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Saturn’s hexagon

Rotating hexagon on the north pole of Saturn. Source: Wikipedia
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Stationary/rotating patch for 2D Euler equation

2D Euler equation in vorticity form:

8
><

>:

@t! + u ·r! = 0 (t, x) 2 R+ ⇥ R2

u = r?��1! = r?(N ⇤ !)
!(0, ·) = !0,

where N = 1
2⇡ log |x|.

Vortex patch: If !0(x) = 1D(x) for bounded domain D,

!(t, x) = 1Dt(x), where Dt = Xt(D) and Xt is the flow map of u.

Global regularity of patches in C1,� was proved by Chemin
’93, a shorter proof by Bertozzi–Constantin ’93.

If Dt = R⌦tD (rotation of D by angle ⌦t), we say that D is a
uniformly-rotating patch with angular velocity ⌦. (If ⌦ = 0,
D becomes a stationary patch).
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Symmetric or not?

D rotates with angular velocity ⌦

() (u(x)� ⌦x?)| {z }
=r?(1D⇤N�⌦

2 |x|2)

· ~n(x) = 0 on @D

() 1D ⇤N � ⌦
2 |x|

2 = Ci on each component of @D.

Simple observation: Any radial D satisfies this for any ⌦ 2 R.

Question

Under what condition must a stationary/rotating patch be radially
symmetric?
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Symmetric or not?

Positive answer in the following cases: if !0 = 1D, then

Fraenkel ’00: If D is simply-connected and ⌦ = 0, it must be
a disk. Proof based on the moving plane method.

Hmidi ’14: If D is convex and ⌦ < 0, it must be a disk.

Hmidi ’14: If D is simply-connected and ⌦ = 1/2, it must be
a disk.

0 1
2 ⌦???

simply-connected patch
must be a disk

simply-connected patch
must be a disk

convex patch
must be a disk

Yao Yao (Georgia Tech) Radial symmetry of stationary and uniformly-rotating solutions



Non-radial uniformly rotating solutions

Kirchho↵ vortex (1876): any ellipse of semiaxis a, b is a
rotating patch with ⌦ = ab

(a+b)2 .

Deem–Zabusky ’78: numerical evidence of rotating patches
with m-fold symmetry.

Burbea ’82 proved that there exists a family of m-fold
rotating patches bifurcating from the disk at ⌦ = m�1

2m . The
case m = 2 corresponds to Kirchho↵ ellipses.

Boundary regularity: Hmidi–Mateu-Verdera ’13,
Castro–Córdoba–Gómez-Serrano ’15

Global bifurcation: Hassainia–Masmoudi–Wheeler ’17

0 1
2 ⌦

m�1
2m
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No non-trivial patch for ⌦  0 or ⌦ � 1
2

Theorem (Gómez-Serrano, Park, Shi, and Y., ’19)

Let D be a stationary/rotating patch (not necessarily connected or
simply-connected) with angular velocity ⌦.

If ⌦ < 0 or ⌦ � 1/2, then D must be radially symmetric.

And if ⌦ = 0, then D is radial up to a translation.

0 1
2 ⌦

m�1
2m

all patches must be radial

???

simply-connected patch
must be a disk

simply-connected patch
must be a disk

convex patch
must be a disk

all patches must be radial

Instead of moving plane method, our proof has a
calculus-of-variation flavor.
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Simply-connected patch are radial for ⌦  0 or ⌦ � 1
2

The proof is very short for simply-connected patch D.
Towards a contradiction, assume D is not a disk, and it is
stationary/rotating with ⌦ 2 (�1, 0] [ [12 ,1).

Idea: Consider the first variation of the “energy functional”

E[D] = �
ˆ
R2

1

2
1D(1D ⇤N )� ⌦

2
|x|21D dx

along a carefully chosen deformation of D.

For the transport equation ⇢t +r · (⇢~v) = 0 with initial data
⇢(x, 0) = 1D, we have

d

dt
E[⇢]

���
t=0

= �
ˆ
D
~v(x) ·r

⇣
(1D ⇤N )(x)� ⌦

2
|x|2

| {z }
=:f(x)

⌘
dx =: I

On the one hand, using f = C on @D, divergence theorem
gives I = 0 for any smooth ~v with r · ~v = 0 in D.
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Perturbing D by a divergence-free vector field

On the other hand, if D is simply-connected and not a disk,
we construct an explicit smooth ~v with r · ~v = 0 in D, and
show that I 6= 0 if ⌦ 2 (�1, 0] [ [1/2,1).
We define ~v : D ! R2 as

~v(x) := �~x �rp,

where p solves the Poisson equation

(
�p = �2 in D,

p = 0 on @D.
Note that r · ~v = 0 in D.

�~x �rp ~v = �~x �rp
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Obtaining a contradiction for ⌦  0 or ⌦ � 1
2

For such v, an explicit computation gives

I =

ˆ
D
x ·r(1D ⇤N � ⌦

2
|x|2)dx+

ˆ
D
rp ·rfdx

=
1

4⇡
|D|2 � ⌦

ˆ
D
|x|2dx+ (2⌦� 1)

ˆ
D
pdx

For |D| fixed,
´
D |x|2dx is minimized if and only if D is a disk.

