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I. Introduction to long-crested waves in shallow water

Liquid height : h(x , t) = h0 + η(x , t) (one-way propagation).



Hypotheses

No surface tension. No viscosity.
Irrotational flow.
Incompressible perfect fluid.
Principal direction of propagation : x−axis. 2D
flow
Long waves. Small amplitudes.
α = a

h0
<< 1, β = (h0

` )
2 << 1,

(non linear effects) (dispersive effects)
where a = maxx ,t |η|, and ` is the smallest
wave length for which the flow has
significative energy
S = α

β close to 1 (Stokes number)
Boussinesq approximation
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Scheme of different approximations

Higher-order models



Approximations on the Boussinesq time

Unidirectional models valid for a few waves or on the time
interval [0,T ] with

T = O(1/α) = O(1/β).

Korteweg-de Vries equation

ηt + ηx +
3
2
αηηx +

1
6
βηxxx = 0.

BBM equation

ηt + ηx +
3
2
αηηx −

1
6
βηxxt = 0.



II.The problem under study

The variables

η = η(x , t) : perturbation of the free surface from the rest
state.
x ∈ R, t ∈ R+.

Choices
Dimensionless variables : x = `x̃ , η = aη̃, t =

√
h0/g t̃ .

Boussinesq approximation : S close to 1, α << 1, β << 1.
Rescaling of the variables.



II. The problem under study

Fifth order wave model (Bona, Carjaval, Panthee, Scialom, 2018)

ηt + ηx − γ1βηxxt + γ2βηxxx + δ1β
2ηxxxxt + δ2β

2ηxxxxx

+
3
4
α(η2)x + αβ

(
γ(η2)xx −

7
48
η2

x

)
x
− 1

8
α2(η3)x = 0

(1)

Initial condition

η(·,0) = η0.

Parameters γ1, γ2, δ1, δ2, γ

δ1 > 0, γ1 > 0,

γ1 + γ2 = 1
6 , γ = 1

24(5− 18γ1), δ2 − δ1 = 19
360 −

1
6γ1.

See also when dealing with global well-posedness and γ = 7
48 .



II. The problem under study (Bona, Carjaval, Panthee,
Scialom, 2018)

Theorem A. Local existence.
For any s ≥ 1 and for given η0 ∈ Hs(R), there exist a time
Tη = Cs

||η0||s(1+||η0||s) and a unique function η ∈ C([0,Tη];Hs)

which is a solution of equation (1), posed with initial condition
η0.
The solution η varies continuously in C([0,Tη];Hs) as η0 varies
in Hs.

Theorem B. Global existence.

Let γ = 7
48 . Then the solution to problem (1) given by Theorem

A is global in Hs(R) for s ≥ 1, and if s ≥ 2, the solution is
bounded in H2(R), independently of t .



II. Local well-posedness

Derivation of an integral equation

Change of variables : x̃ = β−1/2(x − δ2
δ1

t), t̃ = β−1/2t .

Change of unknown function : u(x̃ , t̃) = αη(x , t).
ut +

(
1− δ2

δ1

)
ux − γ1uxxt +

(
γ2 + γ1

δ2
δ1

)
uxxx + δ1uxxxxt

+3
4

(
u2)

x + γ
(
u2)

xxx −
7

48

(
u2

x
)

x −
1
8

(
u3)

x = 0,

u(x ,0) = u0(x) =αη0
(
β

1
2 x
)
.

No more term with a fifth-order x-derivative!



III. Local well-posedness

Derivation of an integral equation

Take the Fourier transform, solve the resulting equation, take
the inverse Fourier transform, and obtain

u = u0 +

∫ t

0
K ∗

[(
1− δ2

δ1

)
u +

3
4

u2 − 7
48

u2
x −

1
8

u3
]
(x , s)ds

+

∫ t

0
L ∗
((

γ2 +
δ2

δ1
γ1

)
u + γu2

)
(x , s)ds

= u0 +

∫ t

0

[(
1− δ2

δ1

)
K +

(
γ2 +

δ2

δ1
γ1

)
L
)
∗ u

+
(3

4K + γL
)
∗ u2 − 7

48K ∗ u2
x − 1

8K ∗ u3
]
(x , s)ds

=: Au,

where K and L are integral kernels.
Moreover L = K ′′ outside of 0.



III. Local well-posedness

Use the Residue Theorem, for example, to calculate :

K (x) =



sgn(x)

2
√
γ2

1 − 4δ1

{
e−ρ1|x | − e−ρ2|x |

}
for γ1 > 2

√
δ1,

1

4δ
3
4
1

xe−ρ0 |x | for γ1 = 2
√
δ1,

sgn(x)√
4δ1 − γ2

1

e−ρ|x | cosω sin
(
ρ|x | sinω

)
for 0 < γ1 < 2

√
δ1,



II. Local well-posedness

and

L(x) =



sgn(x)

2
√
γ2

1 − 4δ1

{
ρ2

1e−ρ1|x | − ρ2
2e−ρ2|x |

}
for γ1 > 2

√
δ1,

1

4δ
3
4
1

(−2ρ0 sgn(x) + ρ2
0x)e−ρ0 |x | for γ1 = 2

√
δ1,

sgn(x)ρ2√
4δ1 − γ2

1

e−ρ|x | cosω sin
(
2ω − ρ|x | sinω

)
for 0 < γ1 < 2

√
δ1.

Agreeable regularity properties, vanishing at ±∞.



III. Local well-posedness

Lemma. Existence of local solutions in continuous function
spaces.

The integral equation is locally well posed in the space C1
b(R).

