Codina Cotar (joint works with M. Petrache)

May 06, 2020

Cysteine molecule simulation, (from Walter Kohn's Nobel prize laudation page)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Quantum mechanics

- Quantum mechanics describes nature at the smallest scales of energy levels of atoms and subatomic particles
- **IMPORTANTED Important applications of quantum mechanics: quantum** chemistry, quantum optics, quantum computing, superconducting magnets, light-emitting diodes, the laser, the transistor and semiconductors such as the microprocessor, medical and research imaging such as magnetic resonance imaging and electron microscopy.
- Explanations for many biological and physical phenomena are rooted in the nature of the chemical bond, most notably the macro-molecule $DNA \rightarrow quantum \, biology$

Informal introduction to Quantum mechanics/DFT

- All materials systems we study essentially consist of electrons and nuclear charge.
- Mechanical, electronic, magnetic etc. properties are due to electrons and their interaction with other electrons.
- \blacksquare In order to define electrons and their interaction we use Schrodinger equation (Dirac 1929).
- \blacksquare It allows to predict, e.g., binding energies, equilibrium geometries, intermolecular forces
- Quantum mechanics for a molecule with *N* electrons reduces to a PDE of form $H\Psi = E\Psi$ (called Schroedinger equation) for a function Ψ on \mathbb{R}^{3N} .

- The solution $\Psi(x_1, \ldots, x_N)$ is called wave function and represents the state of the *N*-particles system.
- *N* number of electrons, *x_i* position of electron *i*

$$
|\Psi(x_1,\ldots,x_N)|^2
$$

T.

= probability density that the electrons are

at positions *xⁱ* .

 Ψ is an anti-symmetric function, which makes $|\Psi|^2$ a symmetric (*N*-exchangeable) probability measure.

- If Schrodinger equation for the many electrons problem could be solved accurately and efficiently then almost any property of the materials could be determined determined accurately.
- Unfortunately, there is neither an accurate nor an efficient method to solve these problems.KID KA KERKER E 1990

Density Functional Theory (DFT)

- To simulate chemical behaviour, approximations are needed.
- **Curse** of dimensionality: carbon atom: $N = 6$. Discretise R by 10 points $\rightarrow 10^{18}$ total grid points.
- \blacksquare DFT is a simplified version of quantum mechanics (OM), widely used in molecular simulations in chemistry, physics, materials science
- **Main idea:** describe complicated N-particle system (a probability on \mathbb{R}^{3N}) using only its single-electron marginal density

$$
\rho(x_1) = \int_{\mathbb{R}^{3(N-1)}} |\Psi(x_1,\ldots,x_N)|^2 dx_2 \ldots dx_N
$$

Feasible system size: systems with more than a dozen or so electrons.**A O A G A 4 B A 4 B A B A 9 A C**

Density Functional Theory

How to devise faster methods for the full model at large *N*?

"cheap" simulation of heavy-metal pump in *E. Coli* (Su & al., *Nature '11*)।
ଏଠାର**୍** ଏ≘ ଏ≘ ଏକ ଏକ ଏବ

Some history of DFT

- Thomas-Fermi: 1920s simple model
- Hohenberg-Kohn-Sham (1963-1964): practical method based on semi-empirical functions of ρ
- Levy (1979), Lieb (1983): mathematical justification and simplified reformulation of the equation
- 1970s: popular in solid state physics, but not so accurate
- 1990s: explosion in quantum chemistry, due to increase of computational resources + discovery of efficient semi-empirical functionals of ρ
- **1998** Nobel Prize for 'founding father' Walter Kohn

- \blacksquare More than 15 000 papers per year with the keyword 'density functional theory'
- Most cited physicist of all time is a designer of DFT models, J.Perdew (275,877 Google Scholar paper citations as of this morning, compared to 130,029 citations for Einstein).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Turning this into math

Key quantum mechanics quantity is the ground state energy E_0 (state of lowest energy)

$$
E_0=\inf_{\Psi}E[\Psi]
$$

where

$$
E[\Psi] = T_h[\Psi] + V_{ee}[\Psi] + V_{ne}[\Psi]
$$

and

$$
\mathcal{A}_N = \{ \Psi \in L^2((\mathbb{R}^{3N}) \mid \nabla \Psi \in L^2, \Psi
$$
antisymmetric, $||\Psi||_{L^2} = 1 \}$

