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Inverse Data Matching Problem

Model (m)

Xmap  (PpE) wmp )

(NNets)

Inverse data matching problems aim at finding m such that the predicted
outputs (X, Y(m)) match given measured data (X, Y).



The Role of the Wasserstein Metric

+ As an objective function measuring data, W,(Y(m),Y).
« The functional space for m (new gradient formula).

- Study the convergence of my, as iteration number kR
increases (gradient flow, JKO, etc).

- Study the convergence of m, (as an empirical measure) as
(over)parameterization n increases (mean-field limit).

. etc.
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The Model F(m)

Model (m)
(PDE)
(NNets)

F is given; we just find m (e.g., PDEs).
OR
F is not known; m depends on F .



The Model F(m)

F is given; we just find m (e.g., PDEs).

« Pro: We know the best (exact) forward problem!

« Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

+ Pro: The freedom to modify it to a “better” map
(Over-Parametrization, ReLu)

« Con: Trial and error to build the model



1. Better Convexity (Optimization
Landscape)



Important Components in the Deterministic Approach

Objective
function Regularization
(convexity)

How much do
we trust the
solution?




Seismic Inversion: Earthquake Source, Hydrocarbons, etc.

Seismic inversion is one of the inherently more difficult families of
large-scale nonlinear inverse problems.
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Seismic Inversion
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PDE-Constrained Optimization

Forward Problem m* = argminJ(f(m), g)
F:m—=ul, T CoQorQ m

f(m) =ulr
Inverse Problem J is an objective function
G:ulr—m measuring the difference

between f and g.
F and G are often nonlinear.



Seismic (Nonlinear) Inversion

Marmousi model
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Typical Effects from Variations in Wave Speed

The shift and dilation are typical effects from variations in

velocity parameter m(x) = m (constant). For example:

m&i =&y X>0,t> 0,
u=o, %=0, x>o0,t=0,
u = f(t), X=0,t>o0.

The solution to the equation is u(x, t; m) = f(t — vmx).

For fixed x, variation in m relates shifts in the signal.

For fixed t, variation in m generates the dilation in data.

[Engquist, Froese &Y, 2016]
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A PDE-Constrained Optimization

Traditional Least-Squares (L2 norm) Objective Function

Jm) =33 [ 1.t m) — g P (")

+ observed data g,

- simulated data f(m) = u|r, Main Challenges

. receiver X, 1. Local minima trapping
- the model parameter m, 2. Sensitive to noise

+ Regularization is often added in (1).
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Motivation of Using the Wasserstein Distance (EMD)

L2 difference between f and f(t-s)

W2 distince between f and f(t-s)
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The Quadratic Wasserstein Distance

The Quadratic Wasserstein Distance

Forf,g e P(Q) (f,g >oand [f = [g=1),the quadratic
Wasserstein distance is formulated as

Ws(f,g) = ( inf /|x— dx)1 (2)

M: the set of all maps that rearrange the distribution f into g.

[Monge, 1781] »



Optimal Transport

||| *I

Synthetic data f (left) and observed data g (right)

[Monge, 1781] 15



Optimal Transport

Synthetic data f (left) and observed data g (right)
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Optimal Transport

(amount moved)
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Synthetic data f (left) and observed data g (right)
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Optimal Transport

(amount moved) * (distance moved)?
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Synthetic data f (left) and observed data g (right)
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Tackling Nonconvexity

Let {e,}9_, be standard basis of the Euclidean space RY.
Assume sy e R\, e RT R =1,...,dand A =diag(1/\,...,1/Aq)-
We define fg as jointly the translation and dilation of g:

d
fo(x) = det(A)g(A(x — > sker)),© = {S1,...,5¢, M, -, Ag}-
k=1

Theorem (Convexity of W/, in translation and dilation)

The optimal map between fo(x) and g(y) is y = Te(x) where
(To(x), er) = 1= ((x, ek) — s¢), Rk =1,....d.

Moreover, I(©) = W2(fo(X), g) is a convex function of ©.

[Y, 2019] 19



Data Normalization: From Seismic Signal to Probability Density

« Absolute value scaling:  f, = |fy

- Square scaling:  f, = f?

