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Definition:

Boundary layer= zone of small width, located close to a boundary,
in which a quantity has strong variations (< large gradient).
Ubiquitous in fluid mechanics (e.g. Prandtl boundary layer; Ekman
boundary layer...)
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Goals of these lectures:
> Identify situations in which BL are created;
» Present a general method to construct linear /semi-linear BL ;
» Explain the limits of this general method.
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About singular perturbation problems

In many physical situations, presence of singular perturbation
operators:
General definition: Consider a PDE

Af[u‘] =0, (SPP)

where A€ is a differential operator with the following properties:
» A€ depends on a small parameter ¢;
> Acis of order d > 1;

» If u¢ — & in some strong sense, then & is a solution of
Ald] =0, where A is an operator of order d’ < d.

Then (SPP) is a singular perturbation problem.
Generically,

SPP + boundary= BL.

Example: —eOxue + u. = f in (0,1);
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Example 1: the rotating fluids equation

1
8tu+u-Vu+R—e3/\u+Vp—eAu:O,
0

divu=0
in a domain Q :=T? x (0,1).
Boundary conditions:
Oyup =7, u3=0 atz=1 (wind forcing),
U,—o =0 at z=0 (friction on the bottom.)

Question: Limit as Ro,e - 07
— Apparition of Ekman layers! Responsible for Ekman pumping:
» Transfer of momentum coming from the wind to the whole
system;
> Dissipation of energy because of friction on the bottom.
[Chemin, Desjardins, Gallagher, Grenier; Grenier, Masmoudi;
Gérard-Varet; D. , Saint-Raymond...]
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Picture of Ekman layer
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Source: Wikipedia
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Example 2: the Sverdrup model

Oxth — eAN*1h = F in Q,
Yo = Ontjan = 0.

1) = stream function.

Remark: friction on the bottom, bottom topography and
advection have been neglected.

Question: Limit as ¢ — 07

— Apparition of Munk layers (western boundary currents) in the
vicinity of western boundaries. Complicated phenomena close to
northern /southern boundaries.

[Desjardins-Grenier; D. , Saint-Raymond]
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Example 3: the Boussinesq model for stratified fluids

Oiu+0u-Vu+Vp—vAu= —bes,
deb+ 6u- Vb — N?u3 — kAb = 0,
divu =0,
U =0, 0Onboo =0
in a domain Q := {(x1,x3) € R, —xysiny + x3cosy > 0}.
Question: behavior as x,v,0§ — 07
Partial answer: depends on relative sizes of parameters... +
critical reflection problem. [Dauxois, Young; Bianchini, D.,

Saint-Raymond] ey G Lol
A
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A bit of methodology

General framework

Simplification: A.=linear diff. operator with constant coeff.

AUT = ) au(e)VoU =f
aeNN |a|<d

in the half-space xy > 0.
Assumptions:

P> a, is polynomial in ¢;

» a,(0) =0if |a| =d;

» Ja € N? with |a| < d such that a,(0) # 0.
Goal: identify the BL sizes and profiles.
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Modal solutions

[Eckhaus; Van Dyke; Gérard-Varet, Paul]
Look for solutions of

> an(eVeU=0

aeNN |a|<d

in the form U = exp(i&" - x" — Axp)4, U € CK, ¢ eRN-1 xeC.
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Modal solutions

[Eckhaus; Van Dyke; Gérard-Varet, Paul]
Look for solutions of

> an(eVeU=0

aeNN |a|<d

in the form U = exp(i&" - x" — Axp)4, U € CK, ¢ eRN-1 xeC.
After plugging into PDE, obtain linear system

Ae €, )8 =0, (1)

where A(e; ¢, \) € Mk(C), with polynomial coefficients.
Non-zero solution of (1) iff

P.er(N) = det A(e; €', A) = 0.
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Boundary layer sizes and profiles

At this stage: look for solutions of
P.er(N) = det Ae; &', N) =0,

where P, ¢ is a polynomial in A (say of degree m), with complex
coefficients that are polynomials in € and ¢’

Fact # 1: P, has exactly m complex (possibly multiple) roots
M, Am.

But we are only interested in the roots s.t. %(\) > 0.

Fact # 2: as e — 0 (with £’ fixed), all roots \; behave as €% s,
for some u; € C, g; € Q.

Fact # 3: the number of BC that can be lifted by the BLs is

p:=dimVect {V € kerA(e; &, \;), R(N\i) > 1}

Fact # 4: the BL size is (R)\) . Possible superposition of BLs.
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General result and open problems

Summary: each root A; iss.t. A\; ~ €%, g € Q, uj € C.
qi = qi(&'), i = (&)

Theorem: [Gérard-Varet, Paul] As long as g; is independent of &’
and p; does not vanish (=non-degeneracy) [...], an approximate
solution can be constructed up to any order.

Limitations/open problems:
» Flat boundary/constant coefficients (but can be generalized);
» Linear equation (at least for the BL);
» Theory breaks down when degeneracy occurs.