 $V_{ee}[\Psi], V_{ne}[\Psi]$ involve expectations for the Coulomb potential $(1/|x|)$ with respect to symmetric probabi[lity](#page-8-0) [m](#page-10-0)[e](#page-8-0)[as](#page-9-0)[u](#page-10-0)[res](#page-0-0)[o](#page-16-0)[n](#page-0-0) \mathbb{R}^{3N} \mathbb{R}^{3N} \mathbb{R}^{3N} \mathbb{R}^{3N} \mathbb{R}^{3N}

- A simplified reformulation of the above equation is the Hohenberg-Kohn-Sham (HK) model (Levy 1979 - Lieb 1983).
- It is formulated in terms of the single-electron density ρ

$$
\rho(x_1) = \int_{\mathbb{R}^{3(N-1)}} |\Psi(x_1,\ldots,x_N)|^2 dx_2 \ldots dx_N.
$$

Pair electrons density

$$
\rho_2(x_1,x_2) = \int_{\mathbb{R}^{3(N-2)}} |\Psi(x_1,\ldots,x_N)|^2 dx_3 \ldots dx_N
$$

KORKARYKERKE POLO

 $\mathcal{R}_N := \{ \rho : \mathbb{R}^3 \to \mathbb{R} \mid \rho \text{ is the density of some } \Psi \}$

Variational formulation of density functional theory

(Hohenberg/Kohn 1964, M. Levy 1979, E. Lieb 1983) For any external potential *v*, the exact Schroedinger eqn. satisfies

$$
E_0 = \inf_{\rho \in \mathcal{R}_N} \left\{ \mathbf{HK}_h[\rho] + N \int_{\mathbb{R}^3} \frac{1}{|x|} \rho(x) dx \right\}
$$

with

$$
\mathrm{HK}_h[\rho]: = \inf_{\Psi \in \mathcal{A}_N, \Psi \mapsto \rho} \left\{ T_h[\Psi] + V_{ee}[\Psi] \right\},\,
$$

 $HK_{h}[\rho]$ is the famous Hohenberg-Kohn functional.

 \blacksquare Not useful for computations (definitely still contains the big space of $\Psi(x_1, \ldots, x_N)$). But useful starting point for model reduction in asymptotic limits.KID KA KERKER E 1990

Correlations in DFT

- \blacksquare Mathematical structure: Minimize an approximate energy functional $E[\rho]$ which depends on the electron density $\rho(x)$, a function on \mathbb{R}^3 .
- Catch: exact QM energy requires knowledge of electron-pair density

$$
\rho_2(x_1,x_2)=\int_{\mathbb{R}^3\,(N-2)}|\Psi(x_1,\ldots,x_N)|^2\,dx_3\ldots dx_N,
$$

a function on \mathbb{R}^6 , which entails correlations.

- Roughly, DFT models \approx semi-empirical models of the pair density ρ_2 in terms of ρ .
- Standard way out: start by assuming independence (called mean field in physics), add semi-empirical corrections to $E[\rho]$ accounting for correlations. Often but not always accurate/reliable.**A O A G A 4 B A 4 B A B A 9 A C**

Popular functionals

All functionals used in practice are of form

Mean field $+$ additive corrections.

Why mean field? Interactions not weaker than single-particle terms.

 \blacksquare The mean field approximation:

$$
V_{ee}(\psi) \approx \frac{N^2}{2} \int_{\mathbb{R}^6} \frac{1}{|x-y|} \rho(dx)\rho(dy) =: J[\rho].
$$

Local Density Approximation:

$$
V_{ee}(\psi) \approx J[\rho] - \frac{4}{3} (3/\pi)^{1/3} N^{4/3} \int_{\mathbb{R}^3} \rho(x)^{4/3} dx.
$$

