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Euler equations

model incompressible, inviscid fluid flow:

ut + u · ∇u = −∇p,

div u = 0.

For smooth solutions have

d
dt

1
2

∫
|u|2 = −

∫
u · [(u · ∇)u]−

∫
u · ∇p

= −1
2

∫
div(|u|2u)−

∫
div(up) ≡ 0.

Anomalous dissipation is a cornerstone of turbulence theory: inviscid
fluid flows which do not conserve energy; dissipation rate does not
vanish
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Turbulence←→ anomalous dissipation←→ irregular flows

Onsager 1949:

anomalous dissipation may occur in inviscid flow with “less than
1/3 regularity”

inviscid flows with “more than 1/3 regularity” conserve energy

Research developed along two fronts: flexibility × rigidity
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Wild solutions, anomalous dissipation

Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -
non-uniqueness (compact support in space and time);
time-dependent energy.
Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: C0,1/5−ε,
Buckmaster, De Lellis, Szekelyhidi 2016, L1

t C0,1/3−ε
x . These are all

3D constructions.
Choffrut, 2013, C0,1/10. Construction works in 2D.
Isett 2018: C0,1/3−ε, compact support in time.
Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: C0,1/3−ε +
prescribed energy profile.
Buckmaster-Vicol 2019: ∃ viscous flows with prescribed energy
profile; ∃ inviscid limit with anomalous dissipation. 3D
construction!
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Regularity threshold for conservation of energy

Frisch-Sulem 1975: L∞t H5/6
x ;

Eyink 94: a little more than L3
t C1/3+ε

x ;

Constantin, E, Titi 1994: L3
t B1/3+ε

3,∞ .
State of the art – Cheskidov, Constantin, Friedlander, Shvydkoy
2008: L3

t B1/3
3,c0

, 3D and 2D.
2D result – Duchon, Robert 2000: initial vorticity in Lp, for
p > 3/2 implies conservation of energy.
Extension to p = 3/2 follows from Cheskidov, Constantin,
Friedlander, Shvydkoy.
Involves studying optimal conditions for energy flux to vanish.
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2D flows

2D Euler equations on the torus T2 ≡ [0,2π]2, with initial data
u0 ∈ L2(T2), no forcing:


∂tu + (u · ∇)u = −∇p
div u = 0
u(t = 0) = u0.

Interested in weak solutions for which vorticity ω ≡ curl u is p-th power
integrable,for some p > 1.

Note:
Smooth vorticity transported in 2D, Lp bounds preserved by
evolution
wild solutions: no control on integrability of vorticity
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Definition
Fix T > 0 and u0 ∈ L2(T2) with initial vorticity ω0 = curl u0 ∈ Lp(T2), for
some p ≥ 1. Let u ∈ Cweak(0,T ; L2(T2)) with ω ∈ L∞(0,T ; Lp(T2)). We
say u is a weak solution of the incompressible Euler equations with
initial velocity u0 if

1 for every test vector field Φ ∈ C∞([0,T )× T2) such that
divΦ(t , ·) = 0 the following identity holds true:∫ T

0

∫
T2
∂t Φ · u + u · DΦu dxdt +

∫
T2

Φ(0, ·) · u0 dx = 0.

2 For almost every t ∈ (0,T ), div u(t , ·) = 0, in the sense of
distributions.

Existence of such weak solutions is known (DiPerna, Majda 87), but
uniqueness is open, except for the case p =∞. We call a weak
solution conservative if the L2-norm of velocity is constant in time.
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Theorem
Fix T > 0 and let u ∈ Cweak(0,T ; L2(T2)) be a weak solution with
ω ≡ curl u ∈ L∞(0,T ; L3/2(T2)). Then u is conservative. Moreover,
the following local energy balance law holds in the sense of
distributions:

∂t

(
|u|2

2

)
+ div

[
u
(
|u|2

2
+ p

)]
= 0. (1)

This result is contained in Cheskidov et alli 2008, since
L∞t W 1,3/2

x ⊆ L3
t B1/3

3,c0
we outline an elementary proof.
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Idea of the proof of the Theorem

Let ζε = ζε(x) be C∞(T2)-mollifier.

Take convolution of Euler with ζε;
let uε = ζε ∗ u, pε = ζε ∗ p. Then:

∂tuε + (uε · ∇)uε = −∇pε +Rε, (2)

with
Rε ≡ (uε · ∇)uε − ζε ∗ [(u · ∇)u].

