Introduction to Water Waves Lecture 1

Daniel Tataru

University of California, Berkeley

Feb. 2020

Collaborators: Mihaela Ifrim (U. Wisconsin), John Hunter (UC Davis), Benjamin Harrop-Griths (UCLA), Thomas Alazard (ENS Saclay), Herbert Koch (Bonn), Albert Ai (U. Wisconsin), WW-group of graduate students in Berkeley&Madison

Free boundary problems in fluid dynamics

air Vacuum

Free boundary problems in fluid dynamics

Fluid equations:

- Euler or Navier-Stokes equations
- Compressible or incompressible
- Gas vs fluid
- rotational or irotational

Boundary conditions:

- *kinematic*: free boundary moves with particle flow
- *dynamic*: balance of forces on free boundary (Newton's law)

\rightarrow MSRI seminar Tuesdays 8:00 and 9:30

Free bdr problems for incompressible Euler

- Water flows inside the fluid domain
- Fixed bottom
- Free boundary motion (top)
- infinite or periodic domain

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 5/31

The incompressible Euler equation

Fluid motion in an open set:

- $v = v(x, t)$ fluid velocity
- $p = p(x, t)$ fluid pressure
- incompressible flow, $\nabla \cdot v = 0$.
- Euler vs. Navier-Stokes

$$
\varphi \in \mathfrak{L} \quad \Longleftrightarrow \quad \rho(\partial_t + v \cdot \nabla)v = \nabla p - g\mathbf{j} + \mu \Delta v \qquad \text{(Newton's law)}
$$

- $q = \text{gravity}$
- $\mu = \text{viscosity}$ (resistance to shear stress)
- \bullet inviscid fluid: $\mu = 0$

Boundary conditions

Boundary conditions on Γ_t :

$$
\begin{cases} \partial_t + v \cdot \nabla \text{ is tangent to } \bigcup \Gamma_t & \text{(kinematic)}\\ p = -2\sigma \mathbf{H} & \text{on } \Gamma_t \end{cases}
$$
 (dynamic)

 $H =$ mean curvature of the boundary, $\sigma =$ surface tension

Vorticity and irrotational flows

Vorticity = instantaneous rotation of a fluid

 $\omega = \nabla \times v$ (curl of *v*)

For solutions to Euler equations, ω satisfies a transport equation: $(\partial_t + v \cdot \nabla)\omega = (\omega \cdot \nabla)v$ O in 2

Irrotational fluid: $\omega = 0$ (propagated along the flow) Then there exists a *velocity potential* ϕ so that

$$
v = \nabla \phi, \qquad \Delta \phi = 0 \quad \text{ in } \Omega_t,
$$

which is uniquely determined by its values on the free boundary.

Special case: 2-d with constant vorticity

Water waves

WW= Free boundary problems for irrotational incompressible Euler. Two main unknowns:

• the free surface Γ_t .

 \rightarrow $\Delta\phi = 0$

• The velocity potential ϕ [determined by its trace the free boundary] Key idea: The fluid equation reduces to an equation of motion for the free boundary ! [Zakharov '76]

Two equations on the top: (i) Kinematic boundary condition (ii) Bernoulli law = integrated Euler

$$
\phi_t + \frac{1}{2} |\nabla \phi|^2 + gy + p = 0 \quad \text{in } \Omega_t
$$

restricted to the top, where $p = -2\sigma H$.

Dictionary:

- *gravity waves*: $q > 0$, $\sigma = 0$.
- *capillary waves*: $q = 0, \sigma > 0$.

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 9/31

Gravity waves

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 10/31

Capillary waves

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 11/31

Gravity/capillary waves

Question 1: Local behavior of water waves

Question 2: Long time behavior of water waves

Scattering: waves propagating from a source

Periodic traveling waves

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 15/31

Solitary wave (soliton)

Choices of coordinates

Choice of coordinates $=$ gauge freedom

Eulerian coordinates (*x, t*): Particles are moving in a fixed frame. Flat geometry.

Lagrangian coordinates (X, t) : Frame moves along particle trajectories. Curved geometry.

$$
(\partial_t + \nabla \cdot v)X = 0
$$

Holomorphic coordinates (α, t) : (2-d only) Both particles and frame move. Conformally flat geometry.

