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Cysteine molecule simulation,
(from Walter Kohn’s Nobel prize laudation page)
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Quantum mechanics

Quantum mechanics describes nature at the smallest scales of
energy levels of atoms and subatomic particles

Important applications of quantum mechanics: quantum
chemistry, quantum optics, quantum computing,
superconducting magnets, light-emitting diodes, the laser, the
transistor and semiconductors such as the microprocessor,
medical and research imaging such as magnetic resonance
imaging and electron microscopy.

Explanations for many biological and physical phenomena are
rooted in the nature of the chemical bond, most notably the
macro-molecule DNA −→ quantum biology
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Informal introduction to Quantum mechanics/DFT

All materials systems we study essentially consist of electrons
and nuclear charge.

Mechanical, electronic, magnetic etc. properties are due to
electrons and their interaction with other electrons.

In order to define electrons and their interaction we use
Schrodinger equation (Dirac 1929).

It allows to predict, e.g., binding energies, equilibrium
geometries, intermolecular forces

Quantum mechanics for a molecule with N electrons reduces to a
PDE of form HΨ = EΨ (called Schroedinger equation) for a
function Ψ on R3N .
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The solution Ψ(x1, . . . , xN) is called wave function and
represents the state of the N-particles system.
N - number of electrons, xi position of electron i

|Ψ(x1, . . . , xN)|2

= probability density that the electrons are

at positions xi .

Ψ is an anti-symmetric function, which makes |Ψ|2 a symmetric
(N-exchangeable) probability measure.
If Schrodinger equation for the many electrons problem could be
solved accurately and efficiently then almost any property of the
materials could be determined determined accurately.
Unfortunately, there is neither an accurate nor an efficient
method to solve these problems.
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Density Functional Theory (DFT)

To simulate chemical behaviour, approximations are needed.

Curse of dimensionality: carbon atom: N = 6. Discretise R by
10 points→1018 total grid points.

DFT is a simplified version of quantum mechanics (QM), widely
used in molecular simulations in chemistry, physics, materials
science

Main idea: describe complicated N-particle system (a
probability on R3N) using only its single-electron marginal
density

ρ(x1) =

∫
R3(N−1)

|Ψ(x1, . . . , xN)|2dx2 . . . dxN

Feasible system size: systems with more than a dozen or so
electrons.
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Density Functional Theory

How to devise faster methods for the full model at large N?

“cheap” simulation of heavy-metal pump in E. Coli
(Su & al., Nature ’11)
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Some history of DFT

Thomas-Fermi: 1920s simple model

Hohenberg-Kohn-Sham (1963-1964): practical method based on
semi-empirical functions of ρ

Levy (1979), Lieb (1983): mathematical justification and
simplified reformulation of the equation

1970s: popular in solid state physics, but not so accurate

1990s: explosion in quantum chemistry, due to increase of
computational resources + discovery of efficient semi-empirical
functionals of ρ

1998 Nobel Prize for ‘founding father’ Walter Kohn
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Fun facts

More than 15 000 papers per year with the keyword ’density
functional theory’

Most cited physicist of all time is a designer of DFT models,
J.Perdew (275,877 Google Scholar paper citations as of this
morning, compared to 130,029 citations for Einstein).
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Turning this into math

Key quantum mechanics quantity is the ground state energy E0
(state of lowest energy)

E0 = inf
Ψ

E[Ψ]

where

E[Ψ] = Th[Ψ] + Vee[Ψ] + Vne[Ψ]

and

AN = {Ψ ∈ L2((R3N) | ∇Ψ ∈ L2, Ψ

antisymmetric, ||Ψ||L2 = 1}

Vee[Ψ], Vne[Ψ] involve expectations for the Coulomb potential
(1/|x|) with respect to symmetric probability measures on R3N
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A simplified reformulation of the above equation is the
Hohenberg-Kohn-Sham (HK) model (Levy 1979 - Lieb 1983).

It is formulated in terms of the single-electron density ρ

ρ(x1) =

∫
R3(N−1)

|Ψ(x1, . . . , xN)|2dx2 . . . dxN .