K ロ K K (日 K K B K X B K X B K K K K G K C K

Many-marginals Optimal Transportation

- γ measure in \mathbb{R}^{Nd} , $\mu_1, \mu_2, \ldots, \mu_N$ measures in \mathbb{R}^d
- The Cost Function $c : \mathbb{R}^d \times \mathbb{R}^d \dots \times \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$
- We want to transport mass from a given pile ρ_1 into a number of given holes $\mu_2, \mu_3, \ldots, \mu_N$, so as to minimize the transportation cost \overline{a}

$$
\int c(x_1,x_2,\ldots,x_N)d\gamma(x_1,x_2,\ldots,x_N).
$$

subject to the constraints

$$
\int_{\mathbb{R}^{(N-1)d}} \gamma(x_1, x_2, \dots, x_N) dx_2 \dots dx_N = \mu_1(x_1), \dots
$$

$$
\int_{\mathbb{R}^{(N-1)d}} \gamma(x_1, x_2, \dots, x_N) dx_1 \dots dx_{N-1} = \mu_N(x_N),
$$

$$
F_{N,c}^{\mathop{\rm OT}\nolimits}(\mu):=\min\left\{\int_{(\mathbb{R}^d)^N}\sum_{\stackrel{i,j=1}{i\neq j}}^Nc(x_i-x_j)d\gamma_N(x_1,\ldots,x_N)\left|\begin{array}{l}\gamma_N\in\mathcal{P}_{sym}((\mathbb{R}^d)^N)\\ \gamma_N\mapsto \mu\end{array}\right.\right.
$$

We are mostly interested in the case $c(x, y) = \frac{1}{|x - y|^s}$, $0 < s < d$, i.e.

$$
F_{N,s}^{\mathrm{OT}}(\mu) := \min\left\{\int_{(\mathbb{R}^d)^N} \sum_{\stackrel{i,j=1}{i\neq j}}^N \frac{1}{|x_i-x_j|^s} d\gamma_N(x_1,\ldots,x_N) \left| \begin{array}{l} \gamma_N \in \mathcal{P}_{sym}((\mathbb{R}^d)^N) \\ \gamma_N \mapsto \mu \end{array} \right.
$$

KOKK@KKEKKEK E 1990

The case $s = d - 2$ is the Coulomb cost.

[Optimal Transport Connection to DFT](#page-16-0)

Semiclassical limit

Theorem

Fix $\rho \in \mathcal{R}_N$ *. Let* $N \geq 2$ *. Then in d* = 3

$$
\lim_{h \to 0} \mathbf{HK}_h[\rho] = F_{N,1}^{\mathbf{OT}}(\rho)
$$

for every $\rho \in \mathcal{R}_N$ *, where recall that*

$$
\mathrm{HK}_h[\rho] := \inf_{\Psi \in \mathcal{A}_N, \Psi \mapsto \rho} \left\{ T_h[\Psi] + V_{ee}[\Psi] \right\}.
$$

- Cotar, Friesecke, Klueppelberg: $N = 2$ (2011)
- Bindini De Pascale (2017): extension to $N = 3$.
- Cotar, Friesecke, Klueppelberg (2017 extension for $N \geq 3$ to the full model); Lewin (2017 - extension for $N > 3$ to a relaxed model)

KORKARYKERKE POLO

■ In physics literature: Seidl'99, Seidl/Perdew/Levy 1999, Seidl/Gori-Giorgi/Savin 2007

Optimal transport DFT community

- C-Friesecke-Klüpperberg (CPAM 2013): characterization for a class of repulsive costs of the minimizing measure for $N = 2$
- Colombo-Di Marino (2017): Kantorovich problem coincides with infimum over Monge states for $N \geq 2$ and $d \geq 1$
- Colombo-De Pascale-Di Marino (2013): Existence and uniqueness of Monge solution for $N > 2$ and $d = 1$
- Duality and bounds on the support of the optimal transport measure: De Pascale (2015), Buttazzo-Champion-De Pascale $(2017), \ldots$
- Regularity-type results: Pass (2013) , Moameni (2014) , Moameni-Pass (2017), Kim-Pass (2017)...
- Numerics: Benamou-Carlier-Nenna (2015); Di Marino-Gerolin-Nenna (2017),...

