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Saturn’s hexagon

Rotating hexagon on the north pole of Saturn. Source: Wikipedia
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Stationary/rotating patch for 2D Euler equation

@ 2D Euler equation in vorticity form:

&2(;'%;) (Ow+u-Vw=0 (t,z)€ Ry x R? w
=
S 7 quE VAT = VW xw)
s 3 Lw(0, ) = wo, m

_ 1
where N = 5-log|z|. <

e Vortex patch: If wo(x) = 1p(x) for bounded domain D,
w(t,z) = 1pt(x), where D' = X;(D) and X; is the flow map of u.

e Global regularity of patches in C17 was proved by Chemin
'93, a shorter proof by Bertozzi—Constantin "93.

o If D! = Rq:D (rotation of D by angle Qt), we say that D is a
uniformly-rotating patch with angular velocity Q. (If Q =0,
D becomes a stationary patch).
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Symmetric or not?

p O

() D rotates with angular velocity Q
N _
%:”Sffg- = (u(z) - Qa") - ii(x) = 0 on OD

7

=V-+(1p*N—|z[2)

< Ip* N — %]:}0]2 = (; on each component of dD.

@ Simple observation: Any radial D satisfies this for any €2 € R,

Under what condition must a stationary/rotating patch be radially
symmetric?
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Symmetric or not?

Positive answer in the following cases: if wg = 1p, then
@ Fraenkel '00: If D is simply-connected and €2 = 0, it must be
a disk. Proof based on the moving plane method.
Consider strean fumnction D=0 Qo P gatis{ies

(..QCX) = iD*N LY=< ALP:' iD:' i-fCP<C/3
= com opply WWU{V\% P(ameg

@ Hmidi '14: If D is convex and () < 0, it must be a disk.
@ Hmidi '14: If D is simply-connected and €2 = 1/2, it must be

a disk.
o 4 >
convex patch 0 1 9299 0
must be a disk 2 T
simply-connected patch simply-connected patch
must be a disk must be a disk
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Non-radial uniformly rotating solutions

@ Kirchhoff vortex (1876): any ellipse of semiaxis a,b is a
rotating patch with €2 = CEOLE

@ Deem—Zabusky '78: numerical evidence of rotating patches
with m-fold symmetry.

@ Burbea '82 proved that there exists a family of m-fold

m—1

rotating patches bifurcating from the disk at {0 = =—=. The
case m = 2 corresponds to Kirchhoff ellipses.

@ Boundary regularity: Hmidi—Mateu-Verdera '13,
Castro—Coérdoba—Gémez-Serrano '15

@ Global bifurcation: Hassainia—Masmoudi—\Wheeler '17
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No non-trivial patch for Q < 0 or Q > %

Theorem (Gémez-Serrano, Park, Shi, and Y., '19)

Let D be a stationary/rotating patch (not necessarily connected or
simply-connected) with angular velocity ).

@ If2<0orQ>1/2, then D must be radially symmetric.

@ And if Q =0, then D is radial up to a translation.

all patches must be radial

all patches must be radial
—_ C >
convex patch 0 >1 299 0
must be a disk 2 o

simply-connected patch simply-connected patch
must be a disk must be a disk

@ Instead of moving plane method, our proof has a
calculus-of-variation flavor.
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Simply-connected patch are radial for Q < 0 or Q2 > %

@ The proof is very short for simply-connected patch D.
Towards a contradiction, assume D is not a disk, and it is
stationary /rotating with 2 € (—o0,0] U [3, 00).

@ |dea: Consider the first variation of the “energy functional”

| 0
E[D] = _/R2 ~1p(lp 5 N) = S| 1p de

along a carefully chosen deformation of D.

@ For the transport equation p; + V - (pt) = 0 with initial data
p(z,0) = 1p, we have

ZB0| = [ @) V(15 «M)(@) - Glaf? ) = T

t=0

\ 7

— f()

@ On the one hand, using f = C on 0D, divergence theorem
gives 7 = ( for any smooth ¢ with V- =0 in D.
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Perturbing D by a divergence-free vector field

@ On the other hand, if D is simply-connected and not a disk,
we construct an explicit smooth v with V- v =0 in D, and
show that Z # 0 if Q € (—o0,0] U [1/2,0).