Precisely, for any value r > 0, there is T = Tr such that for all
initial data u0 ∈ C1

b(R) with ‖u0‖C1
b(R)
≤ r , there is a unique

solution u ∈ C(0,Tr ;C1
b(R)).

Moreover, the correspondence between the initial data u0 and
the associated solution u in C(0,Tr ;C1

b(R)) is a Lipschitz
continuous mapping on any bounded subset of C1

b(R).

Proof. Use a contraction mapping argument to solve Au = u,



III. Local well-posedness

where

Au = u0+

∫ t

0

[((
1− δ2

δ1

)
K +

(
γ2 +

δ2

δ1
γ1

)
K ′′
)
∗ u(x , s)

+
(

3
4K + γK ′′

)
∗ u2(x , s)

− 7
48K ∗ u2

x (x , s)− 1
8K ∗ u3(x , s)

]
ds.

Theorem. Existence of local solutions in Sobolev spaces.

The integral equation is locally well posed in the space H1(R).
Precisely, for any value M > 0, there is T = TM such that for all
initial data u0 ∈ H1(R) with ‖u0‖H1(R) ≤ M, there is a unique
solution u ∈ C(0,TM ;H1(R)).

Moreover, the correspondence between the initial data u0 and
the associated solution u in C(0,TM ;H1(R)) is a Lipschitz
continuous mapping on the ball of radius M of H1(R).



IV. Global well-posedness and temporal growth

Here γ = 7
48.The equation has a Hamiltonian structure.

Invariants

Both quantities are independent of time for solutions
u ∈ C(0,TM ;H1(R)) :∫ ∞

−∞

(
u2 + γ1u2

x + δ1u2
xx

)
dx ,

I(u) =
∫ ∞
−∞

[(δ2

δ1
−1− 1

2
u
)

u2+
(
γ2+γ1

δ2

δ1
+

7
24

u
)

u2
x +

1
16

u4
]
dx .



IV. Global well-posedness and temporal growth

Theorem. Temporal growth.

The integral equation is globally well posed in the space Hk (R)
for any k ≥ 2. If the initial data u0 lies in Hm(R) for a certain
m ≥ 2 and the solution u emanating from u0 is bounded in
H2(R) independently of t , then the temporal growth bounds

‖u(·, t)‖k ≤ c(1 + t)
k−2

2 , for t ≥ 0 and k = 2,3, · · ·m (2)

hold. Here, the constant c depends only on ‖u0‖m and the
assumed bound on the H2(R)-norm of u.

In particular, if γ = 7
48 , then these inequalities are valid and the

constant c depend only on ‖u0‖m.

Remark. In the case γ = 7
48 , because of the Hamiltonian

structure, ||u(t)||2 is bounded independently of t ≥ 0.



IV. Global well-posedness and temporal growth

Theorem. Global well-posedness in H1(R).
Assume that

γ =
7

48
, δ2 > δ1 > 0 and γ2 + γ1

δ2

δ1
> 0.

Under these hypotheses, there are positive numbers τ and τ1,
depending only on γ1, γ2, δ1 and δ2, such that if u0 ∈ H1(R) and
‖u0‖1 ≤ τ , then

| u(·, t)|∞ ≤ ‖u(·, t)‖1 ≤ τ1

for all t ≥ 0.

Physically relevant values of the parameters

γ1 = γ2 =
1

12
, χ1 :=

δ2

δ1
− 1 =

7
180δ1

> 0,

χ2 := γ2 + γ1
δ2

δ1
=

1
12

(2 +
7

190δ1
) >

1
6
.



IV. Global well-posedness and temporal growth

Proof. Define χ = min(χ1, χ2). Suppose ||u0||1 ≤ τ , for some
τ > 0, and derive estimates for the second invariant
I(u) = I(u0), say

χ||u(t)||21−
1
2
||u(t)||31 ≤ I(u) = I(u0) ≤ max(χ1, χ2)τ

2+
1
2
τ3+

1
16
τ4

≤ χ3

2
for τ small enough

First, note that if ||u(t)||1 ≤ χ, then χ
2 ||u(t)||

2
1 ≤ I(u) = I(u0).

Second, choose τ such that for ||u0||1 ≤ τ , we have I(u0) ≤ χ3

8 .

Finally, define τ = min(χ2 , τ).



IV. Global well-posedness and temporal growth

Proof (cont’d). By continuity, if ||u0||1 ≤ χ, the solution satisfies
||u(t)||1 ≤ χ on some time interval [0,T ], for a T > 0.

Suppose there is a maximal time of existence T ∗. Then,
||u(T ∗)||1 = χ and for t > T ∗ in a neighbourhood of T ∗,
||u(t)||1 > χ.

Then the above estimates yield, for t in a neighbourhood of T ∗,
t > T ∗,

||u(T ∗)||1 ≤
χ

2
,

which is a contradiction with ||u(T ∗)||1 = χ.

Thus ||u(t)||1 ≤ χ for all t ≥ 0.



V. Conclusion : Results in order-one variables

Theorem
Suppose the initial-value problem (1) has γ1 and δ1 positive.
Then this problem is locally well posed in Hs(R) for any s ≥ 1,
in Ck

b (R) for any k = 1,2, · · · and in Ck ,σ
b (R) for any σ ∈ (0,1]

and k = 1,2, · · · .

If in addition γ = 7
48 , then it is globally well posed in Hs(R) for

s ≥ 1. If s = k + σ ≥ 2 then the solution is globally bounded in
H2(R) and satisfies the growth bounds

||u(t)||s ≤ c(1 + t)
s−2+σ

2

for t ≥ 0. Moreover, still in the case γ = 7
48 , for α and β

sufficiently small and s ≥ 1, the solution is globally bounded in
H1(R).
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Thank you for your attention!
And stay safe...


