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Figure 9. (a) Spectrum for h = 1.5 and a = 0.01 (left). Enlargements are shown (right) for the
region near the origin (top) and on the imaginary axis near 0.68i (bottom). (b) Spectrum for
h = 0.5 and a = 0.01 (left). Enlargements are shown (right) for the region near 0.1489i (top)
and 0.5212i (bottom).

5.2.2. Deep water of finite depth

To further illustrate the method, we calculate the spectrum associated with
a travelling wave solution in water of finite depth h = 1.5, which is above the
Benjamin–Feir threshold. The solution has amplitude a = 0.01 and it suffices to use
32 Fourier modes. The spectrum and two zooms of it are displayed in figure 9(a).

Two main instabilities are visible in figure 9(a). The dominant instability
(corresponding to the eigenvalue with the largest real part) is associated with a region
around the origin. Zooming in on this region shows that it is, once again, a figure-
eight curve (figure 9a, top right), associated with the modulational instability similar
to what we observed in water of infinite depth in figure 7. The other instability region
is found near 0.68i (and near −0.68i, due to the symmetry of the problem) on the
imaginary axis. This region is shown enlarged in figure 9(a) (bottom right). It contains
an oval of eigenvalues with non-zero real part, leading to instabilities. We refer to
this instability (and other similar instabilities associated with such bubbles on the
imaginary axis) as ‘high-frequency instabilities’ since the corresponding perturbations
oscillate in time. This is in contrast to the modulational instabilities which correspond
to growth rates with small or zero imaginary parts. We discuss the nature of the
associated perturbations in more detail below. The only Class I instabilities shown in

(Figures from [Deconinck and Oliveras; 2009])



Stokes in his 1847 paper made significant contributions to

• periodic traveling waves

• at the free surface

• two dimensional and irrotational flow

• acted on by gravity, no surface tension

e.g., the ‘Stokes expansion’

212 ON THE THEORY OF OSCILLATORY WAVES.

The following figure represents a vertical section of the waves

propagated along the surface of deep water. The figure is drawn

for the case in which a = . The term of the third order in (27)

is retained, but it is almost insensible. The straight line represents
a section of the plane of mean level.

13. If we consider the manner in which the terms introduced

by each successive approximation enter into equations (7) and (8),

we shall see that, whatever be the order of approximation, the

series expressing the ordinate of the surface will contain only
cosines of mx and its multiples, while the expression for

&amp;lt;f&amp;gt;

will

contain only sines. The manner in which y enters into the

coefficient of cos rmx in the expression for
&amp;lt;f&amp;gt;

is determined in the

case of a finite depth by equations (2) and (3). Moreover, the

principal part of the coefficient of cos rmx or sin rmx will be of

the order ar
at least. We may therefore assume

&amp;lt;

=
T&amp;gt;,&quot;a

rA
r (&quot;&amp;lt;*-&amp;gt;

+ e-rmUi-vY) sm rmXt

y = a cos mx + 22
ar

.Z?r cos rmx,

and determine the arbitrary coefficients by means of equations

(7) and (8), having previously expanded these equations according
to ascending powers of y. The value of c

2 will be determined by

equating to zero the coefficient of sin mx in (7).

Since changing the sign of a comes to the same thing as

altering the origin of x by \ X, it is plain that the expressions

for Ar,
Br and c

2
will contain only even powers of a. Thus

the values of each of these quantities will be of the form

oo+ cx + cx + ---

It appears also that, whatever be the order of approximation,

the waves will be symmetrical with respect to vertical planes

passing through their ridges, as also with respect to vertical planes

passing through their lowest lines.

14 Let us consider now the case of waves propagated at

the common surface of two liquids, of which one rests on the

(Figure from [Stokes; 1847])



Existence theory (=rigorous proofs) of Stokes waves

• [Nekrasov; 1921], [Levi-Civita; 1925] in the infinite depth,
and [Struik; 1926] in the finite depth, for small amplitude

• [Krasovskii; 1960, 1961],. . . for large amplitude

and many more.