We define ©: D — R? as

3(x) = —& — Vp,

where p solves the Poisson equation

p=20 on 0D
= .
Note that V.o =0 in D.
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Obtaining a contradiction for Q < 0 or Q2 > %

@ For such v, an explicit computation gives
Q
IT=|[ z-V(Ap*xN — —|z|*)de+ [ Vp -V fdz
D 2 D
1
— —|D|* - Q/ 2|2 da + (29 — 1)/ pdx
n D D

o For |D| fixed, [, |z|*dz is minimized if and only if D is a disk.
@ Talenti '76: If p solves Ap = —2 in D with p =0 on 9D, we

have 1, ® _7/@?-/
/ pdr < —|D|?, . X
D B

41
with “=" achieved if and only if D is a disk.
@ Combining them, we have

with “=" achieved if and only if D is a d|sk
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Dealing with non-simply-connected patches

@ If D is not simply-connected,

Q)
sz*w—E\x\QzCion(‘?Di — I:/ﬁ-vfdx;é()!
D

e If ¥ is divergence free'and satisfies faDi U -ndo =0, we still
have Z = 0.

@ ldea: still let v = —& — Vp, but modify p into Ap = -2 in D,
p = ¢; on 0D; for suitable ¢;. Also need to modify the proof
of Talenti's theorem for such p.

@ Such modification gives us that any connected patch (not

necessarily simply-connected) must be radial for 2 <0 or
0 >1/2.
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Stationary patch/smooth solution

For smooth stationary solutions we can also say the following:

Theorem (Gémez-Serrano, Park, Shi, and Y., '19)

Assume w Is a smooth stationary solution with compact support

(or fast decay at infinity). If w does not change sign, it must be
radial up to a translation.

@ ldea of proof: approximate a smooth w by step functions,
then apply the previous perturbation for each layer.

@ Note: If vorticity is allowed to change sign, one can construct
nonradial compactly-supported stationary solutions.
(Gémez-Serrano—Park—=Shi, forthcoming).
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Stability results for radially symmetric steady states:

@ Bedrossian—Coti Zelati—Vicol '17: Inviscid damping results for
linearized equation around a smooth radial steady state

@ Jia—lonescu '19 Axi-symmetrization for nonlinear equation
near point vortex solutions

Other rigidity results for steady 2D Euler equation:

e Hamel-Nadirashvili '17: any steady state in R? without a
stagnation point is a shear flow (moving plane methods).

@ Hamel-Nadirashvili '19: generalization to annulus, exterior of
disk.

@ Constantin—Drivas—Ginsberg '20: Rigidity and flexibility result
in a periodic channel.

Rigidity results for more singular solutions:

@ Gomez-Serrano—Park—Shi—=Y. '20: Any stationary vortex sheet
with positive strength concentrated on smooth curves with
finite length must be radially symmetric.
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SQG and generalized SQG

@ Consider the Biot-Savart law v = V- (—A)" 12w = VH(K, *w),
for « € (0,2). (¢4 =0 = 2D Euler; o« =1 = SQG) N Co I for o

@ Existence of patch/smooth rotating solution (for some 2 > 0) given
by Castro—Cérdoba—Gémez-Serrano '16.

@ For 0 < a < 5/3, all simply connected stationary patches are disks.
(Reichel '09, Lu—Zhu "12, Choksi—-Neumayer—Topaloglu '18, moving
plane method).

@ Non-simply-connected stationary patches are not necessarily radial:
For a € (0,2), Gémez-Serrano '18 showed there exists non-radial
stationary patches bifurcating from an annulus.

there exists nonradial
non-simply-connected patch

/7
simply-connected stationary patch
must be a disk for « € [0, g)

>
o (finite if 0 < @ < 1, 0
=+ ifl <a<?2)
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Symmetry of stationary/rotating patches

Theorem (Gémez-Serrano, Park, Shi, and Y., '19)

Let D be a simply-connected rotating patch with angular velocity
Q). Then:

@ Fora € (0,2), if Q2 <0, the patch must be a disk.

@ For a € (0,1), there exists a constant ), (sharp and explicit)
such that if {2 > €, the patch must be a disk.

a simply-connected patch
must be a disk (0 < a <2) g

a simply-connected patch
must be a disk (0 < a < 1)

[
Q. (finite if 0 < a < 1, 0
= +tooif 1 <a<2)

there exists nonradial
non-simply-connected patch

simply-connected stationary patch
must be a disk for a € [0, %)
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Symmetry for 2 < 0 case

o Known: 1p * Ko — 2||? = const on dD.
o Let E[D] =3 [1p(1p * Ka) — §|x|?dx.

@ Let us perturb D by continuous Steiner symmetrization, in a
similar spirit as Carrillo-Hittmeir—Volzone-Y. '19.

/ \ / \
/ / \
/ )
/ /

SN

@ Under this perturbation, FE[D] decreases to the first order of
T, i.e. E[ST|D]| — FE[D] < —cr.

o But using that 1p x K, — 2Q|z|*> = C on 9D, we also have
E[ST|D]] — E[D] = o(7), a contradiction.
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Thank you for your attention!
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