". J. Topol. 11.4 (2018), pp. 874–917. arXiv: 1501.04652 [math.QA].
- [BBJ18b] D. Ben-Zvi, A. Brochier, and D. Jordan. "Quantum character varieties and braided module categories". Selecta Math. (N.S.) 24.5 (2018), pp. 4711–4748. arXiv: 1606. 04769 [math.QA].
- [BC98] J. W. Barrett and L. Crane. "Relativistic spin networks and quantum gravity". J. Math. Phys. 39.6 (1998), pp. 3296–3302. arXiv: gr-qc/9709028.
- [BD95] J. C. Baez and J. Dolan. "Higher-dimensional algebra and topological quantum field theory". J. Math. Phys. 36.11 (1995), pp. 6073–6105. arXiv: q-alg/9503002.
- [BJS18] A. Brochier, D. Jordan, and N. Snyder. "On dualizability of braided tensor categories" (2018). arXiv: 1804.07538 [math.QA].
- [Bla+95] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel. "Topological quantum field theories derived from the Kauffman bracket". *Topology* 34.4 (1995), pp. 883–927.
- [BN09] D. Ben-Zvi and D. Nadler. "The character theory of a complex group" (2009). arXiv: 0904.1247 [math.RT].
- [BN18] D. Ben-Zvi and D. Nadler. "Betti geometric Langlands". Algebraic geometry: Salt Lake City 2015. Vol. 97. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 2018, pp. 3–41. arXiv: 1606.08523 [math.RT].
- [CKY93] L. Crane, L. H. Kauffman, and D. Yetter. "Evaluating the Crane-Yetter invariant". Quantum topology. Vol. 3. Ser. Knots Everything. World Sci. Publ., River Edge, NJ, 1993, pp. 131–138. arXiv: hep-th/9309063.
- [CKY97] L. Crane, L. H. Kauffman, and D. N. Yetter. "State-sum invariants of 4-manifolds". J. Knot Theory Ramifications 6.2 (1997), pp. 177–234. arXiv: hep-th/9409167.
- [Coo19] J. Cooke. "Excision of skein categories and factorisation homology" (2019). arXiv: 1910.02630 [math.QA].

2	REFERENCES
CS19]	D. Calaque and C. Scheimbauer. "A note on the (∞, n) -category of cobordisms". Algebr. Geom. Topol 19.2 (2019) pp. 533-655, arXiv: 1509.08906 [math AT]
CY93]	L. Crane and D. Yetter. "A categorical construction of 4D topological quantum field theories". <i>Quantum topology</i> . Vol. 3. Ser. Knots Everything. World Sci. Publ., River Edge, NJ, 1993, pp. 120–130. arXiv: hep-th/9301062.
Eng+08]	J. Engle, E. Livine, R. Pereira, and C. Rovelli. "LQG vertex with finite Immirzi parameter". <i>Nuclear Phys. B</i> 799.1-2 (2008), pp. 136–149. arXiv: 0711.0146 [gr-qc].
Gai15]	D. Gaitsgory. "Sheaves of categories and the notion of 1-affineness". <i>Stacks and categories in geometry, topology, and algebra.</i> Vol. 643. Contemp. Math. Amer. Math. Soc., Providence, RI, 2015, pp. 127–225. arXiv: 1306.4304 [math.AG].
Goo18]	G. Goosen. "Oriented 123-TQFTs via string-nets and state sums". PhD thesis. Stellenbosch University, 2018.
GS18]	O. Gwilliam and C. Scheimbauer. "Duals and adjoints in higher Morita categories" (2018). arXiv: 1804.10924 [math.CT].
Hau17]	R. Haugseng. "The higher Morita category of \mathbb{E}_n -algebras". Geom. Topol. 21.3 (2017), pp. 1631–1730. arXiv: 1412.8459 [math.AT].
JS17]	T. Johnson-Freyd and C. Scheimbauer. "(Op)lax natural transformations, twisted quantum field theories, and "even higher" Morita categories". <i>Adv. Math.</i> 307 (2017), pp. 147–223. arXiv: 1502.06526 [math.CT].
Kir11]	A. Kirillov. "String-net model of Turaev-Viro invariants" (2011). arXiv: 1106. 6033 [math.AT].
KW07]	A. Kapustin and E. Witten. "Electric-magnetic duality and the geometric Lang- lands program". <i>Commun. Number Theory Phys.</i> 1.1 (2007), pp. 1–236. arXiv: hep-th/0604151.
Lic93]	W. B. R. Lickorish. "The skein method for three-manifold invariants". J. Knot Theory Ramifications 2.2 (1993), pp. 171–194.
Lur09]	J. Lurie. "On the classification of topological field theories". <i>Current developments in mathematics, 2008.</i> Int. Press, Somerville, MA, 2009, pp. 129–280. arXiv: 0905.0465 [math.CT].
Lur17]	J. Lurie. "Higher Algebra". 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.
LW05]	M. A. Levin and XG. Wen. "String net condensation: A Physical mechanism for topological phases". <i>Phys. Rev.</i> B71 (2005), p. 045110. arXiv: cond-mat/0404617.
Pac91]	U. Pachner. "P.L. homeomorphic manifolds are equivalent by elementary shellings". <i>European J. Combin.</i> 12.2 (1991), pp. 129–145.
Pst14]	P. Pstrągowski. "On dualizable objects in monoidal bicategories, framed surfaces and the Cobordism Hypothesis" (2014). arXiv: 1411.6691 [math.AT].
RT91]	N. Reshetikhin and V. G. Turaev. "Invariants of 3-manifolds via link polynomials and quantum groups". <i>Invent. Math.</i> 103.3 (1991), pp. 547–597.
Sch14a]	C. Scheimbauer. "Factorization homology as a fully extended topological field theory." PhD theorie ETH Zurich 2014

REFERENCES

- [Sch14b] C. J. Schommer-Pries. "Dualizability in low-dimensional higher category theory". *Topology and field theories*. Vol. 613. Contemp. Math. Amer. Math. Soc., Providence, RI, 2014, pp. 111–176. arXiv: 1308.3574 [math.AT].
- [Sch17] C. Schommer-Pries. "Invertible Topological Field Theories" (2017). arXiv: 1712. 08029 [math.AT].
- [Tur94] V. G. Turaev. *Quantum invariants of knots and 3-manifolds*. Vol. 18. De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994, pp. x+588.
- [TV92] V. G. Turaev and O. Y. Viro. "State sum invariants of 3-manifolds and quantum 6*j*-symbols". *Topology* 31.4 (1992), pp. 865–902.
- [Wal06] K. Walker. "TQFTs". 2006. URL: http://canyon23.net/math/tc.pdf.
- [Wal91] K. Walker. "On Witten's 3-manifold invariants". 1991. URL: https://canyon23. net/math/1991TQFTNotes.pdf.
- [Wit89] E. Witten. "Quantum field theory and the Jones polynomial". Comm. Math. Phys. 121.3 (1989), pp. 351–399.
- [WW11] K. Walker and Z. Wang. "(3+1)-TQFTs and topological insulators" (2011). arXiv: 1104.2632 [cond-mat.str-el].

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH, ZURICH, SWITZERLAND *E-mail address*: pavel.safronov@math.uzh.ch