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Introduction

Motivation

Definition:
Boundary layer= zone of small width, located close to a boundary,
in which a quantity has strong variations (⇔ large gradient).
Ubiquitous in fluid mechanics (e.g. Prandtl boundary layer; Ekman
boundary layer...)
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Goals of these lectures:
I Identify situations in which BL are created;
I Present a general method to construct linear /semi-linear BL ;
I Explain the limits of this general method.



Introduction

About singular perturbation problems

In many physical situations, presence of singular perturbation
operators:
General definition: Consider a PDE

Aε[uε] = 0, (SPP)

where Aε is a differential operator with the following properties:

I Aε depends on a small parameter ε;

I Aε is of order d ≥ 1;

I If uε → ū in some strong sense, then ū is a solution of
Ā[ū] = 0, where Ā is an operator of order d ′ < d .

Then (SPP) is a singular perturbation problem.
Generically,

SPP + boundary= BL.

Example: −ε∂xxuε + uε = f in (0, 1);
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Example 1: the rotating fluids equation

∂tu + u · ∇u +
1

Ro
e3 ∧ u +∇p − ε∆u = 0,

divu = 0

in a domain Ω := T2 × (0, 1).
Boundary conditions:

∂zuh = τ, u3 = 0 at z = 1 (wind forcing),

u|z=0 = 0 at z = 0 (friction on the bottom.)

Question: Limit as Ro, ε→ 0 ?
→ Apparition of Ekman layers! Responsible for Ekman pumping:
I Transfer of momentum coming from the wind to the whole

system;
I Dissipation of energy because of friction on the bottom.

[Chemin, Desjardins, Gallagher, Grenier; Grenier, Masmoudi;

Gérard-Varet; D. , Saint-Raymond...]
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Picture of Ekman layer

Source: Wikipedia
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Example 2: the Sverdrup model

∂xψ − ε∆2ψ = F in Ω,

ψ|∂Ω = ∂nψ|∂Ω = 0.

ψ = stream function.
Remark: friction on the bottom, bottom topography and
advection have been neglected.
Question: Limit as ε→ 0?
→ Apparition of Munk layers (western boundary currents) in the
vicinity of western boundaries. Complicated phenomena close to
northern/southern boundaries.
[Desjardins-Grenier; D. , Saint-Raymond]
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Example 3: the Boussinesq model for stratified fluids

∂tu + δu · ∇u +∇p − ν∆u = −be3,

∂tb + δu · ∇b − N2u3 − κ∆b = 0,

divu = 0,

u|∂Ω = 0, ∂nb|∂Ω = 0

in a domain Ω := {(x1, x3) ∈ R, −x1 sin γ + x3 cos γ > 0}.
Question: behavior as κ, ν, δ → 0 ?
Partial answer: depends on relative sizes of parameters... +
critical reflection problem. [Dauxois, Young; Bianchini, D.,

Saint-Raymond]
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A bit of methodology

General framework

Simplification: Aε=linear diff. operator with constant coeff.

Aε[Uε] :=
∑

α∈NN ,|α|≤d

aα(ε)∇αUε = f

in the half-space xN > 0.
Assumptions:

I aα is polynomial in ε;

I aα(0) = 0 if |α| = d ;

I ∃α ∈ Nd with |α| < d such that aα(0) 6= 0.

Goal: identify the BL sizes and profiles.
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Modal solutions

[Eckhaus; Van Dyke; Gérard-Varet, Paul]
Look for solutions of ∑

α∈NN ,|α|≤d

aα(ε)∇αU = 0

in the form U = exp(iξ′ · x ′ − λxN)U, U ∈ CK , ξ′ ∈ RN−1, λ ∈ C.
After plugging into PDE, obtain linear system

A(ε; ξ′, λ)U = 0, (1)

where A(ε; ξ′, λ) ∈MK (C), with polynomial coefficients.
Non-zero solution of (1) iff

Pε,ξ′(λ) := detA(ε; ξ′, λ) = 0.
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Boundary layer sizes and profiles

At this stage: look for solutions of

Pε,ξ′(λ) = detA(ε; ξ′, λ) = 0,

where Pε,ξ′ is a polynomial in λ (say of degree m), with complex
coefficients that are polynomials in ε and ξ′.
Fact # 1: Pε,ξ′ has exactly m complex (possibly multiple) roots
λ1, · · · , λm.
But we are only interested in the roots s.t. <(λ) > 0.
Fact # 2: as ε→ 0 (with ξ′ fixed), all roots λi behave as εqiµi ,
for some µi ∈ C, qi ∈ Q.
Fact # 3: the number of BC that can be lifted by the BLs is

p := dimVect
{
V ∈ kerA(ε; ξ′, λi ), <(λi )� 1

}
Fact # 4: the BL size is (<λ)−1. Possible superposition of BLs.
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General result and open problems

Summary: each root λi is s.t. λi ∼ εqiµi , qi ∈ Q, µi ∈ C.
qi = qi (ξ

′), µi = µi (ξ
′).

