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@ ACT O0: Introduction and pointwise convergence rates of
graph Laplacians.

@ ACT 1: Asymptotic spectral consistency.
o ACT 2: L?-convergence rates.

o ACT 3: Regularity and Almost C%!-convergence.
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ACT 0: Introduction and pointwise
convergence rates of graph
Laplacians.
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Goal: Given a data set M, = {xq,...,xp}:

@ Unsupervised learning: Find coarse structure of M, (find
meaningful clusters).

@ Supervised learning: If in addition we have labels y1,...,yp
associated to xi, ..., X,, find regression function u: x — y.
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Goal: Given a data set M, = {x1,...,xp}:
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@ Unsupervised learning: Find coarse structure of M, (find
meaningful clusters).

@ Supervised learning: If in addition we have labels y1, ...,y
associated to xi, ..., X,, find regression function u: x — y.
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Graph based learning

Goal: Given a data set M, = {x1,...,x,} and similarity matrix
{wjj };j do unsupervised/supervised learning.
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Graph based learning

Given G = (Mp,w):
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Graph Laplacian methods

Given G = (M, w):

Graph Laplacian Ag:

Acu(x) := Zw,-j(u(x,-) —u(xj)), xi € M.
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Unsupervised Learning: Spectral clustering: Ng et al (2002), von
Luxburg (2007):

u1(xi)
x;i € X, — ; c RN
un(xi)
where uq, ..., uy first N eigenvectors of Ag.

Supervised Learning: Zhu et al (2003)

argmin g (AZu, u)+L(y;u), eg Ly;u) === |u(x)—yl|?

or Bayesian setting as in Zhu et al (2003), Kirichenko and van
Zanten (2017), Bertozzi et al (2018):

ylu~exp(—=L(y;u)), u~m=N(OA)
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Unsupervised Learning: Spectral clustering: Ng et al (2002), von
Luxburg (2007):

u1(x;)
x; € X, — ; c RN
un(xi)
where uq, ..., uy first N eigenvectors of Ag.

Supervised Learning: Zhu et al (2003)

argmin,.x g (AZu, u)+L(y;u),  eg. L(yiu)= 5> |u(x)—yil

or Bayesian setting as in Zhu et al (2003), Kirichenko and van
Zanten (2017), Bertozzi et al (2018):

ylu~exp(=L(y;u)), u~m=N(O A7)

Statistics of graph based methodologies under some modeling
assumption?
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Proximity graphs

o M, = {x1,...,x,} € M CR? with m < d (the manifold
assumption).

|Xi — X 1 ife<

£ 0 else
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Proximity graphs

o M, = {x1,...,x,} € M CR? with m < d (the manifold
assumption).

|Xi — X 1 ife<

£ 0 else
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Proximity graphs

o M, :={x1,...,x,} € M CR? with m < d (the manifold
assumption).

@ Other families of proximity graphs: k-NN graphs, self-tuning
graphs, graphs based on polar curvature of points (e.g. Chen
and Lerman 2007), etc.
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Manifold Learning

What is the behavior of algorithms on proximity graphs as n — oo
(and € — 0)?
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Manifold Learning for graph Laplacian:

@ Towards a theoretical foundation for Laplacian based
methods. Belkin and Niyogi (2005).

@ From graphs to manifolds: weak and strong poitwise
consistency of graph Laplacians. Hein et al (2005).

@ Diffusion maps. Coifman and Lafon (2005).

@ Graph Laplacinans and their convergence on neihborhood
graphs. Hein et al (2005).

@ From graph to manifold Laplacian: the convergence rate.
Singer (2006).
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Pointwise Consistency

Theorem: [Hein et al, and others] M, = {x1,...,x,} i.i.d.
samples from distribution du(x) = p(x)d Vol y¢(x).

Let £ € C3(M). Then, fore <6 <e 1

N ) 52, _m+2
P| max |8 (x) ~ AF(x)] = C(S] < 2nexp (—co?nem?)

where C depends on ||f][c3(pq)-
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Pointwise Consistency

Theorem: [Hein et al, and others] M, = {x1,...,x,} i.i.d.
samples from distribution dpu(x) = p(x)d Vola(x).
Let f € C3(M). Then, fore < § <e 1

P | max |Af(x;) — Af(x;)| > C5] < 2nexp (—c52n6m+2> :

1<i<n

where C depends on ||f]|c3(aq)-
Here:

Boef () = =5 D nellx = x1)(F0a) — F05)
j=1
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Pointwise Consistency

Theorem: [Hein et al, and others] M, = {x1,...,x,} i.i.d.
samples from distribution dpu(x) = p(x)d Vola(x).
Let f € C3(M). Then, fore < § <e 1

P | max |Af(x;) — Af(x;)| > C5] < 2nexp (—c52n6m+2> :

1<i<n

where C depends on ||f]|c3(aq)-

Here: Vs e (V=Y (E)

Boef () = =5 D el = x1)(F0a) — F05)
j=1
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ACT 1: Asymptotic Spectral
Consistency
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Consistency question

What happens as n — oo with eigenvalues/eigenvectors of A, .7
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@ Consistency of Spectral clustering. von Luxburg, Belkin, and
Bousquet (2007).

