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This is based on joint work with Yiannis Sakellaridis and Akshay Venkatesh. The
general plan is to explain a connection between physics and number theory which
goes through the intermediary: extended topological field theory (TFT). The moral
is that boundary conditions for N = 4 super Yang-Mills (SYM) lead to something
about periods of automorphic forms.

Slogan: the relative Langlands program can be explained via relative
TFT.

1. Periods of automorphic forms on H

First we provide some background from number theory. Recall we can picture
the upper-half-space H as in fig. 1.

We are thinking of a modular form φ as a holomorphic function on H which
transforms under the modular group SL2 (Z), or in general some congruent sub-
group Γ ⊂ SL2 (Z), like a k/2-form (differential form) and is holomorphic at ∞.

We will consider some natural measurements of φ. In particular, we can “measure
it” on the red and blue lines in fig. 1. Note that we can also think of H as in fig. 2,
where the red and blue lines are drawn as well.

Since φ is invariant under SL2 (Z), it is really a periodic function on the circle,
so it has a Fourier series. The niceness at ∞ condition tells us that it starts at 0,
so we get:

(1) φ =
∑
n≥0

anq
n
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Figure 1. Fundamental domain for the action of SL2 (Z) on H in gray.
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Figure 2. The upper half plane viewed as the disk, where the
fundamental domain is still in gray. The red and blue lines are the
same as in fig. 1.

where q is the exponential of the coordinate on H.
We will consider three measurements.

1. The Eisenstein period (or G/N period) is

(2)

∫
red

φdt = a0 .

2. The Whittaker period (or (G/N,ψ) period) is the Fourier coefficient

(3) a1 =

∫
φeψ(t) dt

for the character ψ. When φ is a cusp form,1 we can rescale such that
a1 = 1. This is called the Whittaker normalization condition.2

3. The Hecke period (or G/T period) is as follows. The idea is to integrate
over the blue curve. This converges if φ is a cusp form. Slightly more
general, we can take

(4)

∫ ∞

0

φ (iy) ys
dy

y
.

1This means a0 = 0.
2This is important for matching forms with Galois representations.
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This is the definition of the L-function:

Γ (s)

(2π)
sL (φ, s) =

∫ ∞

0

φ (iy) ys
dy

y
(5)

=
∑ an

ns
(6)

where these are the same Fourier coefficients as before. This only converges
for s in some right-half plane, then this integral representation can be used
to show this has an analytic continuation to all values of s, and has a
functional equation in s. When we talk about L-functions we really care
about values of the L function. This puts this on the same footing as the
previous two periods. A particularly interesting value is the average:

(7) L (φ, 1) = 2π

∫ ∞

0

φ (iy) dy .

We are really interested in these modular forms because they can be matched
to Galois representations. To do this, we need the extra condition that φ is an
eigenfunction for the Hecke operator. In this case, it can be associated to a two-
dimensional representation

(8) ρ : Gal
(
Q,Q

)
→ GL2

(
Q
)
.

Then the upshot is that these three periods are meaningful measurements of this
representation. In particular we get the following.

1. a0 ̸= 0 corresponds to ρ being reducible.
2. When a0 = 0, and we normalize to a1 = 1, after adding the appropriate

adjectives we should get a bijection between such automorphic forms and
representations.

3. We get an equality L (φ, s) = L (ρ, s), where the L function associated to ρ
is something like

(9) L (ρ, s) “ =′′
∏
p

1

det (1− p−sρ (F ))

where F is the Frobenius conjugacy class.

Recall that 1 over the characteristic polynomial of an operator F ∈ EndV :

(10)
1

det (1− tF )

can be thought of as the graded trace of F on Sym• V . The characteristic polyno-
mial itself can be thought of as the graded trace on the exterior algebra. So these
factors in L (ρ, s) somehow come in as characters of symmetric algebras. This L
function encodes a huge amount of information.

Example 1. If we have weight two modular forms, which correspond to elliptic
curves, this particular value of the L function, L (φ, 1), has to do with the Birch-
Swinnerton-Dyer conjectures. In particular, the vanishing of this tells us whether
we have infinitely many vanishing points on an elliptic curve.
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2. General automorphic forms

2.1. Arithmetic locally symmetric spaces. What we have been dealing with
so far has been H = SL2 (R) / SO2, modded out by SL2 Z:

(11) SL2 Z\H = SL2 Z\SL2 (R) / SO2 .