Pair electrons density

ρ2(x1, x2) =

∫
R3(N−2)

|Ψ(x1, . . . , xN)|2dx3 . . . dxN

RN := {ρ : R3 → R | ρ is the density of some Ψ}
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Variational formulation of density functional theory

(Hohenberg/Kohn 1964, M. Levy 1979, E. Lieb 1983)
For any external potential v, the exact Schroedinger eqn. satisfies

E0 = inf
ρ∈RN

{
HKh[ρ] + N

∫
R3

1
|x|
ρ(x)dx

}
with

HKh[ρ] : = inf
Ψ∈AN ,Ψ7→ρ

{
Th[Ψ] + Vee[Ψ]

}
,

HKh[ρ] is the famous Hohenberg-Kohn functional.

Not useful for computations (definitely still contains the big
space of Ψ(x1, . . . , xN)). But useful starting point for model
reduction in asymptotic limits.
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Correlations in DFT

Mathematical structure: Minimize an approximate energy
functional E[ρ] which depends on the electron density ρ(x), a
function on R3.
Catch: exact QM energy requires knowledge of electron-pair
density

ρ2(x1, x2) =

∫
R3(N−2)

|Ψ(x1, . . . , xN)|2 dx3 . . . dxN ,

a function on R6, which entails correlations.
Roughly, DFT models ≈ semi-empirical models of the pair
density ρ2 in terms of ρ.
Standard way out: start by assuming independence (called mean
field in physics), add semi-empirical corrections to E[ρ]
accounting for correlations. Often but not always
accurate/reliable.
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Popular functionals

All functionals used in practice are of form

Mean field + additive corrections.

Why mean field? Interactions not weaker than single-particle terms.

The mean field approximation:

Vee(ψ) ≈ N2

2

∫
R6

1
|x− y|

ρ(dx)ρ(dy) =: J[ρ].

Local Density Approximation:

Vee(ψ) ≈ J[ρ]− 4
3

(3/π)1/3 N4/3
∫
R3
ρ(x)4/3dx.
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Many-marginals Optimal Transportation

γ measure in RNd, µ1, µ2, . . . , µN measures in Rd

The Cost Function c : Rd × Rd . . .× Rd → R ∪ {+∞}
We want to transport mass from a given pile ρ1 into a number of
given holes µ2, µ3, . . . , µN , so as to minimize the transportation
cost ∫

c(x1, x2, . . . , xN)dγ(x1, x2, . . . , xN).

subject to the constraints∫
R(N−1)d

γ(x1, x2, . . . , xN)dx2 . . . dxN = µ1(x1), . . .

∫
R(N−1)d

γ(x1, x2, . . . , xN)dx1 . . . dxN−1 = µN(xN),
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FOT
N,c(µ) := min


∫

(Rd)N

N∑
i,j=1
i 6=j

c(xi − xj)dγN(x1, . . . , xN)

∣∣∣∣ γN ∈ Psym((Rd)N)
γN 7→ µ

 .

We are mostly interested in the case c(x, y) = 1
|x−y|s , 0 < s < d, i.e.

FOT
N,s(µ) := min


∫

(Rd)N

N∑
i,j=1
i 6=j

1
|xi − xj|s

dγN(x1, . . . , xN)

∣∣∣∣ γN ∈ Psym((Rd)N)
γN 7→ µ

 .

The case s = d − 2 is the Coulomb cost.
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Optimal Transport Connection to DFT

Semiclassical limit

Theorem

Fix ρ ∈ RN . Let N ≥ 2. Then in d = 3

lim
h→0

HKh[ρ] = FOT
N,1(ρ)

for every ρ ∈ RN , where recall that

HKh[ρ] := inf
Ψ∈AN ,Ψ 7→ρ

{
Th[Ψ] + Vee[Ψ]

}
.



Equality of the Jellium and Uniform Electron Gas next-order asymptotic terms for Coulomb and Riesz potentials

Optimal Transport Connection to DFT

Cotar, Friesecke, Klueppelberg: N = 2 (2011)

Bindini - De Pascale (2017): extension to N = 3.

Cotar, Friesecke, Klueppelberg (2017 - extension for N ≥ 3 to
the full model); Lewin (2017 - extension for N ≥ 3 to a relaxed
model)

In physics literature: Seidl’99, Seidl/Perdew/Levy 1999,
Seidl/Gori-Giorgi/Savin 2007
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Optimal Transport Connection to DFT

Optimal transport DFT community

C-Friesecke-Klüpperberg (CPAM 2013): characterization for a
class of repulsive costs of the minimizing measure for N = 2

Colombo-Di Marino (2017): Kantorovich problem coincides
with infimum over Monge states for N ≥ 2 and d ≥ 1

Colombo-De Pascale-Di Marino (2013): Existence and
uniqueness of Monge solution for N ≥ 2 and d = 1

Duality and bounds on the support of the optimal transport
measure: De Pascale (2015), Buttazzo-Champion-De Pascale
(2017), ..

