Unstable Stokes waves: A new periodic Evans function approach $\mathsf{app}(\mathsf{c})$

Vera Mikyoung Hur with Zhao Yang University of Illinois at Urbana-Champaign based on arXiv:2010.10766 –8 –6 –4 –2 0 ²⁴⁶⁸ –8 –6 –4 –2 0 2 4 6 8 0.6867 $based$ on $arXiv:2010.10/66$

(Figures from [Deconinck and Oliveras; 2009])

Stokes in his 1847 paper made significant contributions to

- periodic traveling waves
- at the *free* surface
- two dimensional and irrotational flow
- acted on by gravity, no surface tension 212 ON THE THEORY OF OSCILLATORY WAVES.
- e.g., the 'Stokes expansion' along the surface of deep water. The figure is deep water. The The following figure represents a vertical section of the waves $\mathcal{F}_{\mathbf{r}}$

 $f(s; 1847])$ (Figure from [Stokes; 1847])

Existence theory ($=$ rigorous proofs) of Stokes waves

- [Nekrasov; 1921], [Levi-Civita; 1925] in the infinite depth, and [Struik; 1926] in the finite depth, for small amplitude
- [Krasovskii; 1960, 1961],. . . for large amplitude

and many more.

"For a long time no doubt has remained, therefore, that [Stokes waves] are theoretically possible as states of perfect dynamic equilibrium." ([Benjamin and Feir; 1967])

The original caption reads: "Photographs of a progressive at two stations, illustrating disintegration due to instability: (left) view near to wavemaker; (right) view at 200ft. farther from wavemaker. Fundamental wavelength, 7.2ft."

[Benjamin; 1967] and [Whitham; 1967] predicted that a Stokes wave of small amplitude is unstable in deep water, so that

(the wave number) \times (the fluid depth) $> 1.3627\dots$,

namely, the Benjamin-Feir or modulational instability.

Corroborating results arrived the same time, but independently, by Lighthill, Zakharov, Ostrovsky, Benney, Newell, "The idea was emerging when the time was indeed ripe." ([Zakharov and Ostrovsky; 2008])

[Bridges and Mielke; 1995] proved spectral instability, rigorously justifying the formal arguments in the 1960s.

But some fundamental issues remained open, e.g., the spectrum away from $0 \in \mathbb{C}$.

[McLean; 1982] numerically found instability when the unperturbed wave is 'resonant' with two infinitesimal perturbations:

$$
k(\lambda) - k'(\lambda) = n\kappa, \quad n \neq 0, \in \mathbb{Z}.
$$

 $h = 2.0$ and $a = 0.2$. resonances (a) and instability (b)

[Deconinck and Oliveras; 2009] numerically found

0.202 region near the origin (top) and on the imaginary axis near $0.68i$ (bottom). 0.198 The original caption reads: Spectrum for $h = 1.5$ and $a = 0.01$ (left). Enlargements are shown (right) for the

Also,

The original caption reads: Spectrum for $h=0.5$ and $a=0.01$ (left). Enlargements are shown (right) for the region region the original present (the imaginary axis near 0.68^m). <u>Intergelebrate of the imaginary axis ne</u>ar ρ region near $0.1489i$ (top) and $0.5212i$ (bottom).

This talk: the first proof of spectral instability away from $0 \in \mathbb{C}$.

What [Bridges and Mielke; 1995] did:

- **1** Locate the spectrum of $\mathcal{L}(\varepsilon, 0)$ at $0 \in \mathbb{C}$, explicitly for $|\varepsilon| \ll 1$. ε = the amplitude parameter, k = the Floquet exponent
- 2 Track the eigenvalues of $\mathcal{L}(\varepsilon, k)$ near $0 \in \mathbb{C}$ for $k \ll 1$.

What we do:

- **1** Locate the full spectrum of $\mathcal{L}(0, k)$ for all $k \in \mathbb{R}$.
- 2 Track the spectrum of $\mathcal{L}(\varepsilon, k)$ for $|\varepsilon| \ll 1$.

Also, do *not* resort to nonlocal operators, and use a periodic Evans function for cylindrical domains, and other ODE techniques.

