Home /  Workshop /  Schedules /  The Beilinson fiber square

The Beilinson fiber square

[Moved Online] (∞, n)-categories, factorization homology, and algebraic K-theory March 23, 2020 - March 27, 2020

March 23, 2020 (03:30 PM PDT - 04:30 PM PDT)
Speaker(s): Benjamin Antieau (Northwestern University)
Location: SLMath: Online/Virtual



If R is an associative ring satisfying some mild technical conditions, Beilinson constructs a fiber sequence of spectra identifying the fiber of the map \lim_n K(R/p^n)\rightarrow K(R/p) with a suspension of the ordinary cyclic homology of R, all up to p-completion followed by inverting p. Joint work with Akhil Mathew, Matthew Morrow, and Thomas Nikolaus provides a new proof of this fact using recent advances in the theory of cyclotomic spectra due to Nikolaus and Scholze. I will explain the motivation for this fiber sequence, which has to do with the infinitesimal part of the p-adic variational Hodge conjecture, and then I will give a construction of the fiber sequence and of a more general fiber square.

Supplements No Notes/Supplements Uploaded
Video/Audio Files


H.264 Video 918_28231_8258_3-Antieau.mp4
Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.