
A Deeper Understanding of the Quadratic
Wasserstein Metric in Inverse Data Matching

Yunan Yang (NYU), Matt Dunlop (NYU), Björn Engquist (UT-Austin), Kui
Ren (Columbia University)
May 5, 2020

https://arxiv.org/abs/1911.06911

https://arxiv.org/abs/2004.03730

This work is partially supported by NSF DMS-1913129.

MSRI Workshop: Optimal Transport And Applications To Machine Learning And Statis-
tics, May 4, 2020 - May 8, 2020

https://arxiv.org/abs/1911.06911
https://arxiv.org/abs/2004.03730


Inverse Data Matching Problem

Inverse data matching problems aim at �nding m such that the predicted
outputs (X, Y(m)) match given measured data (X, Y).
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The Role of the Wasserstein Metric

• As an objective function measuring data, Wp(Y(m), Y).
• The functional space for m (new gradient formula).
• Study the convergence of mk as iteration number k

increases (gradient �ow, JKO, etc).
• Study the convergence of mn (as an empirical measure) as

(over)parameterization n increases (mean-�eld limit).
• etc.
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The Model F(m)

F is given; we just �nd m (e.g., PDEs).
OR

F is not known; m depends on F .

4



The Model F(m)

F is given; we just �nd m (e.g., PDEs).

• Pro: We know the best (exact) forward problem!
• Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

• Pro: The freedom to modify it to a “better” map
(Over-Parametrization, ReLu)

• Con: Trial and error to build the model
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1. Better Convexity (Optimization
Landscape)



Important Components in the Deterministic Approach
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Seismic Inversion: Earthquake Source, Hydrocarbons, etc.

Seismic inversion is one of the inherently more di�cult families of
large-scale nonlinear inverse problems.
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Seismic Inversion

Waveform measurements from
receivers at the surface

Invert
====⇒

Subsurface properties (i.e. wave
velocity or material density)
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PDE-Constrained Optimization

Forward Problem
F : m→ u|Γ, Γ ⊆ ∂Ω or Ω

Inverse Problem
G : u|Γ → m

F and G are o�en nonlinear.

m∗ = argmin
m

J(f (m),g)

f (m) = u|Γ

J is an objective function
measuring the di�erence
between f and g.
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Seismic (Nonlinear) Inversion

Forward Wave Propagation


m(x)

∂2u(x, t)
∂t2 −4u(x, t) = s(x, t)

Zero i.c. in half-space Ω

Neumann b.c. on ∂Ω

m(x) = 1
c(x)2 , c(x) is the wave velocity

m
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Typical E�ects from Variations in Wave Speed

The shi� and dilation are typical e�ects from variations in
velocity parameter m(x) = m (constant). For example:

m∂2u
∂t2 = ∂2u

∂x2 , x > 0, t > 0,
u = 0, ∂u

∂t = 0, x > 0, t = 0,
u = f (t), x = 0, t > 0.

The solution to the equation is u(x, t;m) = f (t−
√
mx).

For �xed x, variation in m relates shi�s in the signal.

For �xed t, variation in m generates the dilation in data.

[Engquist, Froese & Y, 2016] 11



A PDE-Constrained Optimization

Traditional Least-Squares (L2 norm) Objective Function

J(m) =
1
2
∑
r

∫
|f (xr, t;m)− g(xr, t)|2 dt, (1)

• observed data g,

• simulated data f (m) = u|Γ,

• receiver xr ,

• the model parameter m,

• Regularization is o�en added in (1).

Main Challenges

1. Local minima trapping

2. Sensitive to noise

12



Motivation of Using the Wasserstein Distance (EMD)

[Engquist-Froese, 2014] [Engquist, Froese & Y, 2016] 13



The Quadratic Wasserstein Distance

The Quadratic Wasserstein Distance
For f ,g ∈ P(Ω) (f ,g ≥ 0 and

∫
f =

∫
g = 1), the quadratic

Wasserstein distance is formulated as

W2(f ,g) =

(
inf
T∈M

∫
|x− T(x)|p f (x)dx

) 1
2

(2)

M: the set of all maps that rearrange the distribution f into g.

[Monge, 1781] 14



Optimal Transport

Synthetic data f (le�) and observed data g (right)

[Monge, 1781] 15



Optimal Transport

Synthetic data f (le�) and observed data g (right)
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Optimal Transport

Synthetic data f (le�) and observed data g (right)
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Optimal Transport

Synthetic data f (le�) and observed data g (right)
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Tackling Nonconvexity

Let {ek}dk=1 be standard basis of the Euclidean space Rd.
Assume sk ∈ R, λk ∈ R+, k = 1, . . . ,d and A = diag(1/λ1, . . . , 1/λd).
We de�ne fΘ as jointly the translation and dilation of g:

fΘ(x) = det(A)g(A(x−
d∑
k=1

skek)),Θ = {s1, . . . , sd, λ1, . . . , λd}.