Result 1. The Benjamin–Feir instability

A small amplitude and $2\pi/\kappa$ periodic Stokes wave in water of $depth = 1$ is spectrally unstable if

$$
\begin{aligned} \text{ind}(\kappa)=&:-\mu_0(\kappa)^{-2}(\cosh(2\kappa)+1)^2(10\cosh(2\kappa)^2+8\cosh(2\kappa)-9)\\ &+\mu_0(\kappa)^{-1}(8\cosh(2\kappa)^4+8\cosh(2\kappa)^3+4\cosh(2\kappa)^2+28\cosh(2\kappa)+24)\\ &-4\cosh(4\kappa)-32>0 \end{aligned}
$$

or, equivalently, $\kappa > \kappa_c \approx 1.362782756726421$.

An update on the spectral curves:

Result 2. High-frequency instability, or the lack thereof

Spectral instability near $\lambda \in i\mathbb{R}$, for which $k(\lambda) - k'(\lambda) = 2\kappa$ if $0.86430... < \kappa < 1.00804...$

No spectral instability for $k(\lambda) - k'(\lambda) = n\kappa$, $n \ge 3$ at the order of ε^2 .

Elucidates some numerical findings but not all.

Because infinitesimally small amplitude ≪ small amplitude

Step 1. Reformulate the water wave problem

Let
$$
u = \phi_x
$$
 and $y \mapsto \frac{y}{1 + \eta(x, t)}$ ("flattening" coordinates).

The water wave problem becomes

$$
\phi_x - \frac{y\eta_x \phi_y}{1+\eta} - u = 0, \qquad 0 < y < 1
$$
\n
$$
u_x - \frac{y\eta_x u_y}{1+\eta} + \frac{\phi_{yy}}{(1+\eta)^2} = 0, \qquad 0 < y < 1
$$
\n
$$
\eta_t + (u-1)\eta_x - \frac{\phi_y}{1+\eta} = 0, \qquad y = 1
$$
\n
$$
\phi_t - u + \frac{(u-1)\eta_x \phi_y}{1+\eta} + \frac{u^2}{2} - \frac{\phi_y^2}{2(1+\eta)^2} + \mu \eta = 0, \quad y = 1
$$
\n
$$
\phi_y = 0, \qquad y = 0
$$

Step 2. Linearize about a Stokes wave of small amplitude

$$
\phi_x - u - \frac{y\eta_x(\varepsilon)}{1 + \eta(\varepsilon)} \phi_y - (\cdots)\eta_x + (\cdots)\eta = 0, \qquad 0 < y < 1
$$

\n
$$
u_x + \frac{\phi_{yy}}{(1 + \eta(\varepsilon))^2} - (\cdots)u_y - (\cdots)\eta_x + (\cdots)\eta = 0, \quad 0 < y < 1
$$

\n
$$
\lambda \eta + (u(\varepsilon) - 1)\eta_x - \frac{\phi_y}{1 + \eta(\varepsilon)} + \eta_x(\varepsilon)u + (\cdots)\eta = 0, \qquad y = 1
$$

\n
$$
\zeta - u = 0, \qquad y = 1
$$

\n
$$
\phi_y = 0, \qquad y = 0
$$

$$
\text{ where } \eta = \eta(\phi_y(\cdot,1),\phi(\cdot,1),\zeta).
$$

$$
\begin{aligned} &\text{Abstractly, } \boxed{\mathbf{u}_x = \mathbf{L}(\lambda) \mathbf{u} + \mathbf{B}(x; \lambda, \varepsilon) \mathbf{u}} \\ &\text{where } \mathbf{L}(\lambda) \mathbf{u} = \begin{pmatrix} u & \\ -\phi_{yy} & \\ [-\mu_0 \phi_y - \lambda^2 \phi + 2 \lambda \zeta]_{y=1} \end{pmatrix}. \end{aligned}
$$

Step 3. The spectrum for $\varepsilon = 0$

For $\lambda = 0$, the eigenspece=span $\{\boldsymbol{\phi}_j(0)\}\text{, } j = 1, \ldots, 4$. For $\lambda = i\sigma$, $\sigma > \sigma_{crit}$, the eigenspece=span $\{\phi_j(\sigma)\}\$, $j = 2, 4$.