Asymptotics for *F^N* for large *N*

■ First-order "mean field" functional (Cotar-Friesecke-Pass, Calc.Var. PDE-2013; Petrache 2015)

$$
\lim_{N \to \infty} {N \choose 2}^{-1} F_{N,c}^{\text{OT}}(\mu) = F_{\infty,c}^{\text{OT}}[\mu] = \frac{1}{2} \int_{\mathbb{R}^{2d}} l(x - y) d\mu(x) d\mu(y).
$$

 $(c(x, y) = l(x - y)$ with positive Fourier transform)

Proof by use of de Finetti theorem: exchangeable observations are conditionally independent relative to some latent variable

Next-order term

Study of the energy not encoded in the mean field functional, called in physics Exchange-correlation energy $E_{N,s}^{xc}$

 \blacksquare Lieb-Oxford bound

$$
N^{-1-s/d} \left(F_{N,s}^{\mathbf{OT}}(\mu) - N^2 \int_{\mathbb{R}^{2d}} \frac{1}{|x-y|^s} \rho(x)\rho(y)dxdy\right) \ge -C_{LO} \int_{\mathbb{R}^d} \rho(x)^{1+s/d} dx.
$$

 \blacksquare Trivially, we also have

$$
F_{N,s}^{\mathbf{OT}}(\mu) - N^2 \int_{\mathbb{R}^{2d}} \frac{1}{|x-y|^s} \rho(x) \rho(y) dx dy \le 0.
$$

■ Question: Does the limit below exist

$$
\lim_{N\to\infty}N^{-1-s/d}\left(F_{N,s}^{\mathbf{OT}}[\mu]-N^2\int_{\mathbb{R}^{2d}}\frac{1}{|x-y|^s}\rho(x)\rho(y)dxdy\right)=?
$$

Second-order term 0 < *s* < *d*

- \blacksquare *d* = 1, Coulomb and Riesz costs: Di Marino (2017)
- $s = 1, d = 3$ for μ with continuous, slow-varying density ρ , i.e., densities satisfying

$$
\sum_{k\in\mathbb{Z}^d}\max_{x\in[0,1)^d+k}\rho(x)<\infty
$$

(Lewin-Lieb-Seiringer 2017, via Graf-Schenker (1995) decomposition)

 $0 < s < d$, any d , any $\rho > 0$ such that $\int_{\mathbb{R}^d} \rho^{1 + \frac{s}{d}} < \infty$, via new type of Fefferman-Gregg decomposition (1985, 1989) + optimal transport tools (Cotar-Petrache 2017-Adv. Math.)

Theorem

(Cotar-Petrache- Adv. Math 2019) If $0 < s < d$ *and* $d\mu(x) = \rho(x)dx$ *then then exists* $C_{\text{UEG}}(d, s) > 0$ *such that*

$$
\lim_{N \to \infty} N^{-1-s/d} \left(\underbrace{F_{N,s}^{\text{OT}}(\mu) - N^2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{\rho(x)\rho(y)}{|x - y|^s} dx dy}_{=:E_{N,s}^{\text{xc}}(\mu)} \right)
$$
\n
$$
= -C_{\text{UEG}}(s, d) \int_{\mathbb{R}^d} \rho^{1 + \frac{s}{d}}(x) dx.
$$

- Uniform marginal (uniform electron gas UEG): Dirac (1929)
- Exact value of $C_{UEG}(d, s)$ for $s = 1, d = 3$, is unknown, although the physics community thought for a long time that it is approx 1.4442

[Optimal Transport Connection to DFT](#page-16-0)

Some tools: Fefferman-Gregg decomposition

- Introduced by Fefferman (1985) for $s = 1, d = 3$
- Extended by Gregg (1989) to $0 < s < 2 + [(d-1)/2]$
- Further extended by Cotar, Petrache (Adv. Math 2019) to all $0 < s < d$

Some tools: Fefferman-Gregg type decomposition

Let $M \in \mathbb{N}_+$, $0 < \epsilon < d/2$ and $\epsilon \leq s \leq d - \epsilon$. Then there exists a constant *C* depending only on *d*, ϵ , a family Ω of ball packings F_{ω} of $\mathbb{R}^d, \omega \in \Omega$, a radius $R_1 > 0$ and a probability measure $\mathbb P$ on Ω such that the cost $|x_1 - x_2|^{-s}$ can be decomposed as follows:

$$
\frac{1}{|x_1 - x_2|^s} = \frac{M}{M + C} \left\{ \int_{\Omega} \left(\sum_{A \in F_{\omega}} \frac{1_A(x_1) 1_A(x_2)}{|x_1 - x_2|^s} \right) d\mathbb{P}(\omega) + w(x_1 - x_2) \right\},
$$

where *w* is positive definite.