Regularity-type results: Pass (2013), Moameni (2014),
Moameni-Pass (2017), Kim-Pass (2017)...

Numerics: Benamou-Carlier-Nenna (2015); Di
Marino-Gerolin-Nenna (2017),..
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Optimal Transport Connection to DFT

Asymptotics for FN for large N

First-order "mean field" functional (Cotar-Friesecke-Pass,
Calc.Var. PDE-2013; Petrache 2015)

lim
N→∞

(
N
2

)−1

FOT
N,c(µ) = FOT

∞,c[µ] =
1
2

∫
R2d

l(x− y)dµ(x)dµ(y).

(c(x, y) = l(x− y) with positive Fourier transform)

Proof by use of de Finetti theorem: exchangeable observations
are conditionally independent relative to some latent variable
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Optimal Transport Connection to DFT

Next-order term

Study of the energy not encoded in the mean field functional, called in
physics Exchange-correlation energy Exc

N,s
Lieb-Oxford bound

N−1−s/d
(

FOT
N,s(µ)− N2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy
)

≥ −CLO

∫
Rd
ρ(x)1+s/ddx.

Trivially, we also have

FOT
N,s(µ)− N2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy ≤ 0.

Question: Does the limit below exist

lim
N→∞

N−1−s/d
(

FOT
N,s[µ]− N2

∫
R2d

1
|x− y|s

ρ(x)ρ(y)dxdy
)

=?
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Optimal Transport Connection to DFT

Second-order term 0 < s < d

d = 1, Coulomb and Riesz costs: Di Marino (2017)
s = 1, d = 3 for µ with continuous, slow-varying density ρ, i.e.,
densities satisfying ∑

k∈Zd

max
x∈[0,1)d+k

ρ(x) <∞

(Lewin-Lieb-Seiringer 2017, via Graf-Schenker (1995)
decomposition)
0 < s < d, any d, any ρ > 0 such that

∫
Rd ρ

1+ s
d <∞, via new

type of Fefferman-Gregg decomposition (1985, 1989) + optimal
transport tools (Cotar-Petrache 2017-Adv. Math.)
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Optimal Transport Connection to DFT

Theorem

(Cotar-Petrache- Adv. Math 2019) If 0 < s < d and dµ(x) = ρ(x)dx
then then exists CUEG(d, s) > 0 such that

lim
N→∞

N−1−s/d
(

FOT
N,s(µ)− N2

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x− y|s
dx dy︸ ︷︷ ︸

=:Exc
N,s(µ)

)

= −CUEG(s, d)

∫
Rd
ρ1+ s

d (x)dx.

Uniform marginal (uniform electron gas UEG): Dirac (1929)

Exact value of CUEG(d, s) for s = 1, d = 3, is unknown,
although the physics community thought for a long time that it is
approx 1.4442
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Optimal Transport Connection to DFT

Some tools: Fefferman-Gregg decomposition

Introduced by Fefferman (1985) for s = 1, d = 3

Extended by Gregg (1989) to 0 < s < 2 + [(d − 1)/2]

Further extended by Cotar, Petrache (Adv. Math 2019) to all
0 < s < d.
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Optimal Transport Connection to DFT

Some tools: Fefferman-Gregg type decomposition

Let M ∈ N+, 0 < ε < d/2 and ε ≤ s ≤ d − ε. Then there exists a
constant C depending only on d, ε, a family Ω of ball packings Fω of
Rd, ω ∈ Ω, a radius R1 > 0 and a probability measure P on Ω such
that the cost |x1 − x2|−s can be decomposed as follows:

1
|x1 − x2|s

=
M

M + C

{∫
Ω

(∑
A∈Fω

1A(x1)1A(x2)

|x1 − x2|s

)
dP(ω) + w(x1 − x2)

}
,

where w is positive definite.
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Speed of convergence

Grand canonical optimal transport

Let N ∈ R>0,N ≥ 2, µ ∈ P(Rd)

The grand-canonical optimal transport

FOT
GC,N,c (µ) := inf

{ ∞∑
n=2

αnFOT
n,c(µn)

}
,

where infimum is taken over

∞∑
n=0

αn = 1,
∞∑

n=1

nαnµn = Nµ,

with µn ∈ P(Rd), αn ≥ 0, n ∈ N.
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Speed of convergence

The grand-canonical exchange correlation energy

Exc
GC,N,c (µ) := FOT

GC,N,c (µ)− N2
∫
Rd×Rd

c(x, y)dµ(x)dµ(y).