@ A variational approach to the consistency of spectral
clustering. NGT and Slepcev (2015).
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Asymptotic spectral convergence: from A, . to A

Theorem: [NGT, Slepcev (2015)] Suppose that ¢ scales like:

3/4if m=2
1/mif m>3

log(n)Pm
W e K ]., Pm = {

Then, with probability one, for every k € N

lim. Ak =AY and uk =72 vk

Recall:

Av(x) = —%div(p2Vv)
p
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Due to Courant-Fisher min-max principle, we may study
minima/minimizers of weighted Dirichlet forms:
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Graph:
@ Dirichlet energy:

Die(u) = ZZ% [xi = xj|)|u(xi) — u(x )’2

2.2
ngl]._]].

@ Laplacian:

Apeu(xi) = Zne(lxl xj|)(u(xi) = u(x))

n52

Continuum Local:

@ Dirichlet energy:

D(v) = oy, /M IV v|?p?(x)d Vol p(x)

@ Laplacian:
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The TL? space:

=) u=tpe)
|. v

TIL"

TL? .= {(v,u) : vE€Pa(M), ucl?v)}

Weirrzi,u) /MXM (dM(X’y)z +Ju(x) = V(Y)|2> dr(x,y)

Nicolas Garcia Trillos UW-Madison Regularity theory and co! convergence Graph Laplacians




The TL? space:

() u=tpe)
. v

TIL"

@ Detailed discussion in: A Transportation LP distance for signal
analysis. Thorpe et al (2018).
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Implicit interpolation

Let 1, empirical measure of samples from u. Let u: M, — R.
Th: M — M, satisfying Ty = p, induces:

uol,: M—=R
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Discrete to non-local control (use of interpolation map) + Analysis
of Non-local Dirichlet energy.
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Discrete to non-local control (use of interpolation map) + Analysis
of Non-local Dirichlet energy.
Continuum Non-local:

@ Dirichlet energy:

D)= [ [ nlix=yDIv(0 = vly) Peu)dn(y)

@ Laplacian:

Acv(x) = = /M ne(1x — y))(v(x) — v(y))dp(y)

g2
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Discrete to Non-local (Interpolation Version 1)

Ty o L2 (pn) = L3(p)

u: X, — R is mapped to

Tru(x) =uo Ty

n
This map satisfies:

Q [[ullizuny = llull2un)

@ (1- cl=Tel=) p(Z,u) < Dy(u), where
Ei=e—2|lld — Tyllco.
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Indeed, for a given transport map Tz = [ip:

Dne() = =y [ [ 1(B52) (060 = w)Pan()dun(s)

=5m+2 [ [ (P00 (s 0) — )Pttty
> [ [ (P22 ) — Tty

Id — Tplloo
(1 _ | ) Dx(T}u)
£

Vv

£:=¢e—=2|ld — Thl|co-
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Non-local analysis

The sequence {D.}. I-converges in the [2(u) sense towards D as
e—0
Recall:

D)= [ [ nllx=yDIvx) = vy Peu()dty)

D(v) = oy /M Vv |?p?(x)d Vol y(x)

De Giorgi [-convergence: Sufficient (and for all purposes
necessary) conditions for convergence of minimizers.
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Non-local analysis

The sequence {D.}. I-converges in the [2(u) sense towards D as
e—0
Recall:

D) = [ [ mllx=yDIv() = vy)Pdntx)duty

D(v) = oy /M IV v|?p?(x)d Vol pq(x)

@ Vve —>p2(y) V- D(v) < liminf._o D:(vc).

® Vv Ive =2, vi D(v) > limsup,_,o De(ve).

(1
o Every {Vv.}.>0 with sup..q D:(v:) < 00, is precompact.
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Combining: Discrete to Non-local + Analysis Non-local

It follows: D, . ['-converges in TL? towards D, as n — oo,
provided:

inf || T — Id||so < & < 1
Typu=pn
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Combining: Discrete to Non-local + Analysis Non-local

It follows D), . [-converges in TL? towards D , as n — oo, provided:

doc(pins p) = inf [Ty — ldog < 2 < 1

If M, ={x1,...,xn} are i.i.d. samples from p

3/4if m=2
1/mif m>3

log(n)Pm

doo(pt; pin) ~ — 70— <e <1, pm:{

(Ajtai, Komlés, Tusnady (1984), Shor and Yukich (1989), Leighton
and Shor (1993), Talagrand, NGT and Slepcev 2014).
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ACT2: L? convergence rates

(Discrete to Non-local control + Analysis Non-local Dirichlet
energy)
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@ A graph-discretization of the Laplace-Beltrami operator.
Burago et al (2014).

