Introduction to Water Waves
Lecture 2

Daniel Tataru

University of California, Berkeley

Feb. 2020

D. Tataru (UC Berkeley) Water Waves



Low regularity well-posedness for water waves

Main issues/ features:
e fully nonlinear system — differentiate/ linearize/ paralinearize
@ non-diagonal system — use Alinhac style good variables
e dispersive flow — use dispersive decay/ Strichartz estimates
@ gauge independence — carefully choose coordinates

@ complex (non)-resonant structure — use normal form methods
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Well-posedness for nonlinear equations

Equation: u; = F(u) Linearization: vy = DF(u)v

Para-diff: u; =Tp F(u)u+N Linearized: vy = Tpp(y)v+ Nign(u u)v
gl kh
town €. @~ W + .’\) ’F‘QA‘(-U'\ta
Well-posednéessa 1a Hadamard-+
@ Existence of regular solutions
» Regularization/iteration scheme
@ Uniqueness of regular solutions
» Estimates for differences in a weaker topology
@ Rough solutions as unique limits of smooth solutions
» Lipschitz bounds for linearized equation in a weaker topology
» Uniform propagation of higher regularity
@ Continuous dependence on initial data

» Lipschitz bounds for linearized equation in a weaker topology
» Frequency envelopes
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Low regularity well-posedness: a quick guide

Following [T., Bahouri-Chemin '98-00, nonlinear wave eqn.]
Step 1. Energy estimates:

d S o S S

@ Similar bounds for the linearized equation in H*° for a fixed sg.
@ Gives well-posedness in H® if H® C C°.

Step 2. Strichartz estimates:

ID%ul[oree S [lull g

@ Frequency localized, paradifferential
@ Also for the linearized equation

@ parametrices, dispersion on semiclassical time scales
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Water waves: Alinhac’s “good variable”

Idea: diagonalize the principal (transport) part of the equation.
Good variables for differentiated equation (Hunter-Ifrim-T. ’14):
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Differentiated equation [with omitted projections]:
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b= 2RP L +W] : a = 23 P[RR,

Taylor coefficient: a > 0, necessary for well-posedness.
[Wu,H-I-T| (deep water) + [Lannes, HG-I-T](shallow water)

Note: Good variable in Eulerian setting: Alazard-Burqg-Zuily ’11
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Water waves: paradifferential equation

Slightly oversimplified:

(0 + TpO0n)w + 14 =0
(0t + Tb(?a)r — iTg+aw + ?:O'TJ_% az’w =0

Scalar version:

(8 + Tyda)u +i((g + a)| D| + 0| D*)2u
)
Energy functional \ /
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E(w,r) = /(g +a)wl? + oJ  wa|? + S(rig)da
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Low regularity local well-posedness: 2-d

Theorem

a) Gravity waves are locally well-posed for (W, Ry) € H7 x Hato,
b) Capillary waves are locally well-posed for (Wo, Ry) € H*T7 x Hato,

v

2-d gravity waves:

o result method year
—1/2 | scaling never

4 Wu energy estimates 99

€ Alazard-Burq-Zuily | energy estimates (EE) 11

0 Hunter-Ifrim-T. cubic energy estimates 14
—1/24 | Alazard-Burq-Zuily | EE+Strichartz 15
—1/12 | Ai EE +Strichartz 17
—1/8 | Ai EE +lossless Strichartz 18
—1/4 | Ai-Ifrim-T. balanced energy estimates ’19
—3/8 | Ai-Ifrim-T. balanced EE + Strichartz | ongoing
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Long time solutions

Question: Given initial data of size ¢ < 1, find optimal bound T; on
lifespan of solutions. J

® Wt bO%
Rules of the game: Balance dispersive decay with growth caused by
nonlinear interactions.
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Dispersive equations in 1-d
Model linear problem:

iuy = A(Dy)u, u(0) = ug

Dispersion relation:
§ = a(f)

Characteristic set:
C={r+a(§) =0}
Grup velocity:
ve = Oca(§)
Linear scattering (if age # 0)

1 .
u(t, z) ~ U(v)—= "), V= —

Vit t
where ¢ solves an eikonal equation.
Strichartz estimates:
lullpazee S lluollpe
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Bilinear interactions in dispersive flows
Model nonlinear linear problem:

iug = A(Dyz)u + Q(u, u), u(0) = ug
Characteristic set (a real valued):
C={r+a(§) =0}

Grup velocity:
= O¢a(§)

Resonant interactions:
(1,m1)eC, (&o,m)elC — (&1+&,7 +72) cC

Null condition: ¢ 51 = 0 on resonant set.
(uduubm

D. Tataru (UC Berkeley) Water Waves Feb. 2020 10/ 16



Long time existence via energy estimates
Question: Obtain lifespan estimates for small data.

(i) Equations with quadratic nonlinearities:

d
S EW) S [[u|E(u)

For data ||u(0)]| = € < 1 this leads by Gronwall to a lifespan

1

T. ~ ¢ (quadratic lifespan)

(ii) Equations with cubic nonlinearities:

d
ZBw) S [lul*E(u)
For data ||[u(0)|| = € < 1 this leads by Gronwall to a lifespan
2

T. ~ ¢ (cubic lifespan)

This analysis neglects dispersion and resonance analysis ! e.g. Burgers
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The normal form method (Shatah ’85)

Transform an equation with a quadratic nonlinearity
iuy = A(Dg)u + Q(u, u), u(0) = ug
into one with a cubic one via a normal form transformation,
u—v=u+ B(u,u)

so that
ivy = A(Dg)v + Qs(u, u,u), u(0) = ug
Algebraic computation:

q(€17€2)
(&1) + a(&2) — a(ér + &2)

b(&1,&2) = -

@ works for nonresonant and null resonant interactions, but
@ it is unbounded for quasilinear problems

@ computations more involved for systems
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Normal form methods for quasilinear pde’s

1. Modified energy method (Hunter-Ifrim-T. ’12-’14)
Issue: incompatible estimates

d
Quasilinear:EEQ(u) < |lu|| E9(u)
d
Normal form:%ENF(u) < lwlPEN ()

Solution: Modify the energy functionals rather than the unknown,

d

BN ()  [ulPE ()
where

ENL(4) = E9(u) + cubic Lo.t., ENL(w) = ENF (u) + quartic

@ works for quasilinear problems, also for more null interactions

@ we provide an algorithm to compute these energies
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Normal form methods for quasilinear pde’s

2. Normal form flow method:
[Hunter-Ifrim (’12, Burgers-Hilbert), Ifrim (ongoing, WW) |
Replace unbounded NF

v =u+ B(u,u)
with a bounded transformation
v = u + B(u,u) + higher
constructed via a Hamiltonian flow

wy = B(w,w), w(0) =u, w(l)=wv

@ provides a nonlinear, symplectic change of coordinates in the
phase space

@ most elegant, but problem specific

@ other non-flow based transformations [Wu, Berti-Feola-Pusateri]
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Normal form methods for quasilinear pde’s

3. Paradiagonalization (Delort, Alazard-Delort '13) Combines a
partial normal form with a paradifferential symmetrization.

Writing the nonlinear flow
uy = F(u)
in a paradifferential form
uy = Tpp)u + N(u)

one applies different tools to the terms on the right:
@ use an invertible normal form to eliminate quadratic terms in
N(u).
@ use a microlocal conjugation to (anti)symmetrize the
paradifferential term
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Thank you !

D. Tataru (UC Berkeley) Water Waves