Theorem: [Gérard-Varet, Paul] As long as qi is independent of ξ′

and µi does not vanish (=non-degeneracy) [...], an approximate
solution can be constructed up to any order.

Limitations/open problems:

I Flat boundary/constant coefficients (but can be generalized);

I Linear equation (at least for the BL);

I Theory breaks down when degeneracy occurs.

Remark: Equivalent to (but slightly different from) framework of
matched asymptotic expansions.
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Example # 1: The rotating fluids equation (Ekman layers)

Setting of the problem

∂tu +
1

ε
e3 ∧ u +∇p − ε∆u = 0,

divu = 0, t > 0, xh ∈ T2, z ∈ (0, 1)

Look for a BL solution (u, p) = exp(i(−ωt + kh · xh)− λz)U.
Linear system:

Eq. for BL size λ:

ε2(−iω + ε(|kh|2 − λ2))2(|kh|2 − λ2)− λ2 = 0 :



Example # 1: The rotating fluids equation (Ekman layers)

Boundary layer sizes

ε2(−iω + ε(|kh|2 − λ2))2(|kh|2 − λ2)− λ2 = 0 :

→ 6 complex roots ±λ1,±λ2,±λ3, <(λi ) ≥ 0.
Regime #1: kh 6= 0, ω = Ωε−1, |Ω| < 1:
λi ∼ Ci/ε with <(Ci ) > 0 i = 1, 2, λ3 = O(1) (not a BL !)
→ Classical Ekman layers.

Regime #2: kh 6= 0, |ω| = ε−1: λ1 ∼ C1/ε, λ2, λ3 ∼ C ′i ε
−1/2

→ Quasi-resonant boundary layers.
Regime #3: kh = 0, |ω| < ε−1: 2 classical Ekman layers, 1 root is
exactly zero;
Regime #4: kh = 0, |ω| = ε−1: 1 classical Ekman layers, 2 roots
are exactly zero.



Example # 1: The rotating fluids equation (Ekman layers)

Boundary layer sizes

ε2(−iω + ε(|kh|2 − λ2))2(|kh|2 − λ2)− λ2 = 0 :

→ 6 complex roots ±λ1,±λ2,±λ3, <(λi ) ≥ 0.
Regime #1: kh 6= 0, ω = Ωε−1, |Ω| < 1:
λi ∼ Ci/ε with <(Ci ) > 0 i = 1, 2, λ3 = O(1) (not a BL !)
→ Classical Ekman layers.

Regime #2: kh 6= 0, |ω| = ε−1: λ1 ∼ C1/ε, λ2, λ3 ∼ C ′i ε
−1/2

→ Quasi-resonant boundary layers.
Regime #3: kh = 0, |ω| < ε−1: 2 classical Ekman layers, 1 root is
exactly zero;
Regime #4: kh = 0, |ω| = ε−1: 1 classical Ekman layers, 2 roots
are exactly zero.



Example # 2: Reflection in stratified fluids

Plan

Introduction

A bit of methodology

Example # 1: The rotating fluids equation (Ekman layers)

Example # 2: Reflection in stratified fluids

An example of a degenerate case



Example # 2: Reflection in stratified fluids

The critical reflection problem for internal waves - 1

Consider, in Ω := {(x1, x3) ∈ R, −x1 sin γ + x3 cos γ > 0}

∂tu +∇p − ν∆u = −be3,

∂tb − N2u3 − ν∆b = 0,

divu = 0,

u|∂Ω = 0, ∂nb|∂Ω = 0

Look for solutions of the form (u, b, p) = exp(i(kx − ωt)− λz)U.
Linear system:

Determinant=polynomial of degree 6 in λ.



Example # 2: Reflection in stratified fluids

Behavior of the BL sizes

Important quantity: criticality parameter ζ := sin2 γ − ω2.
Theorem: Always 3 roots with <(λ) > 0, with the following
behaviour:

|ζ| & 1 ν1/3 � |ζ| � 1 |ζ| . ν1/3

2 roots ∝ ν−1/2 Roots of sizes ν/ζ4, 2 roots ∝ ν−1/3

1 root O(1) |ν/ζ|1/2, ν−1/2 1 root ∝ ν−1/2



Example # 2: Reflection in stratified fluids

Experimental observations

[Gostiaux et al., Phys. Fluids, 2006]

this is the first case in which the third harmonic has been
observed, and even more importantly, this is the first report
of experimental quantitative measurements.

It is important to notice that the vertical velocity field is
presented in Figs. 5!c" and 5!d", rather than the horizontal
one as in the first two panels. Indeed, as the second and third
harmonics propagation angles are much steeper, the horizon-
tal velocity field is of lower quality.