Talenti ’76: If p solves �p = �2 in D with p = 0 on @D, we
have ˆ

D
p dx  1

4⇡
|D|2,

with “=” achieved if and only if D is a disk.

Combining them, we have I � 0 if ⌦  0, I  0 if ⌦ � 1
2 ,

with “=” achieved if and only if D is a disk.
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Dealing with non-simply-connected patches

If D is not simply-connected,

f = N ⇤!� ⌦

2
|x|2 = Ci on @Di =) I =

ˆ
D
~v ·fdx 6= 0!

If ~v is divergence free and satisfies
´
@Di

~v · nd� = 0, we still
have I = 0.

Idea: still let ~v = �~x�rp, but modify p into �p = �2 in D,
p = ci on @Di for suitable ci. Also need to modify the proof
of Talenti’s theorem for such p.

Such modification gives us that any connected patch (not
necessarily simply-connected) must be radial for ⌦  0 or
⌦ � 1/2.
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Stationary patch/smooth solution

For smooth stationary solutions we can also say the following:

Theorem (Gómez-Serrano, Park, Shi, and Y., ’19)

Assume ! is a smooth stationary solution with compact support
(or fast decay at infinity). If ! does not change sign, it must be
radial up to a translation.

Idea of proof: approximate a smooth ! by step functions,
then apply the previous perturbation for each layer.

Note: If vorticity is allowed to change sign, one can construct
nonradial compactly-supported stationary solutions.
(Gómez-Serrano–Park–Shi, forthcoming).
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Stability results for radially symmetric steady states:

Bedrossian–Coti Zelati–Vicol ’17: Inviscid damping results for
linearized equation around a smooth radial steady state

Jia–Ionescu ’19 Axi-symmetrization for nonlinear equation
near point vortex solutions

Other rigidity results for steady 2D Euler equation:

Hamel–Nadirashvili ’17: any steady state in R2 without a
stagnation point is a shear flow (moving plane methods).

Hamel–Nadirashvili ’19: generalization to annulus, exterior of
disk.

Constantin–Drivas–Ginsberg ’20: Rigidity and flexibility result
in a periodic channel.

Rigidity results for more singular solutions:

Gómez-Serrano–Park–Shi–Y. ’20: Any stationary vortex sheet
with positive strength concentrated on smooth curves with
finite length must be radially symmetric.
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SQG and generalized SQG

Consider the Biot-Savart law u = r?(��)�1+↵
2 ! = r?(K↵ ⇤ !),

for ↵ 2 (0, 2). (↵ = 0 ) 2D Euler; ↵ = 1 ) SQG)

Existence of patch/smooth rotating solution (for some ⌦ > 0) given
by Castro–Córdoba–Gómez-Serrano ’16.

For 0 < ↵ < 5/3, all simply connected stationary patches are disks.
(Reichel ’09, Lu–Zhu ’12, Choksi–Neumayer–Topaloglu ’18, moving
plane method).

Non-simply-connected stationary patches are not necessarily radial:
For ↵ 2 (0, 2), Gómez-Serrano ’18 showed there exists non-radial
stationary patches bifurcating from an annulus.

0 (finite if 0 < ↵ < 1, ⌦

⌦↵
m

simply-connected stationary patch

must be a disk for ↵ 2 [0, 5
3 )

= +1 if 1  ↵ < 2)

there exists nonradial
non-simply-connected patch

⌦↵
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Symmetry of stationary/rotating patches

Theorem (Gómez-Serrano, Park, Shi, and Y., ’19)

Let D be a simply-connected rotating patch with angular velocity
⌦. Then:

For ↵ 2 (0, 2), if ⌦  0, the patch must be a disk.

For ↵ 2 (0, 1), there exists a constant ⌦↵ (sharp and explicit)
such that if ⌦ � ⌦↵ the patch must be a disk.

0

(finite if 0 < ↵ < 1, ⌦

⌦↵
m

a simply-connected patch

simply-connected stationary patch
must be a disk for ↵ 2 [0, 5

3 )

must be a disk (0 < ↵ < 2)
a simply-connected patch
must be a disk (0 < ↵ < 1)

= +1 if 1  ↵ < 2)
there exists nonradial

non-simply-connected patch

⌦↵
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Symmetry for ⌦  0 case

Known: 1D ⇤K↵ � ⌦
2 |x|

2 = const on @D.

Let E[D] := 1
2

´
1D(1D ⇤K↵)� ⌦

2 |x|
2dx.

Let us perturb D by continuous Steiner symmetrization, in a
similar spirit as Carrillo–Hittmeir–Volzone–Y. ’19.

{x1 = 0} {x1 = 0}

D S⌧ [D]
D

Under this perturbation, E[D] decreases to the first order of
⌧ , i.e. E[S⌧ [D]]� E[D] < �c⌧ .

But using that 1D ⇤K↵ � 1
2⌦|x|

2 = C on @D, we also have
E[S⌧ [D]]� E[D] = o(⌧), a contradiction.
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Thank you for your attention!
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