Step 4. Reduce to finite dimensions

$$
\begin{aligned} \text{Let } \lambda = i\sigma + \delta, \ \delta \in \mathbb{C} \ \text{and} \ |\delta| \ll 1, \ \text{and} \\ \mathbf{u}_x = \mathbf{L}(i\sigma)\mathbf{u} + \mathbf{B}(x;\sigma,\delta,\varepsilon)\mathbf{u}. \end{aligned}
$$

Let
$$
\mathbf{v} = \Pi(\sigma)\mathbf{u}
$$
 and $\mathbf{w} = (\mathbf{1} - \Pi(\sigma))\mathbf{u}$
\n $\Pi(\sigma) =$ the projection onto the eigenspace, and
\n
$$
\boxed{\mathbf{v}_x = \mathbf{L}(i\sigma)\mathbf{v} + \Pi(\sigma)\mathbf{B}(x;\sigma,\delta,\varepsilon)(\mathbf{v} + \mathbf{w}(x,\mathbf{v};\sigma,\delta,\varepsilon))}
$$

Let
$$
\mathbf{v}(x; \sigma, \delta, \varepsilon) = \sum_j a_j(x; \sigma, \delta, \varepsilon) \phi_j(\sigma)
$$
, $\mathbf{a} = (a_j)$
The periodic Evans function is

$$
\Delta(\lambda, k; \varepsilon) = \det(\mathbf{a}(T; \sigma, \delta, \varepsilon) - e^{ikT}\mathbf{I}), \quad T = 2\pi/\kappa
$$
 the period

$$
\Delta(\lambda, k; \varepsilon) = \det(\mathbf{a}(T; \sigma, \delta, \varepsilon) - e^{ikT}\mathbf{I}), \quad T = 2\pi/\kappa \text{ the period.}
$$

$$
\operatorname{spec} = \{\lambda \in \mathbb{C} : \Delta(\lambda, k, \varepsilon) = 0 \quad \text{for some } k \in \mathbb{R}\}
$$

Step 5. Exapand the Evans function. The Benjamin–Feir instability

For
$$
\delta = i0 + \delta
$$
, $|\delta| \ll 1$ for $\varepsilon \in \mathbb{R}$, $|\varepsilon| \ll 1$,
\n
$$
\mathbf{a}(T) = \begin{pmatrix} e^{-i\kappa T} & 0 & 0 & 0 \\ 0 & e^{i\kappa T} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & T & 1 \end{pmatrix}
$$
\n
$$
+ \delta \begin{pmatrix} a_{11}^{(1,0)} & 0 & 0 & 0 \\ 0 & a_{11}^{(1,0)} & 0 & 0 \\ 0 & 0 & a_{33}^{(1,0)} & 0 \\ a_{41}^{(1,0)} & a_{41}^{(1,0)} & \frac{T}{2}a_{33}^{(1,0)} & 0 \end{pmatrix} + \epsilon \begin{pmatrix} 0 & 0 & a_{13}^{(0,1)} & 0 \\ 0 & 0 & a_{13}^{(0,1)} & 0 \\ 0 & 0 & 0 & 0 \\ a_{41}^{(0,1)} & -a_{41}^{(0,1)} & a_{43}^{(0,1)} & 0 \end{pmatrix}
$$
\n
$$
+ \delta^2 \begin{pmatrix} a_{11}^{(2,0)} & 0 & * & 0 \\ 0 & (a_{11}^{(2,0)})^* & * & 0 \\ 0 & a_{31}^{(2,0)} & * & a_{34}^{(2,0)} \\ a_{31}^{(2,0)} & a_{31}^{(2,0)} & * & a_{34}^{(2,0)} \\ a_{41}^{(2,0)} & * & a_{44}^{(2,0)} \end{pmatrix} + \delta \varepsilon \begin{pmatrix} a_{11}^{(1,1)} & a_{11}^{(1,1)} & * & a_{11}^{(1,1)} \\ a_{11}^{(1,1)} & * & a_{11}^{(1,1)} \\ a_{11}^{(1,1)} & * & a_{11}^{(1,1)} \\ a_{31}^{(1,1)} & * & * & 0 \\ a_{31}^{(1,1)} & * & * & 0 \end{pmatrix} + \cdots
$$

$$
\sum_{j=1}^{4} \left(\frac{d}{dx} a_{jk}^{(m,n)} \right) \phi_j(0) = -i\kappa a_{1k}^{(m,n)} \phi_1(0) + i\kappa a_{2k}^{(m,n)} \phi_2(0)
$$