@ Error estimates for spectral convergence of the graph
Laplacian on random geometric graphs towards the

Laplace-Beltrami operator. NGT, Gerlach, Hein, Slepcev
(2018).

@ Improved spectral convergence rates for graph Laplacians on
epsilon and k-NN graphs. Calder, NGT (2019).
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Discrete to Non-local control (same as in the previous Act) +
Analysis Non-local Dirichlet energy (but more carefully) .
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Analysis Non-local Dirichlet energy

Using ideas from Burago et al (2014):

D(A.v) < (14 Ce)D.(v), Vv e L?(n)

where

Arv(x) o /M UG Y)dnly), (t) = / " (s)sds

n
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L convergence rates: version 1

Theorem:[NGT, Gerlach, Hein, Slepcev, 2019] As long as
(M)pm <e<1 wvhp,

n

doo (Hin;
\Aﬁ,a—Ak\§C< (Z “)+(\/Ak+1)s> A

doo(fn)
Hzguk—vkufz(mgck< (Z “)+(W<+1)g> Ak

Recall: 0o-OT distance between p and gy,
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Figure: Eigenvalues Graph Laplacian Vs Eigenvalues Laplacian on Sphere.

A=l < C <d°°(’;”’“) + (VK + 1)5) Ak

Recall: oo-transportation distance between p and iy,
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Figure: Eigenvalues Graph Laplacian Vs Eigenvalues Laplacian on Sphere.

d
AKX < C ( colpin: 1) + (VK + 1)5> A
’ €
Recall: oo-transportation distance between p and i,
(log(n))Pm
nl/m °
Side Remark: From graph cuts to isoperimetric inequalities:

Convergence rates of Cheeger cuts on data clouds (NGT, Murray,
Thorpe 2020)

doo (1, fin) ~
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Improving the convergence rates

Suppose A, .u = Ap.u and Av = Av both normalized.
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Improving the convergence rates

Suppose A, .u = A, .u and Av = Av both normalized.

)\n7€<u, V>L2(,un) = <An,€ua V>L2(/Ln)
= (U, DneV)i2(u,)

= {(u, AV>L2(Mn) + (u, Apev — AV>L2(MH)

)\(U, V>L2(,un) + <U, An,{.;V — AV>L2(,LLn)

The bottom line is:

MaXij=1,....n |AV(XI') - Anﬁv(Xi)‘

|)‘ T )\n, | S
) (U5 V) 120y,
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Improving the convergence rates

Suppose A, u = Ap-u and Av = Av both normalized.

= (Bnelhy V) 12(,)
(U Dnev) iz
(U, Av) oy + (U Bpev — Av) o,
Muy v) 20y + (U, Dpev — Av) o,

Ane(Us V) 120

The bottom line is:

MaX;=1.....n |AV(Xi) — An,SV(Xi)‘

|<U, V>L2(,un)’

|A_A7

In other words: with a priori estimates we can upgrade to the
pointwise convergence rates .
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Improved L?-convergence rates

Theorem:[Calder, NGT, 2019] Let kK € N. As long as

L e K1,

(Iog(n) ) 1/(m+4)

n

then w.v.h.p:
p‘ﬁ,z—: - Ak‘ < Cke

and
H-’Z%Uk — Vk”LQ(u)S Ckg, Huk — VkHLZ(un)S Ckg.
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ACT3: Regularity and uniform
convergence results.
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-0.01
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—-0.03

—0.04
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Global Lipschitz estimates

Theorem: [Calder, NGT, Lewicka, 2020] Let £ be small enough.
As long as

L e K1,
n

(Iog(n))l/(m+4)
then w.v.h.p:

[6(xi) — 00x)| < Cl[all oo () + 1 Anelll oo (m,)) - (daalxis X)) + )

for all i : M, — R and all x;,x; € M,,.
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Corollary 1: Regularity of eigenvectors

The general inequality is:

[6(x;) = 80g)| < CUITl Lo (M) + 1 Anebll oo (rn)) - (daa(xis x5) + €).
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Corollary 1: Regularity of eigenvectors

The general inequality is:
[6(x;) — 6(x)| < C[|ll ooy + 1 AnelllLoo(rn)) - (dr(xi, x5) + ).
Take i = u where: A, u= A,cu and [Jul;2,,) = 1. Then,
u(xi) = u(x)| < C((Ane + Dl ull oo (rn,)) - (da(xis %) + €)
In fact, from the above it follows:

HUHLOO(Xn) < C(An,e -+ 1)mHUHL1(Xn)’

9

N1 Hence...

provided ¢ <
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Corollary 1: Regularity of eigenvectors

Bottom line: A, .u= A, u and |[u][;2(,,) = 1. Then,
[u(x;) = u(x)] < C((Ane +1)™) - (d(xi, %) + )

or

lu(x;) — u(x;)| 41
— < C()\, 1)mT,
[U]l,s >T7?>)<j dM(X,',XJ') +e ( et )

i.e. uis "almost" Lipschitz.
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Corollary 2: Almost C%!-convergence

The general inequality is:

[6(x;) = 80g)| < CUITl Lo (M) + 1 Anebll oo (rn)) - (daa(xis x5) + €).
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Corollary 2: Almost C%! convergence rates

The general inequality is:
[6(x;) — 50g)| < C(l|@ll oo (an) + 1Bnetllo(am,)) - (daa(xi, x5) +€)

Take &1 = u — v where Ayu = Ap.u and Av = Av both
normalized.
Note:

Apc(u—v)=Apc(u—Vv)+ (A= Ape)v+ (Apcv — Av)
We can essentially obtain:
[u = Vlom,) £ CA+1)7lu = v[20m,),
and then

[U — V]17€ S C()\ + ].)m_H'”U — V||L2(Mn)'
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How do we prove this?

Theorem|[Calder, NGT, Lewicka, 2020]: Let € be small enough.
As long as

<L eK 1,

(Iog(n) ) 1/(m+4)

n

then w.v.h.p:
[8(x;) — 0(x;)| < C([[El Lo (M) + 1Anelll Lo (M) - (dra(Xis X)) + €)
for all i € L?(M,,) and all Xi, Xj € Mp.

Discrete to Non-local control (with different interpolator) +
Analysis Non-local Laplacian.
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Step 1: Discrete to non-local control

Interpolation map (Version 2): Given u: M, — R define
Ip.u: M—R

1 n
I%,sU(X) = nd. (x) ;%ﬂx — xi|Ju(x;).

Y
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Step 1: Discrete to non-local control

T2 u(x) = ndgnx)zm — xl)ulx)

Properties: Let ¢ be small enough. As long as

(Iog(n) ) L/(m+4)

n

L e K1,

then w.v.h.p:
Q |u(xi) — u(x)| < Ce?||AncullLoo(an,) + 1 T5 cu(xi) — I cu(x;))]
@ |75 ull ooy < Cllull oo (am,)
@ [[AZ; ct)ll oo vy < CUIAR Ul ooy + ull oo (atn))-
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Step 1: Discrete to non-local control

I:%,s”( = 2776 [x — xi|Ju(x;).

ndg n

Properties: Let ¢ be small enough. As long as

ek 1,

(Iog(n) ) 1/(m+4)

n

then w.v.h.p:
Q |u(xi) — u(x)| < Ce?||Ancull oo (any) + 15 cu(xi) =I5 cu(x))]
@ |75  ull oy < Cllulloe(am,)
@ [[AAZ5 ct)lloe vy < C1ARUll ooy + ull oo ()
Recall:

Acv(x) = — /M ne(x — y))(v(x) — v(y))dp(y)
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Step 2: Analysis Non-local Laplacian

Theorem:(Global regularity Non-local Laplacian) Let £ be small
enough. Then, for every v: M — R

v(x) = v¥)l < CUIVIiLee vy + 1B Vi) - (dai(x, y) +€),

for all x,y € M.
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Step 2: Analysis Non-local Laplacian

Theorem:(Global regularity Non-local Laplacian) Let € be small
enough. Then, for every v : M — R

v(x) = v¥)I < Cl[vllee(ry + 1BeVILoo () - (dmlx,y) + ),

for all x,y € M.
Coupling of random walks methods to obtain regularity estimates:

@ Cranston (1991): using coupling of Brownian particles
proposed by Lindvall and Rogers (1986).

F.-Y. Wang (1994, 2004).
Priola and Wang (2006).
Kusuoka (2017).

Porretta and Priola (2013).
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@ Convergence rates using a priori regularity and classical
Statistical Learning tools.

@ Analysis in semisupervised learning with fractional Laplacian
regularization in Bayesian and optimization settings.

e Continuum limits of posteriors in graph bayesian inverse
problems. NGT, Sanz-Alonso (SIMA, 2018).

e On the consistency of graph-based Bayesian learning and the
scalability of sampling algorithms. NGT, Kaplan, Samakhoana,
Sanz-Alonso (JMLR, 2020).

@ Numerical analysis of PDEs on manifolds: Meshless methods
with unstructured point clouds.
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Thank you for your attention!
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