Theorem (Convexity ofW2 in translation and dilation)

The optimal map between fΘ(x) and g(y) is y = TΘ(x) where
〈TΘ(x), ek〉 = 1

λk
(〈x, ek〉 − sk), k = 1, . . . ,d.

Moreover, I(Θ) = W2
2(fΘ(x),g) is a convex function of Θ.

[Y, 2019] 19



Data Normalization: From Seismic Signal to Probability Density

• Absolute value scaling: f2 = |f1|

• Square scaling: f2 = f 2
1

• Linear scaling: f2 = f1 + a

• Exponential scaling: f2 = exp(af1)

• So�-Plus: f2 = log (exp(af1) + 1)

f =
f2∫
f2

[Engquist-Y, 2018],Engquist-Y, 2020] 20
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Tackling Nonconvexity

[Y-Engquist-Sun-Hamfeldt, 2016] 22



Convexity is not limted to the Wave Applications

• Inversion for Transport in homogeneous �ow;
• Reconstruction from projections;
• Deconvolution of highly localized sources;
• Deconvolution from di�usive environment.

[Engquist-Ren-Y, 2019], https://arxiv.org/abs/1911.06911 23
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2. Robustness w.r.t. Noise



2. More Robust w.r.t. Noise (Perturbation)

Given strictly positive probability density f = dν, we can
de�ne a Laplace-type linear operator

L = −∆ +∇(− log f ) · ∇

which satis�es the fundamental integration by parts formula:∫
Rd

(Lh1)h2dν =

∫
Rd
h1(Lh2)dν =

∫
Rd
∇h1 · ∇h2dν.

‖h‖2
L2(f) =

∫
Rd
h2dν, ‖h‖2

Ḣ1(f) =

∫
Rd
|∇h|2dν,

‖h‖2
Ḣ−1(f) := sup

{∫
Rd
hϕdν

∣∣∣∣ ‖ϕ‖2
Ḣ1(f) ≤ 1

}
=

∫
Rd
h(L−1h)dν.

If f = 1, we reconstruct the unweighted Ḣ−1
(Rd)

seminorm.
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The Connection with the Weak Norm

Asymptotic Connection [Otto-Villani, 2000]
If µ is the probability measure and dπ is an in�nitesimal
perturbation that has zero total mass, then

W2(µ, µ+ dπ) = ‖dπ‖Ḣ−1
(dµ)

+ o(dπ). (3)

Non-Asymptotic Connection [R. Peyre, 2018]
If both f = dµ and g = dν are bounded from below and above
by constants c1 and c2, we have the following non-asymptotic
equivalence between W2 and Ḣ−1

(dµ):

1
c2
‖µ− ν‖Ḣ−1

(Rd)

≤ W2(µ, ν) ≤ 1
c1
‖µ− ν‖Ḣ−1

(Rd)

, (4)
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Hs-based inverse matching

A linear inverse problem of �nding m from noisy data gδ

Am = gδ. (5)

A (a smoothing operator) is diagonal in the Fourier domain:

Â(ξ) ∼ 〈ξ〉−α. (6)

We seek the solution by minimizing the objective functional

OHs(m) ≡ 1
2‖f (m)−g‖2

Hs :=
1
2

∫
Rd
〈ξ〉2s |̂f (m)(ξ)− ĝ(ξ)|2dξ, (7)

[Engquist-Ren-Y, 2019] 26



What do we lose?

If we can obtain the solution by direct solve (best-case scenario)

Theorem

Let Rc an approximation to A−1 de�ned through its symbol:

R̂c(ξ) ∼

{
〈ξ〉α, |ξ| < ξc

0, |ξ| > ξc
.

Let δ = ‖gδ − g‖Hs , mc
δ := Rcgδ as the minimizer of Φ(m)Hs .

‖m−mc
δ‖L2 . ‖m‖

α−s
α+β−s
Hβ δ

β
α+β−s . (8)

Reconstruction based on Hs has an optimal spatial resolution

ε ∼ δ
1

α+β−s . (9)
[Engquist-Ren-Y, 2019] 27



What do we gain?

If the noise contains mainly the higher frequency components

The solution at frequency ξ is therefore

m̂(ξ) =
(
Â∗(ξ)

(
〈ξ〉2sÂ

))−1
Â∗(ξ)

(
〈ξ〉2sĝδ(ξ)

)
.

m =
(
A∗PA

)−1
A∗Pgδ, P := (I −∆)s/2,

where the operator (I −∆)s/2 is de�ned through the relation

(I −∆)s/2m = F−1
(
〈ξ〉sm̂

)
,

s = 0, s > 0, s < 0.

[Engquist-Ren-Y, 2019] 28



What do we gain and loss?

Deconvolution with the kernel KI(x) = 1
1+|x| with the L2 (le�), H−1 (middle),

and W2 (right) metrics. Top row: with noise-free data; Bottom row: with data
containing respectively 2%, 10%, and 10% random noise.