We have

FOT
GC,N,c (µ) ≤ FOT

N,c (µ) and Exc
GC,N,s(µ) ≤ Exc

N,s(µ).
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Speed of convergence

Speed of convergence (small oscillations) result

Theorem (Cotar-Petrache - Adv. Math. 2019)

Fix 0 < ε < d/2 and let ε < s < d − ε. Let µ ∈ P(Rd) be a
probability measure with compactly-supported density. Then there
exists C(d, ε, µ) > 0 such that for all N, Ñ ∈ R+, N ≥ Ñ ≥ 2, we
have ∣∣∣∣∣Exc

GC,N,s(µ)

N1+s/d
−

Exc
GC,Ñ,s

(µ)

Ñ1+s/d

∣∣∣∣∣ ≤ C(d, ε, µ)

log Ñ
.
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Speed of convergence

Some consequences of Small Oscillations

Let µ ∈ P(Rd) be a probability measure with compactly-supported
density.

Fix 0 < ε < d/2 and let ε ≤ s ≤ d − ε. Then the sequence of
functions

fs(N) :=
Exc

GC,N,s(µ)

N1+s/d

converges as N →∞ uniformly with respect to the parameter
s ∈ [ε, d − ε].
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Equality of second-order constants

Connection to the Jellium model

N electrons and a neutralizing background in a domain Ω with
|Ω| = N.

Minimize over xi in Ω

∑
1≤i<j≤N

1
|xi − xj|s

−
N∑

j=1

∫
Ω

1
|xj − y|s

dy +
1
2

∫
Ω

∫
Ω

1
|x− y|s

dxdy

Let minimization be JelN,s(Ω), then the limit

lim
N→∞

JelN,s(Ω)

N
= −CJel(s, d).

(Lieb & Narnhofer 1975 for s = d − 2; Cotar-Petrache March
2019 for d − 2 ≤ s < d )
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Equality of second-order constants

Connection to the Jellium model

More generally, take µ ∈ P(Rd) and density ρ.

Minimize over xi ∈ Rd

∑
1≤i<j≤N

1
|xi − xj|s

− N
N∑

j=1

∫
dµ(y)

|xj − y|s
+

N2

2

∫ ∫
dµ(x)dµ(y)

|x− y|s

Again the minimization is JelN,s(µ), then the limit

lim
N→∞

JelN,s(Ω)

N1+s/d
= −CJel(s, d)

∫
ρ1+ s

d (x)dx.

(Cotar-Petrache 2019 for d − 2 ≤ s < d)
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Equality of second-order constants

JelN,s(µ) ≤ Exc
N,s(µ)

Lewin-Lieb (2015): comparison with uniform electron gas
constant in s = 1, d = 3

Heuristics for s = 1, d = 3 in Lewin-Lieb (2015):
CJel(d, d − 2) 6= CUEG(d, d − 2), questioning the physicists’
conjecture that CJel(d, d − 2) = CUEG(d, d − 2).
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Equality of second-order constants

Minimum-energy point configurations (Coulomb and Riesz
gases)

HN,V(x1, . . . , xN) =
∑
i 6=j

1
|xi − xj|s

+N
N∑

i=1

V(xi), x1, . . . , xN ∈ Rd,

V : Rd →]−∞,+∞] confining potential growing at infinity (s = 0:
let then c(x) = − log |x|)

0 ≤ s < d: Riesz gas, integrable kernel.

s = d − 2: Coulomb gas.

s > d: short-ranged, Hypersingular kernel.

s→∞: Best packing problem
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Equality of second-order constants

Second-order asymptotics d − 2 ≤ s < d

Sandier-Serfaty, 2010-2012: d = 1, 2, c(x) = − log |x|
Rougerie-Serfaty, 2016: c(x) = 1/|x|d−2

