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Collaborators: Mihaela Ifrim (U. Wisconsin), John Hunter (UC
Davis), Benjamin Harrop-Gri�ths (UCLA), Thomas Alazard (ENS
Saclay), Herbert Koch (Bonn), Albert Ai (U. Wisconsin), WW-group
of graduate students in Berkeley&Madison
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Free boundary problems in fluid dynamics
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Free boundary problems in fluid dynamics

Fluid equations:

Euler or Navier-Stokes equations

Compressible or incompressible

Gas vs fluid

rotational or irotational

Boundary conditions:

kinematic: free boundary moves with particle flow

dynamic: balance of forces on free boundary (Newton’s law)

! MSRI seminar Tuesdays 8:00 and 9:30
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Free bdr problems for incompressible Euler
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Water flows inside the fluid domain

Fixed bottom

Free boundary motion (top)

infinite or periodic domain
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The incompressible Euler equation

Fluid motion in an open set:

v = v(x, t) fluid velocity

p = p(x, t) fluid pressure

incompressible flow, r · v = 0.

Euler vs. Navier-Stokes

⇢(@t + v ·r)v = rp� gj+ µ�v (Newton’s law)

g = gravity

µ = viscosity (resistance to shear stress)

inviscid fluid: µ = 0
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Boundary conditions
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Boundary conditions on �t:

(
@t + v ·r is tangent to

[
�t (kinematic)

p = �2�H on �t (dynamic)

H = mean curvature of the boundary, � = surface tension
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Vorticity and irrotational flows

Vorticity = instantaneous rotation of a fluid

! = r⇥ v (curl of v)

For solutions to Euler equations, ! satisfies a transport equation:

(@t + v ·r)! = (! ·r)v

Irrotational fluid: ! = 0 (propagated along the flow)
Then there exists a velocity potential � so that

v = r�, �� = 0 in ⌦t,

which is uniquely determined by its values on the free boundary.

Special case: 2-d with constant vorticity
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Water waves

WW= Free boundary problems for irrotational incompressible Euler.
Two main unknowns:

the free surface �t.
The velocity potential � [determined by its trace the free boundary]

Key idea: The fluid equation reduces to an equation of motion for the
free boundary ! [Zakharov ’76]

Two equations on the top:
(i) Kinematic boundary condition
(ii) Bernoulli law = integrated Euler

�t +
1

2
|r�|2 + gy + p = 0 in ⌦t

restricted to the top, where p = �2�H.

Dictionary:

gravity waves: g > 0, � = 0.
capillary waves: g = 0, � > 0.
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Gravity waves
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Capillary waves
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Gravity/capillary waves
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Question 1: Local behavior of water waves

Question 2: Long time behavior of water waves
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Scattering: waves propagating from a source
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Periodic traveling waves
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Solitary wave (soliton)
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Choices of coordinates

Choice of coordinates = gauge freedom

Eulerian coordinates (x, t): Particles are moving in a fixed frame.
Flat geometry.

Lagrangian coordinates (X, t): Frame moves along particle
trajectories. Curved geometry.

(@t +r · v)X = 0

Holomorphic coordinates (↵, t): (2-d only) Both particles and
frame move. Conformally flat geometry.

Arclength coordinates (s, t): (2-d only) Both particles and frame
move, flat top geometry
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Water waves in Eulerian coordinates

Velocity potential

v = r�, �� = 0 in ⌦t

Bernoulli law = integrated Euler equations

�t +
1

2
|r�|2 + gy + p = 0 in ⌦t

Equations reduced to the boundary in Eulerian formulation.
Variables: ⌘ = elevation, �t = {y = ⌘(x)},  = �|�t

.

8
><

>:

@t⌘ �G(⌘) = 0

@t + g⌘ � �H(⌘) +
1

2
|r |2 � 1

2

(r⌘r +G(⌘) )2

1 + |r⌘|2 = 0.

H(⌘) = r ·
 

r⌘p
1 + |r⌘|2

!
, G(⌘) = Dirichlet to Neuman operator
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The Dirichlet to Neuman operator

Dirichlet problem:

(
�� = 0 in ⌦t

� =  in �t

D-N map:

 = �|�t
�! G(⌘) =

1p
1 + |r⌘|2

@�

@⌫ |�t

(Dirichlet) (Neuman)

Elliptic pseudodi↵erential operator of order 1 in  .