This is an example of an arithmetic locally symmetric space. Now we can generalize
this to a group G, defined over some field F , say F = Q, which is split and reductive,
e.g. GLn, SOn, Spn. To any suchG we can attach a version of this arithmetic locally
symmetric space, and this is the subject of the theory of automorphic forms. In
particular we get a space

(12) [G]K = G (F ) \G (A) /K

where we think of F as a number field (e.g. Q), A is the adeles of F , and K is
some compact subgroup. So G (A) is some kind of restricted product of G (Fv),
and then inside of each G (Fv) we have G (Ov). For almost all v, K is going to be
this subgroup. So the claim is that if we do this for SL2, and the maximal version
of K, we get our space SL2 (Z) \H from before.

2.2. General automorphic forms. Now we have a notion of an automorphic
form, which is a generalization of modular form. These are functions φ ∈ L2 ([G]K)
which are Hecke eigenfunctions.

Remark 1. Fourier theory on Rx concerns itself with decomposing L2 functions
on R in terms of these special characters eitx, indexed by this parameter t, which
are eigenfunctions for differentiation. So we should think of automorphic forms as
being analogous to these characters.

The Langlands philosophy tells us that these forms φ should correspond to

(13) ρ : Gal
(
Q/Q

)
→ G∨ (

Ql
)
.

In particular, the data of the eigenvalues is encoded in conjugacy classes of G∨. So
this tells is where Frobenius classes should go.

2.3. Periods of automorphic forms. Given a subgroup H ⊂ G, we get this
locally-symmetric space

(14) [H] ⊂ [G] .

The idea is, that given a modular form φ, we get an H-period:

(15) PH (φ) =

∫
[H]

φ .

Example 2. For SL2, the Eisenstein period a0 was given by:

(16) H = N =

(
1 ∗
0 1

)
.

Then the Whittaker period a1 is given by upper triangular matrices twisted by
some character ψ. Then the Hecke period is given by:

(17) H = Gm =

(
a 0
0 a−1

)
.
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2.4. Relationship between periods and L-functions. These periods should be
thought of as measurements of the automorphic forms, and they tend to have a lot
of meaning (on both sides of Langlands).

On the other hand, Langlands tells us that we have a notion of an automorphic
L-function, which is as follows. It is labelled by an automorphic form φ, a repre-
sentation V ∈ Rep (G∨), and a variable s (which we will usually suppress). It is
given by

(18) L (φ, V, s) =
∏ 1

char. poly. of conj. class in G∨ ⟳
V
.

Recall this conjugacy class tells us the Hecke eigenvalues. Again, this will match
with an L-function coming from a Galois representation:

(19) L (ρ, V, s) .

It makes sense these will match since the Hecke eigenvalues correspond to conjugacy
classes of V ∨, so these are built from the same data.

But when we talked about an L function of a modular form, we defined it as a
period, i.e. as an integral. In fact, there is a general principle:

good properties of L-functions come from realizations as periods.

The immediate problem is which period we want it to be realized as. Periods come
from subgroups H ⊂ G, and L functions come from representation of G∨. There
is no way to line these things up. They are somehow two completely different
classes of data. There are plenty of examples where particular periods are related
to particular L-functions, but we’re trying to understand a systematic idea of which
period should relate to which kind of L-function.

The punchline will be as follows. In the world of automorphic forms, we have
periods (subgroups H ⊂ G) and in the world of Galois representations, we have
L-functions (V ∈ Rep (G∨)). Then we want to expand our interest to a bigger
class of objects on both sides so that these things live in bijection with one another.

2.5. Spherical varieties. In the SL2 case we only considered certain periods given
by integrating over certain things. We want a generic way of understanding when
a subgroup H is good to integrate over in the sense that it gives us a useful period.
In [14–17], Sakellaridis and Venkatesh complete a systematic study of periods. The
key property of the subgroup H is as follows. Consider the homogeneous space
X = G/H. So X is a variety with an action of G. Then the key property is that
we want X to be a spherical variety. In this case we say H is a spherical subgroup.
This is some kind of strong finiteness property on X. This is the nonabelian version
of a toric variety.

Example 3. If G is the torus, this is just asking for a toric variety.