Arclength coordinates (*s, t*): (2-d only) Both particles and frame move, flat top geometry

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 17/31

Water waves in Eulerian coordinates Velocity potential

$$
v = \nabla \phi, \qquad \Delta \phi = 0 \quad \text{ in } \Omega_t
$$

Bernoulli law = integrated Euler equations

$$
\phi_t + \frac{1}{2} |\nabla \phi|^2 + gy + p = 0 \quad \text{in } \Omega_t
$$

Equations reduced to the boundary in Eulerian formulation. Variables: η = elevation, $\Gamma_t = \{y = \eta(x)\}, \psi = \phi_{|\Gamma_t}.$

$$
\begin{cases} \partial_t \eta - G(\eta)\psi = 0 \\ \partial_t \psi + g\eta - \sigma \mathbf{H}(\eta) + \frac{1}{2}|\nabla \psi|^2 - \frac{1}{2} \frac{(\nabla \eta \nabla \psi + G(\eta)\psi)^2}{1 + |\nabla \eta|^2} = 0. \end{cases}
$$

 $\mathbf{H}(\eta) = \nabla \cdot$ $\sqrt{ }$ $\nabla \eta$ $\sqrt{1 + |\nabla \eta|^2}$! *,* $G(\eta) =$ Dirichlet to Neuman operator

 $\frac{1}{\sqrt{2}}$

le
S

The Dirichlet to Neuman operator

Dirichlet problem:

$$
\begin{cases} \Delta \phi = 0 & \text{in } \Omega_t \\ \phi = \psi & \text{in } \Gamma_t \end{cases}
$$

$$
D\text{-}N\text{-}\mathrm{map}\text{:}
$$

$$
\psi = \phi_{|\Gamma_t} \qquad \longrightarrow \qquad G(\eta)\psi = \frac{1}{\sqrt{1+|\nabla \eta|^2}} \frac{\partial \phi}{\partial \nu}_{|\Gamma_t}
$$

(Dirichlet) (Neuman)

- Elliptic pseudodifferential operator of order 1 in ψ . \bullet
- Also depends on the free surface, i.e. on η !

Hamiltonian structure (Zakharov)

Conserved energy (Hamiltonian):

$$
H(\eta, \psi) = \int_{\mathbb{R}^d} \frac{1}{2} g \eta^2 + \sigma(\sqrt{1 + |\nabla \eta|^2} - 1) + \frac{1}{2} \psi \cdot G(\eta) \psi \, dx
$$

$$
\eta_t = \frac{\delta H}{\delta \psi}
$$

$$
\psi_t = -\frac{\delta H}{\delta \eta}
$$

$$
\omega = \int d\eta \wedge d\psi
$$

Horizontal momentum (Noether law - invariance to translations):

$$
M_j = \int_{\mathbb{R}^d} \eta \, \partial_j \psi \, \, dx
$$

 \int

 v^2 draw)

Symmetries

- \bullet Translations in α and *t*.
- Galilean invariance
- Scaling
	- \blacktriangleright gravity waves in deep water:

$$
(\eta(t, x), \psi(t, x)) \to (\lambda^{-2} \eta(\lambda t, \lambda^2 x), \lambda^{-3} \psi(\lambda t, \lambda^2 x))
$$

 \blacktriangleright capillary waves in deep water:

$$
(\eta(t, x), \psi(t, x)) \to (\lambda^{-2} \eta(\lambda^{3} t, \lambda^{2} x), \lambda^{-3} \psi(\lambda^{3} t, \lambda^{2} x))
$$

Holomorphic (conformal) coordinates *Z*

Holomorphic (conformal) coordinates Holomorphic coordinates:

$$
Z: \{ \Im z \le 0 \} \to \Omega_t, \qquad \alpha + i\beta \to Z(\alpha + i\beta)
$$

Boundary condition at infinity:

 $Z(\alpha) - \alpha \rightarrow 0$ *(nonperiodic)*

$$
Z(\alpha)-\alpha\,\,periodic\ \ (periodic)
$$

Free boundary parametrization:

$$
Z : \mathbb{R} \to \overline{\Omega_t^1}, \qquad \alpha \to Z(\alpha) / \text{ and } \qquad (w, \mathbb{Q})
$$

state:

Perturbation of steady state:

$$
W = Z - \alpha
$$

Holomorphic velocity potential $(v = \nabla \phi, q = \text{stream function})$: $Q = \phi + iq$ Holomorphic variables: (*W, Q*). $V = \nabla \frac{1}{2}$ $\Delta \vec{Q} = \phi + iq$ functions with negative first in deep W_{α}

D. Tataru (UC Berkeley) [Water Waves](#page-0-0) Feb. 2020 23/31

Water waves in holomorphic coordinates [Zakharov & al '96, Wu '96, Hunter-Ifrim-T '14]