Multiply the equation by uε:

∂t

(
|uε|2

2

)
+ div

[
uε
(
|uε|2

2
+ pε

)]
= uε · Rε. (3)
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As ε→ 0, we have:

(A) ∂t

(
|uε|2

2

)
→ ∂t

(
|u|2

2

)
in the sense of distributions;

(B) div
[
uε
(
|uε|2

2 + pε
)]
→ div

[
u
(
|u|2

2 + p
)]

in the sense of
distributions;

(C) uε · Rε → 0 strongly in L∞(0,T ; L1(T2)).

(A) and (B) are subcritical for ω ∈ L3/2. In fact, they require ω ∈ L6/5. It
is the convergence of the energy flux term, which is (C), that requires
ω ∈ L3/2. (Good behavior of the energy flux term is the key point in all
results along these lines.)
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Convergence of the flux term: we show Rε → 0 strongly in
L∞(0,T ; L6/5(T2)). This is enough, since uε is bounded in
L∞(0,T ; L6(T2)). We have:

‖Rε‖L∞(L6/5) = ‖(uε · ∇)uε − ζε ∗ [(u · ∇)u]‖L∞(L6/5)

≤ ‖(uε · ∇)(uε − u)‖L∞(L6/5) + ‖(uε − u) · ∇u‖L∞(L6/5)+

+‖(u · ∇)u − ζε ∗ [(u · ∇)u]‖L∞(L6/5)

≤ ‖uε‖L∞(L6)‖∇uε −∇u‖L∞(L3/2) + ‖uε − u‖L∞(L6)‖∇u‖L∞(L3/2)

+‖(u · ∇)u − ζε ∗ [(u · ∇)u]‖L∞(L6/5) → 0,

because uε → u in L∞(L6(T2)), ∇uε = ζε ∗ ∇u → ∇u in L∞(L3/2(T2))
and u · ∇u ∈ L∞(L6/5(T2)).
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p = 3
2 is optimal

Conservation of energy for weak solutions hinges upon a scaling
argument that has very little to do with the dynamics of the Euler
equations. Therefore, to show that the exponent 3/2 is optimal in the
argument above, we construct a vector field which just fails to be
W 1,3/2 for which the energy flux does not vanish.

Introduce the Littlewood-Paley truncation Sq by

Sq[f ] = f̂(0,0) +
∑

p≤q−1

∆pf =
∑
α∈Z2

χ(λ−1
q α)̂f (α)e2πiα·x .

Sq is a convolution with a mollifier, hence smooth. Can argue easily
that energy flux for Sq[f ] vanishes if f ∈W 1,3/2 – easy adaptation of
argument for ω ∈ L3/2 with Sq in place of the convolution with a
mollifier.
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Testing Euler with Sq[Sq[u]], it is easy to see that proof of energy
conservation reduces to showing energy flux

Πq[u] =

∫
T2

Sq[u] · Sq[(u · ∇)u] dx

vanishes on average in time as q →∞. This holds, in fact, pointwise in
time for any divergence-free field with curl in L3/2.

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field u ∈ B1/3
3,∞ ∩W 1,p(T2), for

any 1 ≤ p < 3/2, such that lim supq→∞Πq[u] 6= 0.
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Note.

The div-free vector field u in B1/3
3,∞ ∩W 1,p(T2), 1 ≤ p < 3/2, not

a dynamical example not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control
on (integrability of) vorticity, which is not conservative? For which
vorticity is transported? Lagrangian structure?

Kraichnan 2D turbulence theory: forward enstrophy cascade→
regularizing effect in 2D

Suggests exists dynamical mechanism preventing anomalous
dissipation in 2D even for supercritical (less than 1/3 regular) flows
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regularizing effect in 2D

Suggests exists dynamical mechanism preventing anomalous
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Vanishing viscosity solutions

Definition

Let u ∈ C(0,T ; L2(T2)). We say that u is a physically realizable weak
solution of the incompressible 2D Euler equations with initial velocity
u0 ∈ L2(T2) if the following conditions hold.

1 u is a weak solution of the Euler equations;
2 there exists a family of solutions of the incompressible 2D

Navier-Stokes equations with viscosity ν > 0, {uν}, such that, as
ν → 0,

uν ⇀ u weakly∗ in L∞(0,T ; L2(T2));
uν(0, ·) ≡ uν

0 → u0 strongly in L2(T2).
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Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let u ∈ C(0,T ; L2(T2)) be a physically realizable weak solution of the
incompressible 2D Euler equations. Suppose that u0 ∈ L2 is such that
curl u0 ≡ ω0 ∈ Lp(T2), for some p > 1. Then u conserves energy.

Obs. 1 < p < 3/2 ‘Onsager supercritical’.
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Proof: Assume ω0 ∈ Lp(T2) for some p < 2, and ω0 /∈ L2(T2)
otherwise, the result is trivial. u is physically realizable =⇒ ∃ family
{uν} of solutions of Navier-Stokes satisfying the corresponding
conditions. ων = curl uν . The vorticity equation given by:

∂tω
ν + uν · ∇ων = ν∆ων .