+ $a_{3k}^{(m,n)} \phi_4(0) + \Pi(0) \mathbf{f}_k^{(m,n)}(x;0),$
 $\mathbf{f}_k^{(m,n)}(x;0) = \sum_{m',n'} \mathbf{B}^{(m',n')}(x;0) \left(\mathbf{w}_k^{(m-m',n-n')}(x;0) + \sum a_{jk}^{(m-m',n-n')} \phi_j(0) \right),$
and $\mathbf{w}_k^{(m,n)}$ solves

$$
\phi_{xx} + \phi_{yy} = ((1 - \Pi(0)) \mathbf{f}_k^{(m,n)}(x;0))_{1x} + ((1 - \Pi(0)) \mathbf{f}_k^{(m,n)}(x;0))_{2} \quad 0 < y < 1
$$

 $u = \phi_x - ((1 - \Pi(0)) \mathbf{f}_k^{(m,n)}(x;0))_{1} \qquad 0 < y < 1$
 $\zeta_x = -\mu_0 \phi_y + ((1 - \Pi(0)) \mathbf{f}_k^{(m,n)}(x;0))_{3} \qquad y = 1$
 $\zeta = u \qquad y = 0$
 $y = 0$

$$
\Delta(\lambda, n\kappa + \gamma; \varepsilon) = \det(\mathbf{a}(T; 0, \lambda, \varepsilon) - e^{i\gamma T}\mathbf{I})
$$

= $d^{(4,0,0)} \lambda^4 + d^{(3,1,0)} \lambda^3 \gamma + d^{(2,2,0)} \lambda^2 \gamma^2 + d^{(1,3,0)} \lambda \gamma^3 + d^{(0,4,0)} \gamma^4 + \cdots$
+ $o((|\lambda| + |\gamma|)^4 + |\lambda|^3 |\varepsilon|^2 + |\lambda|^2 |\varepsilon|^3 + |\gamma|^3 |\varepsilon|^2 + |\gamma|^2 |\varepsilon|^3$
+ $|\lambda \gamma| |\varepsilon|^2 (|\lambda| + |\gamma| + |\varepsilon|) + |\lambda| |\varepsilon|^5 + |\gamma| |\varepsilon|^5)$

Let

 $\lambda_j(k_j(0)+\gamma,\varepsilon)=\alpha_j^{(1,0)}$ $\alpha_j^{(1,0)}\gamma+\alpha_j^{(2,0)}$ $\alpha_j^{(2,0)}\gamma^2 + \alpha_j^{(1,1)}$ $j_j^{(1,1)}\gamma\varepsilon+o(|\gamma|^2+|\gamma||\varepsilon|),$ and solve $\Delta(\lambda_i(k_i(0) + \gamma, \varepsilon), \dot{k}_i(0) + \gamma, \dot{\varepsilon}) = 0.$

High frequency instability. Why resonance?

$$
a_{jk}^{(m,n)}(x) = e^{ik_{2j}x} \Big\langle \sum \int_0^x e^{-ik_{2j}x'} \mathbf{B}^{(m',n')}(x')
$$

$$
(\mathbf{w}_k^{(m-m',n-n')}(x') + \sum a_{j'k}^{(m-m',n-n')}(x') \phi_{2j'}) dx', \psi_{2j} \Big\rangle,
$$

involving, e.g.,

$$
\int_0^x e^{i(k_{2j} - k_{2j'})x'} \sin(pxx') dx'
$$

=
$$
\begin{cases} \frac{p\kappa - p\kappa \cos(pxx)e^{i(k_{2j} - k_{2j'})x}}{p^2\kappa^2 - (k_{2j} - k_{2j'})^2} + \cdots & |k_{2j} - k_{2j'}| \neq p\kappa, \\ \pm \frac{i}{2}x + \frac{1 - e^{\pm 2ip\kappa x}}{4p\kappa} & k_{2j} - k_{2j'} = \pm p\kappa, \end{cases}
$$

God is in the detail!