Example 4. For G = Gm, the toric variety which appears is A1. So this is the
study of functions on A1, and decomposing them under the Gm action. This was
Tate’s thesis.

The definition of a spherical variety either asks for an open orbit for the Borel
subgroup, or it has a multiplicity 1 property for algebraic representations. In the
case of G/H, this asks for every irreducible to appear at least once. So this is a
nice finiteness condition.

Examples of spherical varieties are given by the following.
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• Toric varieties G = T
• Flag varieties G/B
• Symmetric spaces G/K
• “Group case” G = (H ×H)

⟳

H
• Whittaker G/N twisted by character ψ
• SLn

⟳ An, GLn×GLn

⟳

Matn×n
• Branching problems (Gan-Gross-Prasad)

– GLn+1 ×GLn

⟳

GLn+1

– SOn+1 ×SOn

⟳

SOn+1

– Un+1 ×Un

⟳

Un+1

And a bunch more.
Building off of [6, 10, 11], Sakellaridis and Venkatesh take G

⟳

X and attach
certain Langlands dual data. Then they use this data to describe and control the
theory of periods of automorphic forms. For example, we might wonder when

(20) PX (φ) ̸= 0 .

This is called X distinction.

3. Hamiltonian G-spaces

Recall we wanted to understand some larger class of objects which contained
periods, and some larger class of objects which contains L-functions. The proposal
is that, in both cases, the expanded class of objects is the collection of boundary
condition/boundary theories for a TFT.

On the side containing periods, these theories will correspond to Hamiltonian
group actions of G, and on the side of L-functions these will correspond to Hamil-
tonian actions of G∨:

(21)

Periods L− functions

Hamiltonian G spaces Hamiltonian G∨ spaces

Boundary theories Boundary theories

.

The idea is to consider

H ; X = G/H ; M = T ∗X .(22)

Them M has a G action, but it also has a moment map

(23) M → g∗

which is equivariant and generates this action infinitesimally. Once we say this in
terms of Hamiltonian G actions, some things start to pop out.

Remark 2. There are examples which are not cotangent bundles, so it is worthwhile
to pass to this generality. The theory of θ-correspondence in number theory doesn’t
fit into the homogeneous space picture, but does fit into the Hamiltonian G space
picture.
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3.1. Gaiotto-Witten. In [5] the authors study boundary conditions/theories for
d = 4 N = 4 (maximally supersymmetric) SYM. In particular, they find that for
every Hamiltonian G space there is a boundary condition of this theory. The “most
important thing” about d = 4 SYM is electromagnetic duality. It was explained
in [8] that this is related to the geometric program Langlands. The great thing
about this theory is that the associated to G is equivalent to the theory associated
to G∨. This tells us that the boundaries for these two groups should correspond.
So we might hope that for our favorite Hamiltonian G space, that its dual is a
Hamiltonian G∨ space. In particular, for H ⊂ G and V ∈ Rep (G∨), we have

(24)

boundariesG Hamiltonian G spaces {T ∗ (G/H)}

boundariesG∨ Hamiltonian G∨ spaces {T ∗V }
.

Recall V was the datum used to get an L-function, so now we are just viewing this
datum as a Hamiltonian G∨ space. So H ⊂ G and V ∈ Rep (G∨) both somehow sit
inside of boundaries of their respective theories, and we can use this interpretation
to explain the relationship between periods and L-functions.

4. Topological field theory

The first thing to note is that we are using field theory as some kind of metaphor.
So the examples we will see won’t quite satisfy all of the axioms of a fully extended
topological field theory, but there are a lot of structures which do fit in. Let Z
be an extended 4d TFT. These are things which output data as in table 1. Then
there are relations among these things. For example, when we write 3-manifold,
we really mean a closed 3-manifold. Then the way the 3-dimensional things talk
to 2-dimensional things is via boundaries.3 So if we have a 3-manifold M with
boundary a surface Σ = ∂M , we really attach an element

(25) Z (M) ∈ Z (∂M) .

And if we have a surface Σ̃ with n punctures, i.e. n boundary component homeo-
morphic to S1, we get an object

(26) Z
(
Σ̃
)
∈ ⊗ni=1Z

(
S1

)
.

