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Stochastic Gradient Descent definition:
Math vs. ML

—e
&
® Before 2010: SGD means Stochastic Differential VG:’ < /' 8 \'\
E ' : : e
quations and Brownian Motion . i

® Since around 2010: SGD algorithm for training ML models

The data sizes have grown faster than the speed of processors ... methods limited by the computing time rather than
the sample size .... Unlikely optimization algorithms such as stochastic gradient descent show amazing performance
for large-scale problems,|Large-Scale Machine Learning with Stochastic Gradient Descent, Leon Bottou],

Empirical Loss Minimization problem

1 L
min L(w) = — Y L(f(x;,w),y;).
weRP m

w - parameters of the model f. L loss function measuring how well model fits the labels y of the data x.



Optimization for Machine Learning: SGD

® Why is stochastic gradient important for machine learning?

Evaluating the full loss (and gradient) on all m data points can be too costly.
Instead define a random minibatch I C {1,...,m}

Liw) = 7 37 £(f i w). )

el

Stochastic gradient descent corresponds to

whtt = b — hiVwLy, (wk), I;, random, hj learning rate

L L

o

Full batch (entire data set) and mini-batch. SGD corresponds to gradient descent approximating the objective by
an average over a random subsample of the data set.



SGD algorithms

® Why not Newton’s method?

® Small scale numerical methods: have enough memory to solve NxN
linear system (e.g. Newton’s method). Solve in few iterations.

® S5GD Trade-off: lots of iterations (millions) of a slow but memory-cheap
algorithm.

Stochastic Approximation
® The minibatch stochastic gradient is harder to analyze

® [nstead make the Stochastic Approximation assumption

g(x,§) = Vf(z) +e(x,8),
ile] =0 and Var(e) = o*.




SGD convergence rate

From Bottou, Curtis, Nocedal (2016),
E[f(xc) — f*] < G (1 — uh)* + Coho?

Need: h\, 0 or o\, 0.

Number of influential variance reduction algorithms to —— Nest-SGD . 3
speed up SGD:

10’
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® SAG (Schmidt, Le Roux, Bach, 2013), *Lagrange W
Prize ol %ﬂ

® SAGA (Defazio, Bach, Lacoste-Julien, 2014)
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® SVRG (Jonhson, Zhang, 201 3),

SGD convergence, rate means O(10k)
iterations to decrease objective gap by
factor of 10. Thus improving rate

constant can reduce iterations by 10X

However, in many modern applications, variance
reduction does not help.



Nesterov’s accelerated (full) gradient descent

:f\;)StaningPoint xk"‘l — Lk — th(xk)

Optimum

Solution

Gradient descent.
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Accelerated gradient descent: same budget, faster convergence.

https:/idistill pub/2017/momentumy  F1€UIiStIC: momentum term remembers old gradients,
overshoots instead of getting stuck.

Remark: two main A-GD algorithms, correspond to convex and strongly convex case.
We focus on one, convex case, to simplify presentation. Strongly convex case is also covered.



Motivation: A-GD and SGD Algorithms

1
Lh+1 = Yk — zvf(yk) hi .
Tht1 = Tk — fg(ﬂfk)a
Yetrl = Thrt T Or(Trs1 — o)
g=V/[f-+e
5 kg VC -1 2\@9 /
k= 77 PE= c
E+1 VC +1 hk:T’ hk:ma
A-GD convex, strongly convex case SGD convex, strongly convex case

Heuristic A-SGD:

Q: Can we find parameters to achieve faster convergence?
Need to understand A-GD in a way than generalizes to stochastic case.



Heuristic: derive accelerated-GD algorithm

1

Tpy1 = T — ZVf(xk)

double variables and introduce new speed parameter

Second equation is
unstable.

1
Vk+1 = Vg vaf(vk)

(i) Couple equations

(ii) reduce to single gradient evaluation at convex combination

Sy _ /
Ko~ ¥ = W(ly-2,) -ZVfﬁfr)
- = -/
Visw = Vi “-;z_Vf(}’p)
Y= (1-w)xp + WV




Derivation (step 2)

Y _ /
T~ % = Wly-2) - - V)
= = -
Visw = Vi a—/—sz(}'p)
Y= (1-w)Xp + WV
Eliminate V3
@ Ky = Yk~ JF
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Case 2: modify derivation

Viw =V = W()@'Vg—) s “') V‘f 79
Y= (1-w)xp + wz/k

= LIMIAATE V, ac before

:‘:b Xﬁf-/ /k Vf(yﬁ)
Ytw = ?&kfﬂ‘ (/ ZW)(Xfm’Xk)

L, 1w = NEL
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Accelerated-SGD Algorithm

In the sequel, we generalize the Lyapunov analysis for A-GD to the
stochastic case. Analysis will give the best constant, and yield the
following A-SGD algorithm.