and

 $b_{1,2}^{(0,1)} = p_{2,1} \left(\frac{\kappa s(s_2(2)-2k_2c_2(2))}{4k_2} \right)$ $\frac{k_2 \kappa s (2k_2 - s_2(2))}{4} - \frac{k_2^2}{4}$ ²κs2(k2c2s − κcs2) k3 ² − κ² ²κ2c2(k2cs² [−] κc2s) 2.2 and k_{2} $\frac{2k_2 - \kappa c_2 s_1}{2} - \frac{2k_2^2 \kappa^2 c_2 (k_2 c_2 - \kappa c_2 s)}{\mu_0 (k_2^2 - \kappa^2)} + \frac{2k_2 \kappa^2 \sigma c_2 (k_2 c_2 - \kappa c_2 s)}{\mu_0 (k_2^2 - \kappa^2)} \nonumber \ + \frac{k_2 \kappa \sigma^2 c_2 (k_2 c_2 s - \kappa c_2 s_1)}{\mu_0 (k_2^2 - \kappa^2)} \nonumber \ + \frac{k_2 \kappa \sigma^2 c_2 (k_2 c_2 s - \kappa c_2 s_2)}{\mu_$ ²κ2c2(k2cs² [−] κc2s) ²k2κ2σc2(k2cs² [−] κc2s) $-\frac{2\kappa^2 \sigma c_2(k_2c s_2 - \kappa c_2 s)}{k_2 \mu_0(k_2^2 - \kappa^2)}$ $\mu_0(k_2^2)$ $(\frac{2}{2} - \kappa^2)$ + $40(k^2)$ $\frac{2}{2} - \kappa^2$) −c2(k2)
− ² − 1) $k_2\mu_2$ $(k_2κ²μ₀c₂c - k₂²κμ₀s₂s + 2k₂κμ₀σs₂s$ $- \kappa \sigma^2 c_2 s - k_2 \kappa \mu_0 c_2 s + \kappa \mu_0 \sigma c_2 s + k_2 \kappa \mu_0^2 c_2 s + k_2 \kappa \sigma^2 c_2 s)$ + k2κs² ! κc2c $\frac{k_2c_2c}{k_2^2 - \kappa^2} - \frac{k_2s_2s_1}{k_2^2 - \kappa^2}$ $\frac{2}{2} - \kappa^2$ $\frac{(k_2^2 + \kappa^2)}{(k_2^2 - \kappa^2)^2} - \frac{2k_2\kappa c s_2}{(k_2^2 - \kappa^2)}$ $(k²$ (k² 22.7 [−] ^k² k^2s_2 ! k2c2c κ_2^2 $\frac{k_2c_2c}{2 - \kappa^2} - \frac{\kappa s_2s}{k_2^2 - s}$ k_2^2 $\frac{\kappa s_2 s}{2 - \kappa^2} - \frac{\alpha s_2(k_2^2)}{(k_2^2 -)}$ 2 + x2 (k_2^2) $\frac{2}{2} - \kappa^2$ ² 2k2κc2s (k_2^2) $rac{4}{2} - \kappa^2$)2 " k2κσc² μ_0 ! κc2c $\frac{\kappa c_2 c}{2 - \kappa^2} - \frac{k_2 s_2 s}{k_2^2 - \kappa}$ $\frac{2}{2} - \kappa^2$ + $c_2s(k)$ $(\frac{2}{2} + \kappa^2)$ $\frac{28(k_2^2 + \kappa^2)}{(k_2^2 - \kappa^2)^2} - \frac{2k_2\kappa c s_2}{(k_2^2 - \kappa^2)}$ ² − κ2)² − k2 $2κ²σc_2$ μ 0 $/$ k2c2c k_2^2 $\frac{k_2c_2c}{2 - \kappa^2} - \frac{\kappa s_2s}{k_2^2 - s}$ k_2^2 $\frac{k_2 s}{2 - k^2} - \frac{c s_2(k_2^2)}{(k_2^2 - k_1^2)}$ $(\frac{2}{3} + \kappa^2)$ (k_{2}^{2}) $\frac{2}{2} - \kappa^2$)² + 2k2κc2s (k_{2}^{2}) ² − κ2)² $-\frac{\kappa\sigma^2c_2}{m}$ μ_0 ! κc2c $\frac{k_2c_2c}{k_2^2 - \kappa^2} - \frac{k_2s_2s}{k_2^2 - \kappa}$ $\frac{2}{2} - \kappa^2$ + c_2 s(k $\frac{2}{2}$ $(\frac{2}{3} + \kappa^2)$ $\frac{(k_2^2 + \kappa^2)}{2^2 - \kappa^2}$ ^{2k₂κcs₂