« Linearscaling: f,=fi+a

+ Exponential scaling:  f, = exp(afy)

+ Soft-Plus:  f, = log (exp(afi) + 1)

[Engquist-Y, 2018],Engquist-Y, 2020] 20
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Tackling Nonconvexity
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Convexity is not limted to the Wave Applications

« Inversion for Transport in homogeneous flow;
- Reconstruction from projections;

- Deconvolution of highly localized sources;

- Deconvolution from diffusive environment.

[Engquist-Ren-Y, 2019], https://arxiv.org/abs/1911.06911 23
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2. Robustness w.r.t. Noise




2. More Robust w.r.t. Noise (Perturbation)

Given strictly positive probability density f = dv, we can
define a Laplace-type linear operator

L=-A+V(-logf) V
which satisfies the fundamental integration by parts formula:

/(Lh hzdy_/ hi(Lhy)dv = Vh1 Vh,dv.
Rd

IhllEzry = [ h*dv, [IhIIE, IVhI dv,
= Joa "~

2 = h 2 < = h(L™"h
101 gy =sun{ [ hod HSDHH1(f)_1} [,y

If f = 1, we reconstruct the unweighted ”H&Qd

) seminorm.
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The Connection with the Weak Norm

Asymptotic Connection [Otto-Villani, 2000]
If v is the probability measure and dr is an infinitesimal
perturbation that has zero total mass, then

Wa(, 1+ d) = |[drlla -+ o(dm) 3)
Non-Asymptotic Connection [R. Peyre, 2018]
If both f = dp and g = dv are bounded from below and above

by constants ¢, and ¢,, we have the following non-asymptotic
equivalence between W, and ’H@L):
= vy, < Walu,v) < == v (4)
— — UVl|qy—1 V) S — — V0|
5" Haay = : o o)
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H°-based inverse matching

A linear inverse problem of finding m from noisy data gs

Am = g;. (5)

A (a smoothing operator) is diagonal in the Fourier domain:
A(€) ~ (&)~ (6)

We seek the solution by minimizing the objective functional

1

If(m)~gllhe =3 [ (©Fm)(©)-g(e)de. 0

OHs(m) = >

1
2

[Engquist-Ren-Y, 2019] 26



What do we lose?

If we can obtain the solution by direct solve (best-case scenario)

Theorem

Let Rc an approximation to A~" defined through its symbol:

2 ©  le<é&
0. 61> &

Let 6 = ||gs — gl|ns, m§ := Rcgs as the minimizer of ®(m)ys.

@=8

B
Im = mSl < [Imlj3;7 = 5w, (8)

Reconstruction based on H° has an optimal spatial resolution

£~ §aTFS . (9)
[Engquist-Ren-Y, 2019] 27



If the noise contains mainly the higher frequency components

The solution at frequency £ is therefore

m(e) = (A (€A)) A @) (> dx(6))

m = (A*PA) TA*Pg;,  Pi=(T— AP,
where the operator (Z — A)%/? is defined through the relation
(Z - 8)2m = F~((©)°m),

$=0,5>0,5S<O0.

[Engquist-Ren-Y, 2019] 28



What do we gain and loss?

-t 05 o 05 f=l 05 o 05 [ 05 3 05 1

Deconvolution with the kernel K(x) = 1+1W with the L2 (left), 2" (middle),
and W, (right) metrics. Top row: with noise-free data; Bottom row: with data

containing respectively 2%, 10%, and 10% random noise.

[Engquist-Ren-Y, 2019] 29



Differences Between W, and H~" (the gradient flow)

B=3/4 8=1/2 B=1/4 B=0

=1

B

t=0 t=1/8 t=1/4 t=3/8 t=1/2 t=5/8 t=3/4 t=7/8 t=1

Top row: Geodesics in the A~ space
Bottom row: Geodesics in the W, space

[Papadakis-Peyré-Oudet, 2013] 30



Regularization

Objective
function

(convexity)

Regularization

How much do
we trust the
solution?

31



Implicit Regularization

m* = argmin J(m) + R(m)

m

Regularization does not have to be in the form of R(m).