Sh 73 Cowere Com/m’ _,,L
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with an improved convergence rate constant (TBD)



visualize algorithm in 2d (full gradients)

® after one iteration, x and v are in the shallow valley.

® (when properly tuned) the faster v variable pulls x along faster than GD.
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comparison GD and A-GD: (same axes)




visualize algorithm in 2d (stochastic gradients)

SGD A-SGC Strongly Convex
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Top: comparison SGD and A-SGD: (same axes).
Bottom: After 20 iterations, optimality gap 100X smaller.
After 20,000 iterations, SGD reaches A-SGD at k = 20.
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visualize algorithm in 2d (stochastic gradients)

sigma = 0.1,C =100
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® Note: the v moves faster, allows x to average

® the linear term pulls x towards v



Decreasing Learning Rate Results

Define G? bound on stochastic gradient: E[g?] < G?
Remark: G? = L2D? + o2 where D is the diameter of the domain

e Strongly convex case: Learning rate hy = O (%)

» Previous results: Nemirovski, Juditsky, Lan, and Shapiro (2009), Shamir,
Zhang (2013), Jain, Kakade, Netrapalli, Sidford (2018): optimal rate O (%)
with constants depending on G2, D and .

» Our result: O (%) rate with constants independent of the [-smoothness bound
of the gradient (depends only on o* and p).

e Convex case:
» Shamir, Zhang (2013): optimal rate order: 'O\g/(g) with a rate constant that

depends on G2 and D. Learning rate: hy = O (%)

» Jain, Nagaraj, Netrapalli (2019) remove the log factor assuming that the
number of iterations is decided in advance.

» Our result: O(log(k)/\/k) rate for the last iterate, with a constant which
depends on ¢, but independent of the L-smoothness. New learning rate

schedule



Strongly Convex A-SGD Rate:

Comparison with previous results

) G2:L2_|_0_2

x| =

Learning rate: hy = O (

Nemirovski et al. [2009] | Shamir and Zhang [2013] | Jain et al. [2019] | Acc. SGD
20 ,G* 17G*(1 + log(k)) 130G? 40
pk pk pk pk + 402E; !

Convergence rate E[f(x,) — f*] after k steps: G2 is a bound on E[g(x)?], and o2
variance. Eg is the initial value of the Lyapunov function

Improvement to the rate constant: independent of L



Convex A-SGD algorithm Rate:

Comparison with previous results

G2 = [2 1 o2
Shamir, Zhang (2013) Acc. SGD
h < c
k VK K37
Eo
Rate b + c?G? (24 log(k)) | 1gez + "0 (1 + log(k))
c? Vk (K1/4 —1)2

Table: Convergence rate E[f(xx) — f*] after k steps. G? is a bound on E[g?]. Eo is the
initial value of the Lyapunov function.

Interpreting Improved rate: remove dependence on L-smoothness from the rate



Numerical Results (preliminary):
e Quadratic with synthetic noise
¢ | ogistic Regression with minibatch
stochastic gradients.

® How much difference should the rate constant make in this case!?
® Note: exponential convergence, rate constant not important.

® But c/k rate, constant can be important, (since, e.g, factor of 10 can
mean 10X more iterations)



Quadratic, sigma = .05, C=4

sigma=0.05,C =4
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® Small condition number. Long time.

® Acc Convex is 10X better than SGD

® Acc-Strongly convex algorithm is 10X better than Acc Convex



Quadratic C=1000

sigma = 0.05, C = 1000
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® 40,000 iterations:

e A-SGD-C >>A-SGD SC, N

>> SGD. . . . C
sigma = 0.05, C = 1000
® A-SGD Convex: very fast 10° ' ' ————
initial drop (40 iterations) —san
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Logistic Regression |: mu = .2

- Logistic Regression, mb = 50, gamma = 0.2
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. 20,000 iterations
Other Algorithms:

e SGD: |/k learning rate (tuned)

e heuristic Nesterov: constant Beta, learning rate drops by constant factor every
few epochs, tuned.
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Logistic Regression 2: mu = .05

Logistic Regression, mb = 50, gamma = 0.05
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¢ Statement of convergence rates
® |dea of proof



Strong convexity, L-smoothness

® We use definitions equivalent to standard ones of strong convexity
and L-smoothness

Let f be proper convex function, z, = argmin, f(x) and f* = f(xzy).