²/₂ - κ^2 ²} $\frac{a}{2} - \kappa^2$)² k 2 κ $^2σ^2c_2$ $+\frac{k_2\kappa^2\sigma^2c_2}{\mu_0}\Big(\frac{k_2c_1c}{k_2^2-\kappa^2}-\frac{\kappa s_2s}{k_2^2-\kappa^2}-\frac{c s_2(k_2^2)}{(k_2^2-\kappa^2)}\Big(\frac{k_2}{\kappa^2}-\frac{\kappa}{\mu_0}\Big)\Big)$ $($ $k_2c_2c_3$ $(\frac{7}{2} + \kappa^2)$ $\frac{2}{2} - \kappa^2$ ² + 2k2κc2s (k) ² − κ2)² $\label{eq:1D1V:2} \begin{split} b_{1,3}^{(0,1)}=&\,-p_{2,2}\Bigl(\frac{2ik_2^2s(k_2c_1s_2-k_4c_2s_4)}{k_4(k_2^2-k_4^2)}-\frac{2ik_2^2k_4s(k_2c_4s_2-k_4c_2s_4)}{k_2^2-k_4^2}\Bigr). \end{split}$ $k_4(k_2^2 - k_4^2)$ $\begin{split} k_4 \big(k_2^2-k_4^2\big) &\hskip 3.5mm k_2^2-k_4^2\\ +\frac{i \big(k_1^2-1\big)c_4}{k_4 \mu_0^2}\big(k_2 \mu_0^2 s_2 s + k_2 \kappa^2 \mu_0 s_2 s + 2 \kappa \mu_0 \sigma^2 c_2 c - 2 k_2 \kappa \mu_0 \sigma c_2 c \\ &\hskip 3.5mm -\kappa^2 \sigma^2 c_2 s - 2 k_2 \kappa \mu_0^2 c s_2 + k_2 \kappa^2 \sigma c_2 s \big) \end{split}$ ik $_2$ κ 2 ε $_2$ k4 ! κc4c $\frac{\kappa c_4 c}{4 - \kappa^2} - \frac{k_4 s_4 s_5}{k_4^2 - \kappa^2}$ $\frac{3}{4} - \kappa^2$ $c_4 s (k_4^2 + \kappa^2)$ $(k_1^2 - \kappa^2)^2$
c₄s(k₁² + κ^2) $\frac{(k_1^2 + \kappa^2)}{(k_1^2 - \kappa^2)^2} - \frac{2k_1\kappa c s_4}{(k_1^2 - \kappa^2)}$ $\frac{3}{4} - \kappa^2$ ² − ik2k4κ²s2 ! κc4c $\frac{k_1k_2s}{\frac{3}{4}-\kappa^2}-\frac{k_1k_2s}{k_1^2-\kappa}$ $\frac{3}{4} - \kappa^2$ $\frac{(k_1^2 + \kappa^2)}{(k_1^2 - \kappa^2)^2} - \frac{2k_4\kappa c s_4}{(k_1^2 - \kappa^2)}$ ⁴ − κ2)² ik2κ 2 σ c_2 k4µ⁰ ! κc4c k2 $\frac{\kappa c_4 c}{\frac{3}{4} - \kappa^2} - \frac{k_4 s_4 s}{k_4^2 - \kappa}$ k2 $\frac{3}{4} - \kappa^2$ c4s(k² $(\frac{3}{4} + \kappa^2)$ $\frac{(k_1^2 + \kappa^2)}{(k_1^2 - \kappa^2)^2} - \frac{2k_4 \kappa c s_4}{(k_4^2 - \kappa^2)}$ $\frac{3}{4} - \kappa^2$)² $-\frac{ik_2k_4k^2\sigma c_2}{m}$ μ_0 ! κc4c $\frac{k_4 s_4 s_5}{\frac{3}{4} - \kappa^2} - \frac{k_4 s_4 s_5}{k_4^2 - \kappa^2}$ $\frac{3}{4} - \kappa^2$ $c_4 s (k_1^2 + \kappa^2)$ $\frac{(k_1^2 + \kappa^2)}{(k_1^2 - \kappa^2)^2} - \frac{2k_4\kappa c s_4}{(k_4^2 - \kappa^2)}$ $\frac{3}{4} - \kappa^2$)² ik4κ 2 σ 2 c $_2$ μ_0 ! κc4c $\frac{kc_4c}{\frac{3}{4}-\kappa^2}-\frac{k_4s_4s_5}{k_4^2-\kappa^2}$ $\frac{2}{4} - \kappa^2$ c4s(k² $(\frac{2}{3} + \kappa^2)$ $(k_2^2 \frac{(k_1^2 + \kappa^2)}{(k_1^2 - \kappa^2)^2} - \frac{2k_4 \kappa c s_4}{(k_4^2 - \kappa^2)^2}$ $-\frac{i\kappa^2\sigma^2c_2}{k_2m}$ k4µ⁰ ! κc4c $\frac{kc_4c}{\frac{3}{4}-\kappa^2}-\frac{k_4s_4s}{k_4^2-\kappa}$ $\frac{2}{4} - \kappa^2$ $c_4 s (k_1^2 + \kappa^2)$ $\frac{(k_1^2 + \kappa^2)}{(\frac{3}{4} - \kappa^2)^2} - \frac{2k_1\kappa c s_4}{(k_4^2 - \kappa^2)}$ ⁴ − κ2)² "",