[Engquist-Ren-Y, 2019] 29



Di�erences BetweenW2 and Ḣ−1 (the gradient �ow)

Top row: Geodesics in the Ḣ−1 space
Bottom row: Geodesics in the W2 space

[Papadakis-Peyré-Oudet, 2013] 30



Regularization
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Implicit Regularization

m∗ = argmin
m

J(m) + R(m)

Regularization does not have to be in the form of R(m).

• The choice of the objective function
• The choice of the data

e.g., low-frequency data recovers low-wavenumber model

• The choice of numerical discretization
• The optimization algorithm (�xed step size)
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Deterministic & Bayesian

For Large-Scale inverse data matching problems
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3. Wasserstein Metric as a Likelihood
Function in Bayesian Inference



Data Normalization

One problem: G(u) and y are not probability density functions.
An potential solution: Data Normalization; [Engquist-Y, 2020].

Given a σ : R→ R+, we de�ne Pσ on functions y : D× T → R as

ỹ = (Pσy)(x, t) =
1

Zσ(x)
σ(y(x, t)), Zσ(x) =

∫
T
σ(y(x, t′))dt′.

We only measure the T domain under the Wasserstein metric.

[Dunlop-Y,2020] 34



W2 Likelihood Function

W2
(
G̃(u)(x, ·), ỹ(x, ·)

)2
≈

∥∥∥∥∥ G̃(u)(x, ·)− ỹ(x, ·)
G̃(u)(x, ·)

∥∥∥∥∥
2

Ḣ−1(G̃(u))

which indicates the following noise model

ỹ = η · G̃(u), η|u ∼ N(1,L(u))

where L(u) : D(L(u))→ L2(D; L2(T)) is de�ned by

L(u)ϕ = − 1
G̃(u)︸︷︷︸
ρ

∇T ·

G̃(u)︸︷︷︸
ρ

∇Tϕ

 ,

where D(L(u)) =
{
ϕ ∈ L2(D;H2(T)) |

∫
T ϕ(G̃(u))dt = 0

}
and ∇T

is the gradient in the T domain.

[Dunlop-Y,2020] 35



Likelihood Function

φ Likelihood function Noise model assumption
ΦL2 ‖G(u)(x, ·)− y(x, ·)‖2

L2(T) y = G(u) + η, η ∼ N(0, I)

ΦH−1 ‖G(u)(x, ·)− y(x, ·)‖2
Ḣ−1(T)

y = G(u) + η, η ∼ N(0,−∆T)

ΦW2 W2
2

(
G̃(u)(x, ·), ỹ(x, ·)

)
ỹ = η · G̃(u), η|u ∼ N(1,L(u))

ΦM

∥∥∥G(u)(x,·)−y(x,·)
(y)(x,·)

∥∥∥2

L2(T)
y = η · G(u), 1/η ∼ N(1, I)

The W2 metric can be regarded as asymptotically coming from
the state-dependent multiplicative noise data model:

measurement error is proportional to the size of the quantity,
and the distribution depends on the model parameter.

[Dunlop-Y,2020] 36



W2 Likelihood Function — Bene�ts

Theorem (Existence)

Let π0 be a Borel probability measure on X. Then for any choice
Φ ∈ {ΦL2 ,ΦH−1 ,ΦW2 ,ΦM},

ZΦ(y) =

∫
X

exp(−Φ(u; y))π0(du)

is strictly positive and �nite, and

πyΦ(du) :=
1

ZΦ(y)
exp (−Φ(u; y)) π0(du)

de�nes a Radon probability measure on X.

[Dunlop-Y,2020] 37



W2 Likelihood Function — Bene�ts

Theorem (Well-posedness)

Choose any Φ ∈ {ΦL2 ,ΦH−1 ,ΦW2 ,ΦM}. Under mild assumptions,
there exists CΦ(r) > 0 such that for all y, y′ ∈ Y with
‖y‖L∞(D;L∞(T)), ‖y′‖L∞(D;L∞(T)) < r,

dH(πyΦ, π
y′
Φ ) ≤ CΦ(r)‖y − y′‖Y .

dH represents the Hellinger distance.

dH(πyΦW2
, πy

′

ΦW2
) ≤ CW2‖y − y′‖H−1 .

dH(πyΦL2
, πy

′

ΦL2
) ≤ CL2‖y − y′‖L2 .

If y − y′ ≈ sin(kx), ‖y − y′‖H−1 ≈ O( 1
k), while ‖y − y′‖L2 ≈ O(1).

[Dunlop-Y,2020] 38



W2 Likelihood Function — Example

The true continuous velocity �eld v and the state parameter u = F−1(1/v2).

The prior mean m0(x) and standard deviation.[Dunlop-Y,2020] 39



W2 Likelihood Function — Example

The means (le�) and standard deviations (right) of the Laplace
approximations.

[Dunlop-Y,2020] 40



Properties of the Wasserstein Metric in Inverse Data Matching

1. Better convexity (optimization landscape) as an objective
function for certain problems.

2. Robust with respect to high-frequency noise.
3. As a likelihood function in Bayesian inference for better

stability. (Well-posedness of the posterior is proved.)

From [Qiu, 2013] 41
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