Remark: Equivalent to (but slightly different from) framework of
matched asymptotic expansions.
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Example # 1: The rotating fluids equation (Ekman layers)

Setting of the problem

1
Otu+ —esNu+Vp—eAu=0,
€
divu=0, t>0, x,€T? zec(0,1)

Look for a BL solution (u, p) = exp(i(—wt + kp - xp) — A\z)U.
Linear system:

Eq. for BL size \:
e (—iw + €([kn? = X2))2(|kn|> = A2) = A2 =0



Example # 1: The rotating fluids equation (Ekman layers)

Boundary layer sizes

(—iw + €([kn|* = X2))2(|kn> = N2) =\ =0
— 6 complex roots +£A1, £, £A3, R(A;) > 0.
Regime #1: k, #0, w = Qe !, |Q| < 1
Ai ~ Ci/e with R(C;) >0i=1,2, \3=0(1) (not a BL!)
— Classical Ekman layers.
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Boundary layer sizes

e(—iw + e([kn|?> = X)) (|kn|> = X2) = X2 =0

— 6 complex roots +£A1, £, £A3, R(A;) > 0.

Regime #1: k, #0, w = Qe !, |Q| < 1

Ai ~ Ci/e with R(C;) >0i=1,2, \3=0(1) (not a BL!)
— Classical Ekman layers.

Regime #2: kp #0, |w| = €71 A1 ~ Ci/e, o, Az ~ Cle /2

— Quasi-resonant boundary layers.

Regime #3: k, =0, |w| < e ! 2 classical Ekman layers, 1 root is
exactly zero;

Regime #4: k, =0, |w| = ¢! 1 classical Ekman layers, 2 roots
are exactly zero.
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Example # 2: Reflection in stratified fluids

The critical reflection problem for internal waves - 1

Consider, in Q := {(x1,x3) € R, —xysiny + x3cosy > 0}

Oru+ Vp —vAu = —bes,
deb — N?u3 — vAb = 0,
divu = 0,

Up =0, Inbjsg =0

Look for solutions of the form (u, b, p) = exp(i(kx — wt) — Az)U.
Linear system:

Determinant=polynomial of degree 6 in .
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Behavior of the BL sizes

Important quantity: criticality parameter ¢ := sin® v — w?.

Theorem: Always 3 roots with R(A) > 0, with the following

behaviour:
=1 v < <1 IS v
2 roots oc v~ 1/2 Roots of sizes v/¢*, | 2 roots oc v~ 1/3

1 root O(1) lv/¢|Y?, v=1/2 1 root o v~1/2




Example # 2: Reflection in stratified fluids

Experimental observations

[Gostiaux et al., Phys. Fluids, 2006]
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FIG. 5. (Color) False-color velocity pattern in the vertical (x,z) plane for the critical run 4 (see Table I). Panel (a) presents the instantaneous horizontal
velocity field u(x,z,1) while panel (b) shows the phase-averaged velocity (u),. Panels (c) and (d) show, respectively, the second (w), and third (w); harmonics
of the vertical velocity, (w),, in the case of run 4 (see Table I). The two white arrows define the impinging region of the incident beam. In panels (c) and (d),
the rays at the left of this region should thus not be taken into account: they have been generated by the screen. The maximum velocity in panels (a) and (b)
is 2 mms™!, and in panels (c) and (d), 0.4 mm




Example # 2: Reflection in stratified fluids
What about the next step?
» Once the construction of a generic BL is understood, build an

Uaepp = Uint + Up; so that:

approximate solution
where r€ is a remainder that is sufficiently

> A app]—err

small in some energy norm;
satisfies exactly the BC (this is what the BL is for!).

> U s
app
> Write an equation for U — Uy, perform energy estimates..
Typically, one ends up with

U = Ugppl

where X, Y are functional spaces, say X = L3°(L2) N L2(H})

Y = L2(H1)), C. is usually a (possibly negative) power of .

» Goal: have a sufficiently good approximation, i.e. such that

x < C|rflly

Cellrlly < 11 Uzppllx-

Remark: because of the singular perturbation, this may
require several additional correctors!
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An example of a degenerate case

Setting of the problem

(Simplified) Sverdrup equation:
Dth® — eN%Y)¢ = f in Q,

0
M

w T
rS

Previous formal analysis predicts: (0x = cos 60, + %d%,@f)
> BL on I'g, Ty of size (¢/| cosf])'/3: degenerates as
0 — +m/2;
» BL on s,y of size e'/%;
» BL on 'y, Ty, s lifts 2 BC; BL on I'g lifts 1 BC.
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Difficulties and results

Consequences of formal analysis:
> Interior part satisfies Ox¥int = f, Yinyr, = 0;
> Western intensification of currents: u¢ = V¢ ~ ¢1/3 in a
BL of size ¢!/3 close to M.

But because of the degeneracy, no immediate conclusion...
Theorem:|[D., Saint-Raymond]

» The sizes of BL are the ones predicted by the formal analysis;
> BUT the BL profiles are not! The profiles on 'y, s are
non-intrinsic (satisfy a diffusion-like eq.);
» Complicated superposition in transition zone where
| cos 6] < 1.

Remark: one should NOT try to connect the BL sizes!
Conclusion: when degeneracy occurs, analysis may still be
possible, but the general previous analysis might give a wrong
answer.
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» Presentation of a general, systematic method to compute the
boundary layer sizes and profiles when:
» The equation is linear;
» The boundary is flat (or smooth);
» The situation is non-degenerate.
» BL sizes are given as the roots of a polynomial. Quite often,
different regimes must be investigated.

» Even in linear cases, singularities may occur in degenetate
cases (leading to mathematical difficulties).
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Next lecture

» Extension of the methodology to rough boundaries;

» Analysis of semilinear equations.
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