 \Box [Speed of convergence](#page-25-0)

Grand canonical optimal transport

Let $N \in \mathbb{R}_{>0}, N \geq 2, \mu \in \mathcal{P}(\mathbb{R}^d)$

■ The grand-canonical optimal transport

$$
F_{\mathrm{GC},N,\mathbf{c}}^{\mathrm{OT}}\left(\mu\right) := \inf \left\{ \sum_{n=2}^{\infty} \alpha_n F_{n,\mathbf{c}}^{\mathrm{OT}}(\mu_n) \right\},\,
$$

where infimum is taken over

$$
\sum_{n=0}^{\infty} \alpha_n = 1, \sum_{n=1}^{\infty} n \alpha_n \mu_n = N \mu,
$$

with $\mu_n \in \mathcal{P}(\mathbb{R}^d)$, $\alpha_n \geq 0$, $n \in \mathbb{N}$.

 $\mathsf{L}\mathsf{s}\mathsf{peed}$ of convergence

■ The grand-canonical exchange correlation energy

$$
E_{\mathrm{GC},N,\mathbf{c}}^{\mathrm{xc}}\left(\mu\right) := F_{\mathrm{GC},N,\mathbf{c}}^{\mathrm{OT}}\left(\mu\right) - N^2 \int_{\mathbb{R}^d \times \mathbb{R}^d} \mathbf{c}(x,y) d\mu(x) d\mu(y).
$$

■ We have

$$
F_{\mathrm{GC},N,\mathbf{c}}^{\mathrm{OT}}\left(\mu\right) \leq F_{N,\mathbf{c}}^{\mathrm{OT}}\left(\mu\right) \ \ \text{and} \ \ E_{\mathrm{GC},N,s}^{\mathrm{xc}}\left(\mu\right) \leq E_{N,s}^{\mathrm{xc}}\left(\mu\right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

 \Box [Speed of convergence](#page-25-0)

Speed of convergence (small oscillations) result

Theorem (Cotar-Petrache - Adv. Math. 2019)

Fix $0 < \epsilon < d/2$ *and let* $\epsilon < s < d - \epsilon$ *. Let* $\mu \in \mathcal{P}(\mathbb{R}^d)$ *be a probability measure with compactly-supported density. Then there exists* $C(d, \epsilon, \mu) > 0$ *such that for all* $N, \tilde{N} \in \mathbb{R}_+, N > \tilde{N} > 2$, we *have*

$$
\left| \frac{E_{\text{GC},N,s}^{\text{xc}}(\mu)}{N^{1+s/d}} - \frac{E_{\text{GC},\tilde{N},s}^{\text{xc}}(\mu)}{\tilde{N}^{1+s/d}} \right| \leq \frac{C(d,\epsilon,\mu)}{\log \tilde{N}}
$$

.

 \Box [Speed of convergence](#page-25-0)

Some consequences of Small Oscillations

Let $\mu \in \mathcal{P}(\mathbb{R}^d)$ be a probability measure with compactly-supported density.

■ Fix $0 < \epsilon < d/2$ and let $\epsilon \leq s \leq d - \epsilon$. Then the sequence of functions

$$
f_s(N) := \frac{E_{\mathrm{GC},N,s}^{\mathrm{xc}}(\mu)}{N^{1+s/d}}
$$

converges as $N \to \infty$ uniformly with respect to the parameter $s \in [\epsilon, d - \epsilon].$

Connection to the Jellium model

- *N* electrons and a neutralizing background in a domain Ω with $|\Omega| = N$.
- Minimize over x_i in Ω

$$
\sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|^s} - \sum_{j=1}^N \int_{\Omega} \frac{1}{|x_j - y|^s} dy + \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{|x - y|^s} dx dy
$$