An alternative possibility to keep the spatial conforma-
tion of the reflection process while distinguishing the differ-
ent harmonics is to consider the specific kinetic energy den-
sity field of each harmonic, which can be deduced from Eq.
!4" as

#E$n!x,y,!" = 1
2 %#u$n

2 + #w$n
2& . !6"

An example is shown in Fig. 6 for the subcritical run 2.
One clearly distinguishes the incident beam impinging on the
slope, and reflected downslope. It is clear that such energy
plots give less contrasted results than the velocity ones as in
Fig. 5. They are nevertheless extremely useful for amplitude
estimates along cross sections of the beam, as discussed
below.

B. Mechanism of wavelength selection

The spectral decomposition presented in the previous
section allows precise wavelength measurements across the
different beams, even in the impact zone. As the reflection

surface is expected to play a key role in wavelength selection
via boundary effects, we have focused our study in the
boundary region along the slope.

In Fig. 7!a", the contour plots of the filtered first har-
monic !incident" and of the third harmonic !emitted" are su-
perimposed in order to show the along-slope wavelength se-
lection. It is clearly visible that the distance between the
emitted phase lines has been strongly reduced compared to
the incident ones. We emphasize that the wavelength selec-
tion mechanism appears to occur along the slope, where the

FIG. 5. !Color" False-color velocity pattern in the vertical !x ,z" plane for the critical run 4 !see Table I". Panel !a" presents the instantaneous horizontal
velocity field u!x ,z , t" while panel !b" shows the phase-averaged velocity #u$1. Panels !c" and !d" show, respectively, the second #w$2 and third #w$3 harmonics
of the vertical velocity, #w$n, in the case of run 4 !see Table I". The two white arrows define the impinging region of the incident beam. In panels !c" and !d",
the rays at the left of this region should thus not be taken into account: they have been generated by the screen. The maximum velocity in panels !a" and !b"
is 2 mm s−1, and in panels !c" and !d", 0.4 mm s−1.

FIG. 6. False-color energy pattern. The specific kinetic energy density of the
first harmonic, #E$1, is shown in the vertical !x ,z" plane for the subcritical
run 2 !see Table I". The maximum value is 5"10−3 cm2 s−2.

056602-5 Quantitative laboratory observations Phys. Fluids 18, 056602 !2006"

Downloaded 16 May 2006 to 140.77.204.80. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Example # 2: Reflection in stratified fluids

What about the next step?

I Once the construction of a generic BL is understood, build an
approximate solution Uε

app = Uint + UBL so that:
I Aε[Uεapp] = f + r ε, where r ε is a remainder that is sufficiently

small in some energy norm;
I Uεapp satisfies exactly the BC (this is what the BL is for!).

I Write an equation for Uε − Uε
app, perform energy estimates...

Typically, one ends up with

‖Uε − Uε
app‖X ≤ Cε‖r ε‖Y

where X ,Y are functional spaces, say X = L∞t (L2
x) ∩ L2

t (Ḣ1
x ),

Y = L2
t (H−1

x )), Cε is usually a (possibly negative) power of ε.

I Goal: have a sufficiently good approximation, i.e. such that

Cε‖r ε‖Y � ‖Uε
app‖X .

Remark: because of the singular perturbation, this may
require several additional correctors!
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An example of a degenerate case

Setting of the problem

(Simplified) Sverdrup equation:

∂xψ
ε − ε∆2ψε = f in Ω,

ψε|∂Ω = 0, ∂nψ
ε
|∂Ω = 0.
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Previous formal analysis predicts: (∂x = cos θ∂n + sin θ
1+dθ′∂τ )

I BL on ΓE , ΓW of size (ε/| cos θ|)1/3: degenerates as
θ → ±π/2;

I BL on ΓS , ΓN of size ε1/4;
I BL on ΓW , ΓN , ΓS lifts 2 BC; BL on ΓE lifts 1 BC.
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Difficulties and results

Consequences of formal analysis:

I Interior part satisfies ∂xψint = f , ψint|ΓE
= 0;

I Western intensification of currents: uε = ∇⊥ψε ∼ ε−1/3 in a
BL of size ε1/3 close to ΓW .

But because of the degeneracy, no immediate conclusion...
Theorem:[D., Saint-Raymond]

I The sizes of BL are the ones predicted by the formal analysis;

I BUT the BL profiles are not! The profiles on ΓN , ΓS are
non-intrinsic (satisfy a diffusion-like eq.);

I Complicated superposition in transition zone where
| cos θ| � 1.

Remark: one should NOT try to connect the BL sizes!
Conclusion: when degeneracy occurs, analysis may still be
possible, but the general previous analysis might give a wrong
answer.
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Summary

I Presentation of a general, systematic method to compute the
boundary layer sizes and profiles when:
I The equation is linear;
I The boundary is flat (or smooth);
I The situation is non-degenerate.

I BL sizes are given as the roots of a polynomial. Quite often,
different regimes must be investigated.

I Even in linear cases, singularities may occur in degenetate
cases (leading to mathematical difficulties).
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Next lecture

I Extension of the methodology to rough boundaries;

I Analysis of semilinear equations.
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