Multiply by ων and integrate on torus:

d
dt
‖ων‖2L2 = −2ν‖∇ων‖2L2 .

Gagliardo-Nirenberg =⇒ for any 1 < p < 2:

‖ων‖L2 ≤ ‖∇ων‖1−
p
2

L2 ‖ων‖
p
2
Lp .

Then

−2ν‖∇ων‖2L2 ≤ −2ν‖ων‖
4

2−p

L2 ‖ων‖
− 2p

2−p
Lp .
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Multiply the vorticity equation by |ων |p−2ων and integrate on torus =⇒
maximum principle for Lp norm of vorticity:

‖ων(t , ·)‖Lp ≤ ‖ων0‖Lp ,

for any t ≥ 0.
Therefore:

d
dt
‖ων‖2L2 ≤ −2ν‖ων‖

4
2−p

L2 ‖ων0‖
− 2p

2−p
Lp .

Write y = y(t) = ‖ων‖2L2 and C0 = ‖ων0‖
− 2p

2−p
Lp . Then, integrating in time,

starting from δ > 0:

[y(t)]
−p

2−p − [y(δ)]
−p

2−p ≥ 2νC0p
2− p

(t − δ).

In limit δ → 0, since limδ→0 ‖ων(δ, ·)‖2L2 = +∞, have:

‖ων(t , ·)‖2L2 ≤
(

2νpC0t
2− p

)− 2−p
p

.
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Energy identity for 2D Navier-Stokes:

d
dt
‖uν‖2L2 = −2ν‖∇uν‖2L2 . (4)

Rewriting in terms of vorticity yields

d
dt
‖uν‖2L2 = −2ν‖ων‖2L2 . (5)

Integrating in time and using the estimate for vorticity we get

0 ≥ ‖uν(t , ·)‖2L2 − ‖uν0‖2L2 ≥ −2ν
∫ t

0

(
2νpC0s
2− p

)− 2−p
p

ds

= −2ν
(

2νpC0

2− p

)− 2−p
p p

2(p − 1)
t

2(p−1)
p ,
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Hence,

0 ≥ ‖uν(t , ·)‖2L2 − ‖uν0‖2L2 ≥ −(2ν)
2(p−1)

p

(
pC0

2− p

)− 2−p
p p

2(p − 1)
t

2(p−1)
p .

Since p > 1 the right-hand-side of this inequality vanishes as ν → 0.
Therefore,

lim
ν→0
‖uν(t , ·)‖2L2 − ‖uν0‖2L2 = 0.

DiPerna-Majda 1987 result =⇒ limν→0 ‖uν(t , ·)‖2L2 = ‖u0(t , ·)‖2L2 ,
uniformly in time. Non-concentration result.
Using strong convergence of initial data, together with the known fact
that there are no energy concentrations for the vanishing viscosity limit
with vorticity in Lp, p > 1, we complete the proof.
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Lp-norms of vorticity

We consider conserved quantities for vorticity

ω transported by div-free vector field:

∂tω + u · ∇ω = 0.

Natural question: regularity conditions for conservation of ‖ω(t , ·)‖Lp?

More generally, regularity conditions for ω to be renormalized solution
of the transport equation?
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Renormalized solutions

Consider the transport equation

∂tw + b · ∇w = 0.

Definition (DiPerna-Lions)
A measurable function w is a renormalized solution of the transport
equation if

∂tβ(w) + b · ∇β(w) = 0,

for every β ∈ C1
b(R)

One consequence of being renormalized is that, for divergence-free b,
rearrangement-invariant norms of w are conserved, e.g. Lp norms.

Also: uniqueness for linear transport equation, Lagrangian formulation
of transport, (notion of Lagrangian solution).
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Mazzucato, Lopes Filho, N-L 2005: Let p ≥ 2 =⇒ every weak
solution of 2D Euler, with ω ∈ L∞(Lp), is a renormalized solution.
Proof is straightforward consistency from DiPerna-Lions.

Crippa, Spirito 2015: every physically realizable weak solution of
Euler, with ω ∈ L∞(Lp), p > 1, is renormalized. Proof is by
considering adjoint problem; existence for adjoint, uniqueness of
renormalized solution; duality proofs from DiPerna-Lions.