Another useful thing that the field theory has, which will be useful, is structure
coming from “defects”. So, for example, if we have Z

(
M3

)
, this comes with a big

commutative algebra of operators, called loop operators (or line defects). The idea
is that

(27) Z (M × I) : M →M

and if we carve out a loop from the interior we get a commutative algebra acting
on M . The point is that this has become a cobordism from the disjoint union of
M with the thing we carved out, and Z turns disjoint unions into tensor products.
So we get an action of whatever Z assigned to the thing we carved out to Z (M).
The point is that this is where the Hecke operators will come from.

3Really Z is a functor defined on a bordism category.
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Table 1. Output of a four-dimensional topological field theory.

Dimension Output

4 Number ∈ C (rarely well-defined algebraically, requires analysis)

3 (dg) vector space

2 (dg) category

1 (∞, 2)-category

0 (∞, 3)-category? (rarely understood)

4.1. Boundary theory. A boundary theory is a codimension 1 defect. This is
somehow the “richest” of all defects. One way to say this formally, is that it is a
morphism

(28) B : 1 → Z

where 1 is the trivial theory. One way to think about this is a map from

(29) B : 1 → Z (•) .

So this can be thought of as an object of the higher category Z (•).
A crude phrasing of the cobordism hypothesis is saying that Z (•) determines the

whole theory. So if we think of the objects of Z (•) as boundary conditions, this is
saying that boundary conditions determine the theory. So morphisms B as above,
or objects of Z (•) are the boundary conditions of Z, or alternatively the theories
determined by these objects, i.e. boundary theories. So the boundary theory is
somehow a TFT of one dimension lower.

The point is that for any M , the boundary condition gives me an element

(30) BM : 1 → Z (M) .

So it is a rule for choosing an element of what Z assigns to something. There’s even
more to them. They enable you to talk about manifolds which have a boundary
component labeled by B. This should be thought of as a new class of “closed
manifolds”.

It is nice to think of these boundary theories as elements, but with enough
duality, we can think of the dual version, which is a functional:

(31) Z (M) → 1 .

This is how we will realize periods. Recall these were functionals on a space of au-
tomorphic forms, so we want to think of that functional as coming from a boundary
condition.

5. Langlands program: an arithmetic TFT perspective

5.1. Three-dimensional setting. Recall André Weil’s Rosetta stone tells us that
number fields, i.e. finite F/Q, are nicely analogous to function fields. Explicitly
this is an analogy between Spec of the associated ring of integers of the number
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Table 2. We will view objects relevant for the settings in the
right column as manifolds of the corresponding dimension in the
left column, insofar as they are getting plugged into a TFT.

Dimension Settings

4 Periods, L-functions, trace formula

3 Global arithmetic

number fields, curves C/Fq
2 Local arithmetic Global geometric

local fields, e.g. Qp, Fq ((t)) curves C/Fq
1 local geometric

punctured disks Fq ((t)), C ((t))

field and smooth projective curves C/Fq. Then there is another analogy between
both of these and Riemann surfaces. All together we have:

(32)

number fields F/Q function fields C/Fq

Σ Riemann surface

.

Now we want to take the point of view that there was a chip missing from this
Rosetta stone. And what the original text had a Σ bundle over S1 in place of Σ.
Now in the case of a curve C/Fq, we could have looked at C/Fq. Then we recover
this curve, by thinking of fixed points of the Frobenius automorphism σ. There isn’t
really an analogue of Frobenius here, but we can equip Σ with an diffeomorphism
σ and then consider the mapping torus

(33) Σ× I/ ((x, 0) ∼ (σ (x) , 1))

which is of course a Σ bundle over S1. The point being that we want to think of
a Riemann surfaace as being analogous to a curve over an algebraically closed field
of positive characteristic, rather than over a finite field.

This fits well with the analogy between number fields (Spec of rings of integers)
as 3-manifolds. This is known as the knots and primes analogy. This can be
attributed to many people such as Mazur [12], Manin, Morishita [13], Kapranov
[7], and Reznikov. The recent work [3, 9] of Minhyong Kim plays a central role.
This work deals with an arithmetic analogue of Chern-Simons theory as a way of
encoding arithmetic information. So in the Rosetta stone, we really want to think
of a number field as a three-manifold.