L , .
Fy) = @)+ Vi) -(@—y) < Jle—y Yo,y € R f is L-smooth
fly)— fx) +Vf(z) (x —y) > % r —y|*,Vr,y € R™ fis u-strongly convex

C'y := £ condition number of f.

m

® Example:in case where f is quadratic, the constants correspond to the
smallest and largest eigenvalues of the Hessian of f.



Lyapunov approach to convergence rates

E2*(x,v) = f(x) — " + g v — x*|?

We know from previous analysis in full gradient case, we have the
following inequality with beta = 0.

Stochastic case, non-zero beta (as in SGD analysis)

E(tgyr, 2i1) < (1 —rphy) E(ty, zi) + hi By

SGD: balance the terms, to get a decreasing learning rate.

SGD: beta has a factor of L in it, A-SGD: just a factor of sigma, for
better rate



ODE Liapunov approach
Another ODE for Nesterov's Method

Our starting point is a perturbation of (S-A-ODE)

1

\/sz(X)

.2

X = E(v — X)

v = —L9f(x)
= ,

The system (1st-ODE) is equivalent to the following ODE

%+ %x + V(x) = —% (D2f(x) X+ %Vf(x))

which has an additional Hessian damping term with coefficient 1/v/L.

(1st-ODE)

(H-ODE)

e 2nd order ODE with Hessian damping: Alvarez, Attouch, Bolte, Redont

(2002), Attouch, Peyrouquet, Redont (2016)

o Shi, Du, Jordan, Su (2018) introduced a family of high resolution second
order ODEs which also lead to Nesterov's method: (H-ODE), special case

1
s = —=
VL



Strongly Convex Case

Stochastic gradient version

Learning rate: h, > 0 . Define

,
Xkr1 — Xk = (v — Xx) — %(Vf(yk) + ex),
q ka1 — Ve = (X — vk) — %(Vf()/k) + ex), (FE-SC)
\ Yk:(l—)\k)Xk+>\ka7 >\k: 1_?_1;7%

Same algorithm as before, but now
e Variable learning rate

e Stochastic gradient

o To simplify: replace /i by 1+\h/kﬁ\/ﬁ




Convergence result (strongly convex case)

Define the continuous time Lyapunov function

E?%(x,v) = f(x) — F" + g]v — x*|?

Discrete time Lyapunov function £ := E25%¢(xy, vi).

Proposition (L., Oberman, 2020)

ac,sc L 2/ b
Assume EO \/Z lf hk ,uk_|_4O_2E69c,sc—1 ’

4o2

uk + 402 Egc’sc_l |

E[f(xx)] — " <

Maxime Laborde Mokaplan, April 2020 31 / 43



Accelerated-SDG Algorithm
From (1st-ODE) to Nesterov

Define the learning rate h, > 0 and a discretization of the total time t.
The time discretization of (1st-ODE) with gradients evaluated at

2h 2h
Yk = (1 — —k) Xk T —ka.

Ly Ly
is given by
( 2h h
Xk+1 — Xk = t—k(Vk — Xk) — \/—szf()/k)a
< ’;7 t (FE-C)
Vk+1 — Vk = —ﬂVf()/k)a
\ 2
Proposition

The discretization of (1st-ODE) given by (FE-C) with hy = h = \%L and

tx = h(k + 2) is equivalent to the standard Nesterov's method (C-Nest).

Fix learning rate, get Nesterov's algorithm




Convergence result (convex case)

Define the continuous time Lyapunov function
E2C(t, x,v) := t*(f(x) — F*) + 2|v — x*|?
Define the discrete time Lyapunov function E; by

ac,c __ rac,c
E. =" = E*(tk—1, Xk, Vk)

Proposition (L., Oberman, 2020)

Assume hy := ;5 < % and t, = Zf;l hi, then for o = 2,

L Eo + c20?(1 + log(k))

¥ 162
E[f(x)] — f* < T




Thanks!