and

Also,

$$
\begin{aligned} \label{eq:2d} \dot{y}^{(0,1)}_{1,2} &= \frac{i\kappa(-\sigma^2c_2+k_2\sigma c_2+k_2\mu_0s_2)}{k_2k_0}, \qquad \qquad b^{(0,1)}_{1,1} &= \frac{k_2\mu_0s_2-\sigma^2c_2+k_2\sigma c_2}{k_0},\\ \dot{y}^{(0,1)}_{1,7} &= \frac{\kappa\,b^{(0,1)}_{1,4}+k_2b^{(0,1)}_{1,3}+k_2b^{(0,1)}_{1,4}}{k_2^2+2k_2k_4-\kappa_4^2+\kappa^2}, \qquad \qquad b^{(0,1)}_{1,8} &= -\frac{\kappa b^{(0,1)}_{1,4}+k_2b^{(0,1)}_{1,4}+k_2b^{(0,1)}_{1,4}}{-k_2^2+2k_2k_4-\kappa_4^2+\kappa^2} \end{aligned}
$$

and

$$
\label{eq:bl10} b_{1,0}^{(0,1)} = \frac{4i\kappa^2(\mu_0b_{1,2}^{(0,1)} - k_2\kappa c_2i + \kappa\sigma c_2i)}{k_2(k_2^2 - 4\kappa^2)\mu_0}, \qquad \ \ b_{1,10}^{(0,1)} = \frac{2\kappa(\mu_0b_{1,2}^{(0,1)} - k_2\kappa c_2i + \kappa\sigma c_2i)}{(k_2^2 - 4\kappa^2)\mu_0}.
$$

Pros: can accommodate surface tension, vorticity, ... infinite depth?

 $\phi_{xx} + \phi_{yy} = 0$ (vorticity) $0 < y < 1 + \eta(x, t)$
 $\phi_y = 0$ (infinite depth) $y = 0$ $\phi_y = 0$ (infinite depth) $y = 0$
 $\eta_t - \eta_x + \eta_x \phi_x = \phi_u$ $y = 1 + \eta(x, t)$ $\eta_t - \eta_x + \eta_x \phi_x = \phi_y$ $\phi_t - \phi_x + \frac{1}{2}(\phi_x^2 + \phi_y^2) + \mu \eta = 0$ (surface tension) $y = 1 + \eta(x, t)$

Cons: stability. $\Delta(\lambda, p\kappa + \gamma; \varepsilon) = W(\lambda, \gamma, \varepsilon)h(\lambda, \gamma, \varepsilon),$ and roots of $W(\lambda,\gamma,\varepsilon)=\lambda^4+g_3(\gamma,\varepsilon)\lambda^3+g_2(\gamma,\varepsilon)\lambda^2+g_1(\gamma,\varepsilon)\lambda+g_0(\gamma,\varepsilon)?$