“For a long time no doubt has remained, therefore, that [Stokes
waves] are theoretically possible as states of perfect dynamic
equilibrium.” ([Benjamin and Feir; 1967])



[Benjamin; 1967] experimentally found

 on June 6, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

 on June 6, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

The original caption reads: “Photographs of a progressive at two stations, illustrating disintegration due to

instability: (left) view near to wavemaker; (right) view at 200ft. farther from wavemaker. Fundamental wavelength,

7.2ft.”



[Benjamin; 1967] and [Whitham; 1967] predicted that
a Stokes wave of small amplitude is unstable in deep water, so that

(the wave number)×(the fluid depth)> 1.3627 . . . ,

namely, the Benjamin-Feir or modulational instability.

Corroborating results arrived the same time, but independently,
by Lighthill, Zakharov, Ostrovsky, Benney, Newell, . . . .
“The idea was emerging when the time was indeed ripe.”
([Zakharov and Ostrovsky; 2008])

[Bridges and Mielke; 1995] proved spectral instability,
rigorously justifying the formal arguments in the 1960s.

But some fundamental issues remained open, e.g.,
the spectrum away from 0 ∈ C.



[McLean; 1982] numerically found instability when the unperturbed
wave is ‘resonant’ with two infinitesimal perturbations:

k(λ)− k′(λ) = nκ, n 6= 0,∈ Z.
332 J. W. MeLean 

t 
FIGURE 1.  Resonance curves from the linear dispersion relation. N is the order 

of tho resonance (equation ( 1 1 ) ) .  (a) kh = 2.0; ( h )  kh = 0.5. 

2. Governing equations 
The analysis proceeds along the lines of the deep-water case (McLean l9Sl),  with 

modifications for finite depth. We consider two-dimensional, steadily propagating 
surface gravity waves of permanent form on an inviscid, irrotational, incompressible 
fluid of finite depth. In a frame of reference moving with t’he wave, the governing 
equations are 

- (1)  
$z = 0. ( 2  = - h ) ,  

V 2 $ = 0  ( - h < z < i i ) , }  

where $(z, z )  is the velocity potential, z = q(x) is the free surface, h is the mean depth, 
and B is the Bernoulli constant. Without loss of generality, the gravitational accelera- 
tion is one and the unperturbed wave has wavelength h = 277. These equations admit 
two-dimensional steady solutions of the form : 

- ~ ( x )  = X Ancos(nx), 
n =  1 

- m cosh n(z + h) 
$(x, z )  = - Cx + C B, sin (nx) 

n=l sinh (nh) ’ 

where the Fourier coefficients A,, B, and the ‘phase speed’ C are functions of the 
wave steepness ka and the Bernoulli constant B (or equivalently the mean depth h), 
whereaisone-halfthecrest-to-trough height, and k i s  themavenumber (k = 2n/h = 1). 
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FIGURE 2. Bands of instability for d = 2.0? The labels tho point of maximum instability. 
(a) ka = 0.20, the dashed line is the resonance ciirve from the linear dispersion relation; 
( b )  ka = 0.30; (c) ka = 0.35; (d) ka = 0.39. 

For d = 2.0, the behaviour of the lowest-order instability (AT = 2) is very similar 
to the deep-water case: for small ku, the steady wave is unstable to long-wavelength 
perturbations which have a growth rate O(ka)a. Note however that the dominant 
instability at this depth is three-dimensional for small h. For steeper waves, the 
long-wavelength perturbations restabilize, and the most unstable wavenumber is 
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[Deconinck and Oliveras; 2009] numerically found
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Figure 9. (a) Spectrum for h = 1.5 and a = 0.01 (left). Enlargements are shown (right) for the
region near the origin (top) and on the imaginary axis near 0.68i (bottom). (b) Spectrum for
h = 0.5 and a = 0.01 (left). Enlargements are shown (right) for the region near 0.1489i (top)
and 0.5212i (bottom).