The upshot is that we are thinking of all three objects in the Rosetta stone as
three-manifolds. For example we will view SpecZ as some kind of three-manifold
missing some point at ∞. Similarly a curve over a finite field will be a three-
manifold, and a Σ-bundle over S1 is of course a three-manifold. This fits with
table 2 in the sense that number fields and curves over function fields are global
arithmetic objects which we are thinking of as three-manifolds.
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Table 3. Langlands dual groups

G G∨

GLn GLn

SLn PGLn

SO2n SO2n

SO2n+1 Sp2n

5.2. Two-dimensional setting. As is indicated in table 2, in the world of 2-
manifolds, there will be two classes involved. Local arithmetic ones, and global
geometric ones. The local arithmetic ones are as follows. For a local field such
as Qp or Fq ((t)) we can think of them as 2-manifolds. Formally, this is a result

of Mazur [12], based on work of Artin and Verdier, saying that they have Étale
cohomological dimension 2. We can think of Qp as living in the boundary at p of:

(34) SpecZ
[
1

p

]
.

We can think of this as removing a knot corresponding to the prime p, and then
the boundary of the tubular neighborhood of that knot is this 2-manifold.

The global geometric 2-manifolds will be more honest 2-manifolds such as C/Fq.
In the Weil dictionary this is the analogue of a compact Riemann surface.

5.3. One-dimensional setting. Following this dictionary, there is a local geo-
metric setting which gives 1-manifolds. Namely, if we consider something like a
punctured disk over Fq, or over C:

SpecFq ((t)) SpecC ((t))(35)

we get 1-manifolds.

5.4. Statement of Langlands. So now we can apply a TFT to these global arith-
metic three-manifolds, these two types of 2-manifolds, and these local geometric
1-manifolds. Then the top row of table 2, we should get number for things like
periods and L-functions. This is kind of the hardest part to make sense of, but this
is where we would like to eventually get.

Now we can say what the Langlands program actually asserts. We start with G,
with Langlands dual G∨. We should think of G as living over Q, and G∨ as living
over Ql or C. Examples are in table 3. Now that we have the dictionary developed
above, we we can phrase geometric and classical Langlands in the same way. At
least schematically, the Langlands program is an equivalence of four-dimensional
TFT’s:

(36) AG ≃ BG∨ .

AG is called the automorphic theory, and BG∨ is called the spectral theory. AG has
something to do with the moduli space of G-bundles, BunG, and BG∨ has something
to do with the moduli space of G∨ local systems, LocG∨ .
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5.4.1. Galois side. From the number theory point of view, the Galois (or spectral or
B) side is very complicated, and there is a sense in which this is all about answering
questions about Galois groups. But from the point of view of the structure of the
field theories, the B-side is easier to explain. The idea is that BG∨ is linearize
spaces of Langlands parameters, i.e.

(37) LocG∨ (M) .

These are also known as character stacks or representation spaces of these groups.
In particular this consists of continuous representations of the Galois group, i.e.
Étale fundamental groups into G∨ (

Ql
)
. This is what local systems are all about:

representations of π1. And in number theory, the goal is to study Galois groups by
studying their continuous l-adic representations.

Warning 1. One has to be extremely careful about what is going on at l = p, and
at ∞. But we will sweep this under the rug. This can be dealt with by saying the
correct adjectives.

A more serious issue, outside of the Riemann surface situation, is that for general
M , these spaces LocG∨ (M) don’t exist.4 All people really have access to are points
of these spaces, and deformations of them.

We mean linearization in the following sense. For a three-manifold, i.e. one
of these global arithmetic objects, we are supposed to attach a vector space of
functions on LocG∨ (M). To a 2-manifold , e.g. a local field, we attach a (derived)
category of (quasi-)coherent sheaves on LocG∨ (M).

5.5. Automorphic side. Recall we generalized fig. 2 to general locally symmetric
spaces [G]K . For K maximal compact (the unramified version) we write [G]unr.
This is what we will study on the automorphic side. Recall automorphic forms live
in

(38) L2 ([G]K) = L2 (G (F ) \G (A) /K) .

Notice, at a very coarse level, that this is a vector space, which took in the data of
a number field. In particular, we want to think of this as the vector space which
AG assigns to this arithmetic 3-manifold F .

This beast seems kind of unfriendly, but André Weil provides us with a nice
realization. In the case that F is not a number field, but rather a function field of
a curve, this quotient space has a beautiful description. In particular, for C/Fq we
get

(39) [G]unr = BunG (C) (Fq) .