Also depends on the free surface, i.e. on ⌘ !
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Hamiltonian structure (Zakharov)

Conserved energy (Hamiltonian):

H(⌘, ) =

Z

Rd

1

2
g⌘

2 + �(
p
1 + |r⌘|2 � 1) +

1

2
 ·G(⌘) dx

8
>><

>>:

⌘t =
�H

� 

 t =� �H

�⌘

Horizontal momentum (Noether law - invariance to translations):

Mj =

Z

Rd
⌘ @j dx
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Symmetries

Translations in ↵ and t.

Galilean invariance

Scaling
I gravity waves in deep water:

(⌘(t, x), (t, x))!(��2
⌘(�t,�2x),��3

 (�t,�2x))

I capillary waves in deep water:

(⌘(t, x), (t, x))!(��2
⌘(�3t,�2x),��3

 (�3t,�2x))
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Holomorphic (conformal) coordinates
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The conformal map
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Holomorphic (conformal) coordinates

Holomorphic coordinates:

Z : {=z  0} ! ⌦t, ↵+ i� ! Z(↵+ i�)

Boundary condition at infinity:

Z(↵)� ↵! 0 (nonperiodic) Z(↵)� ↵ periodic (periodic)

Free boundary parametrization:

Z : R ! ⌦t, ↵! Z(↵)

Perturbation of steady state:

W = Z � ↵

Holomorphic velocity potential (v = r�, q = stream function ):

Q = �+ iq

Holomorphic variables: (W,Q).
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Water waves in holomorphic coordinates

[Zakharov & al ’96, Wu ’96, Hunter-Ifrim-T ’14]

P - Projection onto negative wavenumbers

Fully nonlinear equations for holomorphic variables (W = Z � ↵, Q):

8
><

>:

Wt + F (1 +W↵) = 0,

Qt + FQ↵ + P
⇥
|R|2

⇤
� igW+ i�P


W↵↵

J1/2(1 +W↵)
� W̄↵↵

J1/2(1 + W̄↵)

�
= 0.

where

F = P


Q↵ � Q̄↵

J

�
, J = |1 +W↵|2, R =

Q↵

1 +W↵
.

Conserved energy (Hamiltonian):

E(W,Q) =

Z
=(QQ̄↵) +

1

2
g
�
|W |2 �<(W̄ 2

W↵)
�
+

1

4
�(J

1
2 � 1�<W↵) d↵
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Set-up for finite depth

[Harrop-Gri�th -Ifrim -T.’16]

H ! Th, Th = �i tanh(hD), Tilbert transform

Holomorphic functions:
=W = Th<W,

Anti-holomorphic:
=W = �Th<W,

Orthogonal w.r. to

hW1,W2i = hTh<W1, Th<W2iL2 + h=W1,=W2iL2

P = orthogonal projection onto holomorphic functions
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The di↵erentiated equation

! Self-contained equation for di↵erentiated variables (W↵, Q↵).

! Self-contained equation for good variables (W = W↵, R =
Q↵

1 +W↵
):

8
>><

>>:

Wt + bW↵ +
(1 +W)R↵

1 + W̄
= (1 +W)M,

Rt + bR↵ � i(g + a)

✓
W

1 +W

◆
= ia,

where
b = <F = 2<(R� P (RȲ )), a = 2<P (RR̄↵).

Y :=
W

1 +W
, M = 2<P [RȲ↵ � R̄↵Y ]

Purely cubic equation in (Y,R):
(
Yt + bY↵ + |1� Y |2R↵ = (1� Y )M,

Rt + bR↵ � i(g + a)Y = �ia,
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Linearization around 0
In deep water, as a system:

(
Wt +Q↵ = 0

Qt � igW + i�@
2
↵W = 0,

or as a second order equation:

Wtt = �ig@↵W + i�@
3
↵W

In shallow water, as a system:
(
Wt +Q↵ = 0

Qt � Th(gW � �@
2
↵W ) = 0,

or as a second order equation:

Wtt = �Th(g@↵W � �@
3
↵W )
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⌧
2 + ⇠ = 0

⇠

⌧

Dispersion relation for gravity waves in deep water
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⌧
2 + ⇠

3 = 0

⇠

⌧

Figure: Dispersion relation for capillary waves in deep water
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Standard questions:

1. Obtain local well-posedness in Sobolev spaces

high ! low regularity (via energy estimates)

even lower regularity (using also dispersion)

2. Understand asymptotic equations in various regimes

low frequency asymptotics

wave packet asymptotics

3. Study long time solutions (i.e. the stability of the trivial steady
state) in two settings:

lifespan bounds for small data

global solutions for small localized data if no solitons exist

Soliton resolution for small localized data if solitons exist

4. Understand solitons and near soliton dynamics

(non) existence of solitons

stability and asymptotic stability
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Thank you !
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