5.2.2. Deep water of finite depth

To further illustrate the method, we calculate the spectrum associated with
a travelling wave solution in water of finite depth h = 1.5, which is above the
Benjamin–Feir threshold. The solution has amplitude a = 0.01 and it suffices to use
32 Fourier modes. The spectrum and two zooms of it are displayed in figure 9(a).

Two main instabilities are visible in figure 9(a). The dominant instability
(corresponding to the eigenvalue with the largest real part) is associated with a region
around the origin. Zooming in on this region shows that it is, once again, a figure-
eight curve (figure 9a, top right), associated with the modulational instability similar
to what we observed in water of infinite depth in figure 7. The other instability region
is found near 0.68i (and near −0.68i, due to the symmetry of the problem) on the
imaginary axis. This region is shown enlarged in figure 9(a) (bottom right). It contains
an oval of eigenvalues with non-zero real part, leading to instabilities. We refer to
this instability (and other similar instabilities associated with such bubbles on the
imaginary axis) as ‘high-frequency instabilities’ since the corresponding perturbations
oscillate in time. This is in contrast to the modulational instabilities which correspond
to growth rates with small or zero imaginary parts. We discuss the nature of the
associated perturbations in more detail below. The only Class I instabilities shown in

The original caption reads: Spectrum for h = 1.5 and a = 0.01 (left). Enlargements are shown (right) for the

region near the origin (top) and on the imaginary axis near 0.68i (bottom).



Also,
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Figure 9. (a) Spectrum for h = 1.5 and a = 0.01 (left). Enlargements are shown (right) for the
region near the origin (top) and on the imaginary axis near 0.68i (bottom). (b) Spectrum for
h = 0.5 and a = 0.01 (left). Enlargements are shown (right) for the region near 0.1489i (top)
and 0.5212i (bottom).

5.2.2. Deep water of finite depth

To further illustrate the method, we calculate the spectrum associated with
a travelling wave solution in water of finite depth h = 1.5, which is above the
Benjamin–Feir threshold. The solution has amplitude a = 0.01 and it suffices to use
32 Fourier modes. The spectrum and two zooms of it are displayed in figure 9(a).

Two main instabilities are visible in figure 9(a). The dominant instability
(corresponding to the eigenvalue with the largest real part) is associated with a region
around the origin. Zooming in on this region shows that it is, once again, a figure-
eight curve (figure 9a, top right), associated with the modulational instability similar
to what we observed in water of infinite depth in figure 7. The other instability region
is found near 0.68i (and near −0.68i, due to the symmetry of the problem) on the
imaginary axis. This region is shown enlarged in figure 9(a) (bottom right). It contains
an oval of eigenvalues with non-zero real part, leading to instabilities. We refer to
this instability (and other similar instabilities associated with such bubbles on the
imaginary axis) as ‘high-frequency instabilities’ since the corresponding perturbations
oscillate in time. This is in contrast to the modulational instabilities which correspond
to growth rates with small or zero imaginary parts. We discuss the nature of the
associated perturbations in more detail below. The only Class I instabilities shown in

The original caption reads: Spectrum for h = 0.5 and a = 0.01 (left). Enlargements are shown (right) for the

region near 0.1489i (top) and 0.5212i (bottom).

This talk: the first proof of spectral instability away from 0 ∈ C.



What [Bridges and Mielke; 1995] did:

1 Locate the spectrum of L(ε, 0) at 0 ∈ C, explicitly for |ε| � 1.
ε = the amplitude parameter, k = the Floquet exponent

2 Track the eigenvalues of L(ε, k) near 0 ∈ C for k � 1.

What we do:

1 Locate the full spectrum of L(0, k) for all k ∈ R.

2 Track the spectrum of L(ε, k) for |ε| � 1.

Also, do not resort to nonlocal operators, and use a periodic Evans
function for cylindrical domains, and other ODE techniques.