So we have this space [G]unr, which we were thinking of as an analogue of H, and
now we want to think of them as BunG of the associated three-manifold. The idea
is that this space is playing the role of the Fq points of BunG, which is enough to
get this vector space of functions.

The takeaway is that:

(40) AG (global arithmetic) = L2 ([G]unr) .

Then the claim is that Hecke operators come naturally from the field theory.

4In the sense that for a Riemann surface we get a nice algebraic stack.



12 DAVID BEN-ZVI

5.6. Langlands reciprocity. Very coarsely, what Langlands reciprocity is trying
to say, is that

(41) AG (M) ↔ BG∨ (M)

compatibly with Hecke operators. So before we had these automorphic forms which
are eigenfunctions of the Hecke operators, and on the B-side, the Hecke operators
just act via multiplication, but eigenfunctions for multiplication are like functions
on a point. So points on the right correspond to eigenfunctions on the left, i.e.
Galois representations correspond to automorphic forms as we expect.

In number theory these things only make sense at the level of deformation spaces,
and they go under the name of the R = T theorems.5

5.7. Geometric global. This is the subject of the geometric Langlands program
as it is usually formulated. So we start with either a Riemann surface Σ/C or a
curve C/Fq. We know AG somehow concerns BunG. We can take BunG Σ, but
we’re supposed to get a category, so we take the category of sheaves on it:

(42) AG (Σ) = Shv (BunG Σ) .

These are some type of constructible l-adic sheaves. E.g. in the de Rham version
this is a category of D-modules. The point being that this isn’t a category of quasi-
coherent sheaves, it’s a more topological version. Then the geometric Langlands
conjecture identifies this with the B-side assignment, which is a category of quasi-
coherent sheaves on LocG∨Σ. In symbols, the duality is:

(43) AG (Σ) = Shv (BunG Σ) = QC!
N (LocG∨Σ) = BG∨ (Σ) .

The shriek and N indicate that this category is, strictly speaking, a category of
ind-coherent sheaves with nilpotent singular support. This equivalence should also
respect Hecke operators.

So far, we have only dealt with closed manifolds. Instead, we can consider
manifolds with boundary, which then corresponds to the ramified version of the
geometric Langlands conjecture. In the language of field theory, the data which
determines these missing points is what is attached to the circle. So the 2-category
attached to the circle, is the kind of data which deals with ramification.

5.8. Arithmetic local. Consider a local field Fv, e.g. Qp or Fq ((t)). Then we are
supposed to construct a category AG (Fv). Inside of this we have the category of
smooth representations:

(44) AG (Fv) ⊃ Repsm (G (Fv)) .

On the other side, we have

(45) BG∨ (Fv) = QC (LocG∨) .

Then the local Langlands correspondence is an embedding:

(46) Repsm (G (Fv)) ↪→ QC (LocG∨) .

5One is supposed to write R = T , but really R goes on the RHS of (41) and the T goes on the

LHS of (41).
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Even for torus these are not the same. There is a nice thing we can write which is
an equality:

(47)

Shv (Bung (FF )) AG (Fv) Repsm (G (Fv))

BG∨ (Fv) QC (LocG∨)

where FF is the Fargues-Fontaine curve. This is the content of Fargues’ conjecture,
a restatement of the Langlands conjecture. This is kind of the modern version of
the local Langlands conjecture.

The reason people study local Langlands is because, globally, there is always
ramification (i.e. you’re never really looking at SpecZ with no primes removed,
or in terms of modular forms, you’re never looking at SL2 (Z), you’re looking at a
congruent subgroup) and then you need to specify some local data. The local data
is given by the 2-manifold which is the boundary of the 3-manifold, so you need
the local Langlands correspondence.

6. Local Langlands

What we want to talk about are boundary theories. So boundary conditions for
both the A and B theories. The observation, with Sakellaridis and Venkatesh, is
that the data of a spherical variety (or the Hamiltonian G-spaceM = T ∗X) should
be thought of as defining a boundary theory PX for the automorphic theory AG.
And that the data of the dual group G∨ acting on the dual variety G∨ ⟳

X∨ (or
the Hamiltonian G∨-space6 M∨ = T ∗X∨) defines a boundary theory LX∨ for BG∨ .
Then we want to match those up.