■ Let minimization be Jel_{*N*,*s*}(Ω), then the limit

$$
\lim_{N\to\infty}\frac{\text{Jel}_{N,s}(\Omega)}{N}=-C_{\text{Jel}}(s,d).
$$

(Lieb & Narnhofer 1975 for *s* = *d* − 2; Cotar-Petrache March 2019 for $d - 2 \leq s \leq d$)

Connection to the Jellium model

- More generally, take $\mu \in \mathcal{P}(\mathbb{R}^d)$ and density ρ .
- Minimize over $x_i \in \mathbb{R}^d$

$$
\sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|^s} - N \sum_{j=1}^N \int \frac{d\mu(y)}{|x_j - y|^s} + \frac{N^2}{2} \int \int \frac{d\mu(x) d\mu(y)}{|x - y|^s}
$$

Again the minimization is $\text{Jel}_{N,s}(\mu)$, then the limit

$$
\lim_{N\to\infty}\frac{\mathrm{Jel}_{N,s}(\Omega)}{N^{1+s/d}}=-C_{\mathrm{Jel}}(s,d)\int\rho^{1+\frac{s}{d}}(x)dx.
$$

(Cotar-Petrache 2019 for *d* − 2 ≤ *s* < *d*)

In

$$
\textup{Jel}_{N,s}(\mu)\leq E^\textnormal{xc}_{N,s}(\mu)
$$

- **Lewin-Lieb** (2015): comparison with uniform electron gas constant in $s = 1, d = 3$
- Heuristics for $s = 1$, $d = 3$ in Lewin-Lieb (2015): $C_{\text{Id}}(d, d-2) \neq C_{\text{UEG}}(d, d-2)$, questioning the physicists' conjecture that $C_{\text{Iel}}(d, d-2) = C_{\text{UEG}}(d, d-2)$.

[Equality of second-order constants](#page-29-0)

Minimum-energy point configurations (Coulomb and Riesz gases)

$$
H_{N,V}(x_1,\ldots,x_N)=\sum_{i\neq j}\frac{1}{|x_i-x_j|^s}+N\sum_{i=1}^NV(x_i),\qquad x_1,\ldots,x_N\in\mathbb{R}^d,
$$

 $V : \mathbb{R}^d \to]-\infty, +\infty]$ confining potential growing at infinity ($s = 0$: let then $c(x) = -\log |x|$

- \Box 0 \leq *s* \leq *d*: Riesz gas, integrable kernel.
- $s = d 2$: Coulomb gas.
- $s > d$: short-ranged, Hypersingular kernel.
- \blacksquare *s* → ∞: Best packing problem

Second-order asymptotics *d* − 2 ≤ *s* < *d*

- Sandier-Serfaty, 2010-2012: $d = 1, 2, c(x) = -\log |x|$
- Rougerie-Serfaty, 2016: $c(x) = 1/|x|^{d-2}$
- Petrache-Serfaty, 2017: all previous cases plus Riesz cases $\max(0, d - 2) \leq s \leq d$

Let μ_V be the minimizer (among probability measures) of

$$
\mathcal{E}_V^s(\mu) = \int \int \frac{1}{|x - y|^s} d\mu(x) d\mu(y) + \int V(x) d\mu(x)
$$

Theorem

Under suitable assumptions on V, and if the density ρ_V *is smooth enough, we have*

$$
\min H_{N,V} =
$$

$$
N^2 \mathcal{E}_V^s(\mu_V) - N^{1+\frac{s}{d}} C_{\text{Gas}}(s,d) \int \mu_V^{1+\frac{s}{d}}(x) dx + o(N^{1+\frac{s}{d}}),
$$

K ロ K K (日 K K B K X B K X B K K K K G K C K

and $-C_{\text{Gas}}(s, d)$ *is the minimim value of a functional W on microscopic configurations* ν*.*

- \blacksquare *C*_{Gas}(*s*, *d*) minimizer of a limiting energy *W*
- Abrikosov crystallization conjecture: in $d = 2$, the regular triangular lattice is a minimizing configuration for W .
- For $d = 3$, it is conjectured that for $0 < s < 3/2$ the minimizer should be a BCC lattice and for $3/2 < s < 3$ it should be an FCC lattice.
- \blacksquare In high dimensions, there is more and more evidence that Coulomb and Riesz gases minimizers are not lattices, although this is very much speculative at the moment.
- Open for all $d > 2$ dimensions, except $d = 8, 24$ (Viazovska).
- For $s = 1, d = 3$, the value of $C_{\text{Gas}}(1, 3)$ is thought to be approx. 1.4442