Result 1. The Benjamin–Feir instability

A small amplitude and 2π/κ periodic Stokes wave in water of
depth = 1 is spectrally unstable if

ind(κ) =:−µ0(κ)−2(cosh(2κ) + 1)2(10 cosh(2κ)2 + 8 cosh(2κ)− 9)
+µ0(κ)−1(8 cosh(2κ)4 + 8 cosh(2κ)3 + 4 cosh(2κ)2 + 28 cosh(2κ) + 24)
−4 cosh(4κ)− 32 > 0

or, equivalently, κ > κc ≈ 1.362782756726421.

An update on the spectral curves:

spectral curves figure-8 figure-∞



Result 2. High-frequency instability, or the lack thereof

Spectral instability near λ ∈ iR, for which k(λ)− k′(λ) = 2κ
if 0.86430 . . . < κ < 1.00804 . . .

No spectral instability for k(λ)− k′(λ) = nκ, n > 3
at the order of ε2.

Elucidates some numerical findings but not all.

Because infinitesimally small amplitude ≪ small amplitude



Step 1. Reformulate the water wave problem

Let u = φx and y 7→ y

1 + η(x, t)
(“flattening” coordinates).

The water wave problem becomes

φx − yηxφy
1+η − u = 0, 0 < y < 1

ux − yηxuy
1+η +

φyy
(1+η)2

= 0, 0 < y < 1

ηt + (u− 1)ηx − φy
1+η = 0, y = 1

φt − u+
(u−1)ηxφy

1+η + u2

2 −
φ2y

2(1+η)2
+ µη = 0, y = 1

φy = 0, y = 0



Step 2. Linearize about a Stokes wave of small amplitude

φx − u− yηx(ε)
1+η(ε)φy − (· · · )ηx + (· · · )η = 0, 0 < y < 1

ux +
φyy

(1+η(ε))2
− (· · · )uy − (· · · )ηx + (· · · )η = 0, 0 < y < 1

λη + (u(ε)−1)ηx − φy
1+η(ε) + ηx(ε)u+ (· · · )η = 0, y = 1

ζ − u = 0, y = 1
φy = 0, y = 0

where η = η(φy(·, 1), φ(·, 1), ζ).

Abstractly, ux = L(λ)u + B(x;λ, ε)u

where L(λ)u =




u
−φyy

[−µ0φy − λ2φ+ 2λζ]y=1


.



Step 3. The spectrum for ε = 0

λ = iσ, σ = k ±
√
µ0k tanh(k) , k ∈ R.

For λ = 0, the eigenspece=span{φj(0)}, j = 1, . . . , 4.
For λ = iσ, σ > σcrit, the eigenspece=span{φj(σ)}, j = 2, 4.



Step 4. Reduce to finite dimensions

Let λ = iσ + δ, δ ∈ C and |δ| � 1, and
ux = L(iσ)u + B(x;σ, δ, ε)u.

Let v = Π(σ)u and w = (1−Π(σ))u
Π(σ) = the projection onto the eigenspace, and

vx = L(iσ)v + Π(σ)B(x;σ, δ, ε)(v + w(x,v;σ, δ, ε))

Let v(x;σ, δ, ε) =
∑

j aj(x;σ, δ, ε)φj(σ), a = (aj)
The periodic Evans function is

∆(λ, k; ε) = det(a(T ;σ, δ, ε)− eikT I), T = 2π/κ the period.

spec = {λ ∈ C : ∆(λ, k, ε) = 0 for some k ∈ R}



Step 5. Exapand the Evans function. The Benjamin–Feir instability

For δ = i0 + δ, |δ| � 1 for ε ∈ R, |ε| � 1,

a(T ) =


e−iκT 0 0 0

0 eiκT 0 0
0 0 1 0
0 0 T 1



+ δ


a
(1,0)
11 0 0 0

0 a
(1,0)
11 0 0

0 0 a
(1,0)
33 0

a
(1,0)
41 a

(1,0)
41

T
2
a
(1,0)
33 0

+ ε


0 0 a

(0,1)
13 0

0 0 a
(0,1)
13 0

0 0 0 0

a
(0,1)
41 −a(0,1)41 a

(0,1)
43 0



+ δ2


a
(2,0)
11 0 ∗ 0

0 (a
(2,0)
11 )∗ ∗ 0

a
(2,0)
31 a

(2,0)
31 ∗ a

(2,0)
34

∗ ∗ ∗ a
(2,0)
44

+ δε


a
(1,1)
11 a

(1,1)
11 ∗ a

(1,1)
14

a
(1,1)
11 a

(1,1)
11 ∗ a

(1,1)
14

a
(1,1)
31 ∗ ∗ 0
∗ ∗ ∗ 0

+ · · ·



4∑

j=1

( d
dx
a

(m,n)
jk

)
φj(0) =− iκ a(m,n)