The data that is attached to a spherical variety by Sakellaridis and Venkatesh
attach to a spherical variety X, can be reinterpreted as giving the data of a Hamil-
tonian G∨-space. As a result, there is an explicit dictionary which, given a spherical
variety, tells us which space we should be looking at. So we get a long list of pre-
dicted duals in table 4.

Explicitly, the Langlands correspondence is an equivalence of TFT’s, and our
conjecture says that the boundary theories PX and LX∨ should match, where these
varieties are related in some specific way:

(48)

AG BG∨

PX LX∨

≃

∈ ∈ .

The important thing is, that we want an equivalence of field theories which matches
boundary conditions. So this kind of informal statement encodes a lot of more
precise conjectures in each of the settings we had. This is what we want to call the
relative Langlands duality.

6.1. A-side.

6One needs some extra structure here which is weaker than a cotangent bundle, but is still

some extra polarization data. Some kind of metaplectic type structure.
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Table 4. Dual spherical varieties

G G∨

Usual (non-relative) Langlands Group Group

Tate’s thesis Gm

⟳ A1 Gm

⟳ A1

PGL2 /Gm SL2

⟳ A2

(Hecke) (Standard L-function)

Tamagawa # Point Whittaker

(Neumann) (Nahm pole)

Whittaker normalization Whittaker point

/ Frenkel-Ngô [4]

G/B G∨/B∨

(Eisenstein) (Eisenstein)

SO2n×SO2n+1 /SO2n+1 SO2n×Sp2n, std⊗ std

(Gan-Gross-Prasad) (θ-correspondence)

6.1.1. Global arithmetic setting. Let G

⟳

X be a spherical variety. Then we want
to think about this as a correspondence:

(49)

X/G

•/G •

.

So roughly thinking we are thinking of
∪
G as maps into •/G. So this gives us some

kind of functional where we pull push along this correspondence. So now define,
in the global setting: PX (φ) to to be the X-period of an automorphic form. As
before, when X = G/H this is restriction of the form to BunH , but in general we
can define it to be this push pull operation.

So we are thinking of this boundary condition as a functional. So for every
manifold input, we can think of it as a functional on that space. So when we take
PX (φ), we are really thinking of this as the partition function:

(50) PX (φ) = AG

(
M2 × I

)
where on one end of I we put φ, and on the other end we put X. So periods are
partition functions on a 4-manifold.

6.1.2. Global geometric setting. We can write down a sheaf

(51) PX ∈ Shv
(
BunG C

)
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by taking the constant sheaf on the point, and pulling and pushing under

(52)

Map
(
C,X/G

)
BunG = Map (C, •/G) •

.

6.1.3. Local arithmetic. Given our variety X, we can look at the local field Fv (or
just Qp for concreteness) and then X (Qp) is a space with a G (Qp) action. Then
we can look at

(53) L2 (X (Qp)) ∈ Rep (G (Qp)) .
So in the local situation, to a spherical variety (or any G variety), we get a particu-
lar representation (a large one, very far from irreducible) then we can ask harmonic
analysis questions about this such as which representations appear in this decom-
position. These are the kinds of questions which appear in the relative Langlands
program. This is the object we attach in the A-theory. So this is PX in the surface
case.

6.1.4. Local geometric. For a 1-manifold, we can look at the category of sheaves on
the loop space:

(54) Shv (LX) ⟲ LG
where the loop group LG is acting. So this is an object of some 2-category.

6.2. B-side. Now we have G∨ ⟳

X∨.

Remark 3. On the B-side, we can actually extend the TFT all the way down to a
point. So this is a nice link to reality. But back away from reality:

6.2.1. Global geometric. We can define a sheaf in a similar way as before. We have

(55)

Maploc (Σ, X
∨/G∨)

• Maploc (Σ, •/G∨) = LocG∨ (Σ)

where loc indicates that we are looking at locally constant maps, or the Betti version
of maps. So somehow this only depends on the homotopy type of Σ. And we can
push pull, to get:

(56) LX∨ ∈ QC (LocG∨) .

This relates to L-functions (and is called the L-sheaf) as follows. This is similar to
what is done in [4]. Now we can ask what this sheaf looks like. Suppose we just
have a representation X∨ = V ∨ ⟲ G∨. Then we get a sheaf downstairs which looks
like functions on the fibers. In particular:

(57) LX∨ |ρ = SymH• (ρ, V ) .