Petrache-Serfaty, 2017: all previous cases plus Riesz cases
max(0, d − 2) ≤ s < d

Let µV be the minimizer (among probability measures) of

E s
V(µ) =

∫ ∫
1

|x− y|s
dµ(x)dµ(y) +

∫
V(x)dµ(x)
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Equality of second-order constants

Theorem

Under suitable assumptions on V, and if the density ρV is smooth
enough, we have

min HN,V =

N2E s
V(µV)− N1+ s

d CGas(s, d)

∫
µ

1+ s
d

V (x)dx + o(N1+ s
d ),

and −CGas(s, d) is the minimim value of a functionalW on
microscopic configurations ν.
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Equality of second-order constants

CGas(s, d) minimizer of a limiting energyW
Abrikosov crystallization conjecture: in d = 2, the regular
triangular lattice is a minimizing configuration forW .

For d = 3, it is conjectured that for 0 < s < 3/2 the minimizer
should be a BCC lattice and for 3/2 < s < 3 it should be an FCC
lattice.

In high dimensions, there is more and more evidence that
Coulomb and Riesz gases minimizers are not lattices, although
this is very much speculative at the moment.

Open for all d ≥ 2 dimensions, except d = 8, 24 (Viazovska).

For s = 1, d = 3, the value of CGas(1, 3) is thought to be approx.
1.4442



Equality of the Jellium and Uniform Electron Gas next-order asymptotic terms for Coulomb and Riesz potentials

Equality of second-order constants

Comparison between Jellium, UEG and Riesz Gases
(d − 2 ≤ s < d)

For 0 < s < d we can show

JelN,s(µV) ≤ HN,V − N2E s
V(µV) ≤ Exc

N,s(µV)

For d − 2 < s < d, we have (Cotar-Petrache - July 2017)

CUEG(s, d) = CJel(s, d) = CGas(s, d).

For s = d − 2, we have (Cotar-Petrache - March 2019)

CUEG(s, d) = CJel(s, d) = CGas(s, d).
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Equality of second-order constants

Continuity of CUEG(s, d)

For 0 < s < d, the function

s→ CUEG(s, d)

is continuous

The proof works by interchanging the limits of s→ s0 and
N →∞ in

N−1−s/d
(

FOT
GC,N,s(µ)− N2

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x− y|s
dxdy

)
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Equality of second-order constants

Key steps of the proof for Riesz costs (Cotar-Petrache July
2017)

Step 1: Our crucial idea was to reduce the Jellium minimization
problem to a Jellium problem with minimization over peridioc
configurations

In particular, this reduction allows to prove for d − 2 ≤ s < d

CGas(s, d) = CJel(s, d) = CPer(s, d).

Note that Cotar-Petrache 2017 is the first time where these
equalities were proved for Jellium. Previously, it was only
proved for Coulomb and Riesz gases that

CGas(s, d) = CPer(s, d).
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Equality of second-order constants

Step 2: Our crucial idea was to use the periodic minimizing
configurations to construct a competitor for the Exc

N,s problem,
albeit with the wrong marginal, depending on N

Use the subadditivity of the Exc
N,s problem to get back to the OT

problem with the correct marginal.
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Equality of second-order constants

Key steps in the proof for Coulomb costs (Cotar-Petrache
March 2019)

Prove (for the first time) a suabdditivity for Jellium: Let
N1,N2 ≥ 2, N := N1 + N2, and let ΩN = ΩN1 ∪ (ΩN \ ΩN1). Set
0 < ε ≤ min(2, d/2). Then for 0 < d − 2 ≤ s ≤ d − ε

JelN1+N2,s(ΩN) ≤ JelN1,s(ΩN1) + JelN2,s(ΩN \ ΩN1)

+ Cadd(ε, d)
N1 + N2

log(min(N1,N2))
.

Use the equality of CJel(s, d) and CUEG(s, d) from Riesz costs
d − 2 < s < d and the continuity of CUEG(s, d).
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Equality of second-order constants

Next-order terms: open problems

Open problem: Find CUEG(s, d) (connected to the
crystallization conjecture)

Open problem: Prove or disprove Exc
N,s/N1+s/d is decreasing in

N (recall that Exc
N is negative here)


	Optimal Transport Connection to DFT
	Speed of convergence
	Equality of second-order constants