1k φ1(0) + iκ a
(m,n)
2k φ2(0)

+ a
(m,n)
3k φ4(0) + Π(0)f

(m,n)
k (x; 0),

f
(m,n)
k (x;0)=

∑
m′,n′ B

(m′,n′)(x;0)
(
w

(m−m′,n−n′)
k (x;0)+

∑
a
(m−m′,n−n′)
jk φj(0)

)
,

and w
(m,n)
k solves

φxx + φyy = ((1−Π(0))f
(m,n)
k (x; 0))1x + ((1−Π(0))f

(m,n)
k (x; 0))2 0 < y < 1

u = φx − ((1−Π(0))f
(m,n)
k (x; 0))1 0 < y < 1

ζx = −µ0φy + ((1−Π(0))f
(m,n)
k (x; 0))3 y = 1

ζ = u y = 1

φy = 0 y = 0.



∆(λ, nκ+ γ; ε) = det(a(T ; 0, λ, ε)− eiγT I)

=d(4,0,0)λ4 + d(3,1,0)λ3γ + d(2,2,0)λ2γ2 + d(1,3,0)λγ3 + d(0,4,0)γ4 + · · ·
+o((|λ|+ |γ|)4 + |λ|3|ε|2 + |λ|2|ε|3 + |γ|3|ε|2 + |γ|2|ε|3

+ |λγ||ε|2(|λ|+ |γ|+ |ε|) + |λ||ε|5 + |γ||ε|5)

Let
λj(kj(0) + γ, ε) = α

(1,0)
j γ + α

(2,0)
j γ2 + α

(1,1)
j γε+ o(|γ|2 + |γ||ε|),

and solve ∆(λj(kj(0) + γ, ε), kj(0) + γ; ε) = 0.



High frequency instability. Why resonance?

a
(m,n)
jk (x) = eik2jx

〈∑∫ x

0
e−ik2jx

′
B(m′,n′)(x′)(

w
(m−m′,n−n′)
k (x′) +

∑
a
(m−m′,n−n′)
j′k (x′)φ2j′

)
dx′,ψ2j

〉
,

involving, e.g.,∫ x

0
e
i(k2j−k2j′ )x

′
sin(pκx′) dx′

=


pκ− pκ cos(pκx)e

i(k2j−k2j′ )x

p2κ2 − (k2j − k2j′ )2
+ · · · |k2j − k2j′ | 6= pκ,

±
i

2
x+

1− e±2ipκx

4pκ
k2j − k2j′ = ±pκ,



God is in the detail!

and

b
(0,1)
1,2 = p2,1

(κs(s2(2) − 2k2c2(2))

4k2
+

k2κs(2k2 − s2(2))

4
− k2

2κs2(k2c2s − κcs2)

k2
2 − κ2

+
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and
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Pros: can accommodate surface tension, vorticity, . . .
infinite depth?
φxx + φyy = 0 (vorticity) 0 < y < 1 + η(x, t)
φy = 0 (infinite depth) y = 0
ηt − ηx + ηxφx = φy y = 1 + η(x, t)
φt − φx + 1

2
(φ2x + φ2y) + µη = 0 (surface tension) y = 1 + η(x, t)

Cons: stability.
∆(λ, pκ+ γ; ε) = W (λ, γ, ε)h(λ, γ, ε),

and roots of W (λ, γ, ε) = λ4 + g3(γ, ε)λ3 + g2(γ, ε)λ2 + g1(γ, ε)λ+ g0(γ, ε)?