Recall that L functions are these inverses of characteristic polynomials. These are
exactly what give traces on symmetric algebras, which are now appearing. And
now if our curve was really over Fq, then this sheaf is equivariant for Frobenius,
and so we can take the trace of Frobenius on this sheaf. So we are using the Atiyah-
Bott-Lefschetz fixed point formula, which tells us we get a function on the σ fixed



16 DAVID BEN-ZVI

points, which which are local systems on C over the finite field. So we get the L
function of L (ρ, V ) with a correction factor:

(58)
L (ρ, V )

L (ρ, ad)
.

So this ratio of L-functions just appear directly by taking trace of the Frobenius.
Now the same calculation in general says that we can think of the L-function of
X∨ as a generalization of the L function. I.e. for our three-manifold C/Fq, we get

(59) GG∨ (C/Fq) = O (LocG∨Fq)

and inside of this we have

(60) LX∨

which, as a function, corresponds exactly to the L function of X∨.
In other words, on M3 × I, if we put a Galois representation ρ on one end, and

LX∨ on the other, then

(61) BX∨
(
M3 × I

)
is the L function. So this L function is appearing as the partition function on a
4-manifold.

This tells us now how to match periods with L-functions. Periods are the A
theory, and L-functions are the B theory with a dual boundary condition. So
in order to understand their relationship, we need to understand the relationship
between the boundary conditions.

7. Why Hamiltonian actions

This is very close to the theory of Coulomb branches developed in [2]. The
relationship to S-duality is being studied in an upcoming paper of Justin Hilburn
and Philsang Yoo. We are told from the physics to expect a duality between
boundary theories for the A-side and boundary theories for the B-side. What we
know, is that inside of the B-side we have explicit examples coming from G∨-
actions or Hamiltonian G∨ actions. The point is that we have an inclusion of affine
Hamiltonian G∨ spaces into the boundary theories for B. Then the claim is that
this inclusion has a kind of left adjoint, given by some kind of affinization. So just
from the abstract nonsense of field theory, we can construct an affine Hamiltonian
G∨ space from a boundary theory. But in fact, it’s even better. So given the data
of a spherical variety for G, we can build, not the true honest theory, but some
shadow of the theory, which is its affinization:

(62)

boundary theories for A boundary theories for B

affine Hamiltonian G∨ spaces

.

This is built using the local, unramified, geometric Langlands conjecture. So this
is kind of the most interesting one.

Local geometric means that we are looking at the level of the circle (punctured
disk). Unramified means we are going to fill this in to a disk. So we are looking at
the value of the field theory on the disk with boundary condition given by the value
on the circle. This is a 2-manifold, so we get a category. But it also has an action of
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the Hecke operators. When we cross this disk with an interval and remove a little 2-
disk, the Hecke operators live in the category attached to S2, acting on the category
of interest. This translates to the following conjecture. On the A-side we get
Shv (LX/LG+) where we have quotiented by positive loops. This has this action
by the Hecke operators, which have to do with double cosets LG+\LG/LG+. Now
the Geometric Satake correspondence, in particular the version from [1], says that
the Hecke operators are some version of the dual group. This is the fundamental
link between the two sides of the Langlands program. In particular:

(63) Shv (LG+\LG/LG+) ≃ QC (g∗/G∨) .

So now we want to fill in this square, i.e. what sits on the B-side, with an action
of QC (g∗/G∨). Well if we have an action of G∨, and a moment map, and a map
from the quotient:

(64) M∨/G∨ → g∨
∗
/G∨

then we can consider

(65) QC (M∨/G∨) .

So we fill up the square:

(66)

Shv (LX/LG+) QC (M∨/G∨)

Shv (LG+\LG/LG+) QC
(
g∨

∗
/G∨)

≃

≃

⟳ ⟳

This is why Hamiltonian G spaces come into the picture. Here we are thinking
of M∨ = T ∗X∨, but these are not always cotangent bundles. The claim is that
if you believe in some kind of conjecture like this, it can be used to produce the
affinization of M∨, the restriction to the regular locus, etc. Then you can check
that this lines up with various theorems. Then one of the key features of spherical
varieties, is the set of orbits on the LHS is discrete. So this is closer to topology
than one would hope for, and this is exactly why the answer is so nice on the RHS.
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