Crippa, Nobili, Seis, Spirito 2018: every physically realizable weak
solution of Euler, with ω ∈ L∞(L1), is renormalized. Proof involves
extension of DiPerna-Lions theory to encompass L1 vorticity and
establishing uniform integrability
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Crippa, Nobili, Seis, Spirito 2018: every physically realizable weak
solution of Euler, with ω ∈ L∞(L1), is renormalized. Proof involves
extension of DiPerna-Lions theory to encompass L1 vorticity and
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Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 24 / 32



Summary:

if uE is physically realizable weak solution (vanishing
viscosity limit) with ωE ∈ L∞t Lp

x then:
if p > 1 =⇒ energy conserved

if p ≥ 1 Lp-norm of ωE conserved

if p > 1 then uν → uE Ct (L2
x )

if p ≥ 1 then ων ⇀ ωE w-∗ L∞t Lp
x .

Question: convergence of vorticity only weak or can it be improved?
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First addressed by Constantin, Drivas, Elgindi 2019,

p =∞:
ω0 ∈ L∞(T2), ων0 → ω0 in L2, forcing gν ∈ L∞L∞. Then

ων → ωE strongly in L∞t Lp
x , any 1 ≤ p <∞.

Proof is complicated, uses borderline regularity for Biot-Savart + new
uniform short time estimates on vorticity gradients, intermediate linear
problem

Recently N-L, Seis, Wiedemann 2020, 1 < p <∞: ω0 ∈ Lp(T2),
ων0 → ω0 in Lp, forcing gν ∈ L1

t Lp. Then,

passing to subsequences as needed, ων → ωE strongly in L∞t Lp
x

Nearly simultaneously Ciampa, Crippa, Spirito 2020, virtually same
result but 1 ≤ p <∞ and gν = 0.
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Discuss simpler case,

gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞,

ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp.

Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution,

curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE ,

ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0.

Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Discuss simpler case, gν = 0

Theorem (N-L, Seis, Wiedemann 2020)

Let T > 0, ω0 ∈ Lp(T2), 1 < p <∞, ων0 → ω0 strong Lp. Let uE be
physically realizable Euler solution, curl uE = ωE , ωE (0, ·) = ω0. Then

ων → ωE strongly in C(0,T ; Lp(T2)),

where ων = curl uν and uν ⇀ uE weak-∗ L∞(0,T ; L2).

Helena J. Nussenzveig Lopes (IM-UFRJ) Vanishing viscosity× conserved qtities January 21st , 2021 27 / 32



Proof:

Step 1 ων ⇀ ωE weak-∗ L∞(0,T ; Lp), ων equicontinuous [0,T ] to D′

Step 2 ων ⇀ ωE C(0,T ; w − Lp) (Aubin-Lions)

Step 3 ‖ων(t , ·)‖Lp → ‖ωE (t , ·)‖Lp in C(0,T )

Indeed,
‖ω(t , ·)‖Lp ≤ lim inf

ν
‖ων(t , ·)‖Lp

weak lower semicontinuity of norm

≤ lim sup
ν
‖ων(t , ·)‖Lp ≤ ‖ω0‖Lp

parabolic maximum principle

= ‖ω(t , ·)‖Lp !

0 ≤ ‖ω(t , ·)‖Lp − ‖ων(t , ·)‖Lp ≤ ‖ω(T , ·)‖Lp − ‖ων(T , ·)‖Lp → 0
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Step 4 ωνn (t , ·)→ ω(t , ·) strong Lp,

pointwise in [0,T ]

Indeed, in Lp weak convergence + convergence of norm =⇒ strong
convergence. Need p > 1

Step 5 Convergence is uniform in time:

use equicontinuity and a repeat of weak lower semicontinuity
argument/maximum principle/conservation of Lp-norm.

Obs Proof is somewhat more complicated if there is forcing. Use
intermediate linear problem.
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Comments on Ciampa, Crippa, Spirito 2020

No forcing
Two proofs: Lagrangian, Eulerian. Lagrangian is on T2, p > 1.
Eulerian is on R2, p ≥ 1. Claim p = 1 works on T2 also.
Lagrangian uses stochastic Lagrangian representation of viscous
vorticity. Quantitative comparison of distance between trajectories
If p =∞ get rate for C0

t Lq
x convergence (rate depends on

L1-modulus of continuity of ω0 ∈ L∞), 1 ≤ q <∞
Eulerian includes p = 1, fluid domain is full plane; proof uses
intermediate linear problem, uniform integrability of ων , and an
extension of DiPerna-Lions.
Also extend energy conservation to full plane fluid domain.
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Conclusions

The Onsager scaling is not the last word on inviscid dissipation.

Dynamical mechanism to avoid anomalous dissipation? ’Yes’ in
2D
Vorticity transport is a relevant physical restriction on
incompressible flow behavior that is ignored by wild solutions –
too irregular for vorticity transport.
Energy conservation in the case p = 1? No tools.
Vorticity weak solutions obtained as limits of smooth
approximations or the vortex blob method are also renormalized.
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Thank you!
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