[Equality of second-order constants](#page-29-0)

Comparison between Jellium, UEG and Riesz Gases $(d − 2 ≤ s < d)$

For $0 < s < d$ we can show

$$
Jel_{N,s}(\mu_V) \leq H_{N,V} - N^2 \mathcal{E}_V^s(\mu_V) \leq E_{N,s}^{xc}(\mu_V)
$$

For $d - 2 < s < d$, we have (Cotar-Petrache - July 2017)

$$
C_{\text{UEG}}(s,d) = C_{\text{Jel}}(s,d) = C_{\text{Gas}}(s,d).
$$

■ For $s = d - 2$, we have (Cotar-Petrache - March 2019)

$$
C_{\text{UEG}}(s,d) = C_{\text{Jel}}(s,d) = C_{\text{Gas}}(s,d).
$$

[Equality of second-order constants](#page-29-0)

Continuity of $C_{UEG}(s, d)$

For $0 \lt s \lt d$, the function

$$
s \to C_{\text{UEG}}(s,d)
$$

is continuous

The proof works by interchanging the limits of $s \to s_0$ and $N \to \infty$ in

$$
N^{-1-s/d} \bigg(F_{\text{GC},N,s}^{\text{OT}}(\mu) - N^2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{\rho(x)\rho(y)}{|x-y|^s} dx dy \bigg)
$$

Key steps of the proof for Riesz costs (Cotar-Petrache July 2017)

- Step 1: Our crucial idea was to reduce the Jellium minimization problem to a Jellium problem with minimization over peridioc configurations
- **■** In particular, this reduction allows to prove for $d 2 \le s \le d$

$$
C_{\text{Gas}}(s, d) = C_{\text{Jel}}(s, d) = C_{\text{Per}}(s, d).
$$

 \blacksquare Note that Cotar-Petrache 2017 is the first time where these equalities were proved for Jellium. Previously, it was only proved for Coulomb and Riesz gases that

$$
C_{\text{Gas}}(s, d) = C_{\text{Per}}(s, d).
$$

- Step 2: Our crucial idea was to use the periodic minimizing configurations to construct a competitor for the $E_{N,s}^{xc}$ problem, albeit with the *wrong marginal*, depending on *N*
- Use the subadditivity of the $E_{N,s}^{xc}$ problem to get back to the OT problem with the *correct* marginal.

Key steps in the proof for Coulomb costs (Cotar-Petrache March 2019)

Prove (for the first time) a suabdditivity for Jellium: Let $N_1, N_2 \geq 2, N := N_1 + N_2$, and let $\Omega_N = \Omega_{N_1} \cup (\Omega_N \setminus \Omega_{N_1})$. Set $0 < \epsilon \le \min(2, d/2)$. Then for $0 < d-2 \le s \le d-\epsilon$

$$
\begin{aligned} \mathrm{Jel}_{N_1+N_2,s}(\Omega_N) &\leq \mathrm{Jel}_{N_1,s}(\Omega_{N_1}) + \mathrm{Jel}_{N_2,s}(\Omega_N \setminus \Omega_{N_1}) \\ &+ C_{\mathrm{add}}(\epsilon,d) \frac{N_1+N_2}{\log(\min(N_1,N_2))}.\end{aligned}
$$

KORKARYKERKE POLO

■ Use the equality of $C_{\text{Jel}}(s, d)$ and $C_{\text{UEG}}(s, d)$ from Riesz costs $d-2 < s < d$ and the continuity of $C_{\text{UEG}}(s, d)$.

[Equality of second-order constants](#page-29-0)

Next-order terms: open problems

- **Open problem:** Find $C_{\text{UEG}}(s, d)$ (connected to the crystallization conjecture)
- **Open problem:** Prove or disprove $E_{N,s}^{xc}/N^{1+s/d}$ is decreasing in *N* (recall that E_N^{xc} is negative here)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)