« The choice of the objective function
« The choice of the data

e.g., low-frequency data recovers low-wavenumber model
+ The choice of numerical discretization

« The optimization algorithm (fixed step size)

32



Deterministic & Bayesian

Likelihood
function Prior

(noise model distribution
assumption)

Objective
function Regularization
(convexity)

How much do
we trust the
solution?

Uncertainty
quantification

For Large-Scale inverse data matching problems

85



3. Wasserstein Metric as a Likelihood
Function in Bayesian Inference




Data Normalization

One problem: G(u) and y are not probability density functions.
An potential solution: Data Normalization; [Engquist-Y, 2020].

Givenao : R — R*, we define P, on functionsy : Dx T — R as

V= (Poy)(t) = oo (y(x.1)), Zo(x) = /T o(y(x, t)) dt’

1
Z;(X)

We only measure the T domain under the Wasserstein metric.

[Dunlop-Y,2020] 34



W, Likelihood Function

G(u)(x,-) —y(x, )|

—

G(u)(x-)

W, (Gu)x, ), 706, )) =

——

H=1(G(u))
which indicates the following noise model
y=n-G(u), nlu~N@,Lu)
where L(u) : D(L(u)) — L?(D; L*(T)) is defined by
q —
LWy =—-——==V71-|GU)Vre |,
g(u) N~
~—~—~ P
P
where D(L(u)) = {g& € L2(D; H¥(T)) | ngo o} and Vr

is the gradient in the T domain.

[Dunlop-Y,2020] 35



Likelihood Function

o ‘ Likelihood function ‘ Noise model assumption
o2 [ G ) — Y NEary | ¥ =G(u) +n, n~N(o,I)

St | 1GU06) =Yy | ¥ =G(W) +n, 0~ N(0, =Ar)

®u, M(awmuyma) y=n-G(u), nlu ~ N(1, £())
Oy H G(u)(x,) =y (x.)

L | y= 9@, v~ )
The W, metric can be regarded as asymptotically coming from
the state-dependent multiplicative noise data model:
measurement error is proportional to the size of the quantity,
and the distribution depends on the model parameter.

[Dunlop-Y,2020] 36



W, Likelihood Function — Benefits

Theorem (Existence)

Let 7o be a Borel probability measure on X. Then for any choice
q) E {¢L27 qDH_‘I ) (DW;)’ ¢M}l

Zo(y) = [ exp(=0(uiy) mofdu)
is strictly positive and finite, and
1
me(du) = mexp(—¢(u;y)) To(du)

defines a Radon probability measure on X.

[Dunlop-Y,2020] 37



W, Likelihood Function — Benefits

Theorem (Well-posedness)

Choose any ® € {®2, Dy, Py, Pm}. Under mild assumptions,
there exists Co(r) > 0 such that for ally,y’ € Y with

IVl oo (Dioo (7)) 1Y/ Ioo (Dsioe )y < 1

!

du (g, 75 ) < Co(Nly = ¥'llv-
dy represents the Hellinger distance.
An (7, » Ty, ) < Cwally =¥/l
du(ry,: ms,) < Czlly — V' iz.
Ify —y' ~sin(kx), |ly — V[l = O(%), while [ly — y'||= = O(1).

[Dunlop-Y,2020] 38



W, Likelihood Function — Example

Velocity v
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a 2
15

The true continuous velocity field v and the state parameter u = F~"'(1/v?).

Prior Mean

4.5
4
3.5
3
2.5
2

[Dunlop-Y,2020]

State parameter u
-1
_ i15
-2

Prior Standard Deviation

1.7
1.6
15
1.4
1.3
1.2

The prior mean mo(x) and standard deviation.
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W, Likelihood Function — Example

L? Mean L? Standard Deviation
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The means (left) and standard deviations (right) of the Laplace
approximations.

[Dunlop-Y,2020] 40



Properties of the Wasserstein Metric in Inverse Data Matching

1. Better convexity (optimization landscape) as an objective
function for certain problems.

2. Robust with respect to high-frequency noise.

3. As a likelihood function in Bayesian inference for better
stability. (Well-posedness of the posterior is proved.)

Fine

Coarse

From [Qiu, 2013] i
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