P - Projection onto negative wavenumbers

Fully nonlinear equations for *holomorphic* variables $(W = Z - \alpha, Q)$:

$$
\begin{cases} W_t + F(1 + W_\alpha) = 0, \\ Q_t + FQ_\alpha + P[|R|^2] - igW + i\sigma P \bigg[\frac{W_{\alpha\alpha}}{J^{1/2}(1 + W_\alpha)} - \frac{\bar{W}_{\alpha\alpha}}{J^{1/2}(1 + \bar{W}_\alpha)} \bigg] = 0. \end{cases}
$$

where

$$
F = P\left[\frac{Q_{\alpha} - \bar{Q}_{\alpha}}{J}\right], \qquad J = |1 + W_{\alpha}|^{2}, \qquad R = \frac{Q_{\alpha}}{1 + W_{\alpha}}.
$$

ved energy (Hamiltonian):

$$
= V_{\mathbf{x}} \cdot \mathbf{i} V_{\mathbf{y}}
$$

Conserved energy (Hamiltonian):

$$
E(W,Q) = \int \Im(Q\bar{Q}_{\alpha}) + \frac{1}{2}g\left(|W|^2 - \Re(\bar{W}^2W_{\alpha})\right) + \frac{1}{4}\sigma(J^{\frac{1}{2}} - 1 - \Re W_{\alpha}) d\alpha
$$

Set-up for finite depth

h depth

 $[Harrow-Griffith -Ifrim -T.'16]$

 $H \to \mathcal{T}_h$, $\mathcal{T}_h = -i \tanh(hD)$, Tilbert transform

Holomorphic functions:

$$
\Im W = \mathcal{T}_h \Re W,
$$

Anti-holomorphic:

$$
\Im W = -\mathcal{T}_h \Re W,
$$

Orthogonal w.r. to

 $\langle W_1, W_2 \rangle = \langle \mathcal{T}_h \Re W_1, \mathcal{T}_h \Re W_2 \rangle_{L^2} + \langle \Im W_1, \Im W_2 \rangle_{L^2}$

P = orthogonal projection onto holomorphic functions

The differentiated equation

 \rightarrow Self-contained equation for differentiated variables (W_{α}, Q_{α}) .

 \rightarrow Self-contained equation for *good variables* ($\mathbf{W} = W_{\alpha}, R = \frac{Q_{\alpha}}{1 + V_{\alpha}}$ $1 + W_{\alpha}$):

$$
\begin{cases}\n\mathbf{W}_t + b\mathbf{W}_\alpha + \frac{(1+\mathbf{W})R_\alpha}{1+\bar{\mathbf{W}}} = (1+\mathbf{W})M, \\
R_t + bR_\alpha - i(g+a)\left(\frac{\mathbf{W}}{1+\mathbf{W}}\right) = ia,\n\end{cases}
$$

where

$$
b = \Re F = 2\Re(R - P(R\bar{Y})), \qquad a = 2\Re P(R\bar{R}_{\alpha}).
$$

$$
A = \frac{1}{2} \qquad = \qquad Y := \frac{W}{1 + W}, \qquad M = 2\Re P[R\bar{Y}_{\alpha} - \bar{R}_{\alpha}Y]
$$

Purely cubic equation in (*Y,R*):

$$
\begin{cases} Y_t + bY_{\alpha} + |1 - Y|^2 R_{\alpha} = (1 - Y)M, \\ R_t + bR_{\alpha} - i(g + a)Y = -ia, \end{cases}
$$

Linearization around 0

In deep water, as a system:

$$
\begin{cases} W_t + Q_\alpha = 0 \\ Q_t - igW + i\sigma \partial_\alpha^2 W = 0, \end{cases}
$$

or as a second order equation:

$$
W_{tt} = -ig\partial_{\alpha}W + i\sigma \partial_{\alpha}^{3}W
$$

In shallow water, as a system:

$$
\begin{cases} W_t + Q_\alpha = 0 \\ Q_t - \mathcal{T}_h(gW - \sigma \partial_\alpha^2 W) = 0, \end{cases}
$$

or as a second order equation:

$$
W_{tt} = -\mathcal{T}_h(g\partial_\alpha W - \sigma \partial_\alpha^3 W)
$$

Dispersion relation for gravity waves in deep water

Figure: Dispersion relation for capillary waves in deep water

Standard questions:

- 1. Obtain local well-posedness in Sobolev spaces
	- \bullet high \rightarrow low regularity (via energy estimates)
	- even lower regularity (using also dispersion)
- 2. Understand asymptotic equations in various regimes
	- low frequency asymptotics
	- wave packet asymptotics

3. Study long time solutions (i.e. the stability of the trivial steady state) in two settings:

- lifespan bounds for small data
- global solutions for small localized data if no solitons exist
- Soliton resolution for small localized data if solitons exist
- 4. Understand solitons and near soliton dynamics
	- (non) existence of solitons
	- stability and asymptotic stability

Thank you !