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Low regularity well-posedness for water waves

Main issues/ features:

fully nonlinear system ! di↵erentiate/ linearize/ paralinearize

non-diagonal system ! use Alinhac style good variables

dispersive flow ! use dispersive decay/ Strichartz estimates

gauge independence ! carefully choose coordinates

complex (non)-resonant structure ! use normal form methods
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Well-posedness for nonlinear equations

Equation: ut = F (u) Linearization: vt = DF (u)v

Para-di↵: ut = TDF (u)u+N(u) Linearized: vt = TDF (u)v+Nlin(u)v

Well-posedness à la Hadamard+:

Existence of regular solutions
I Regularization/iteration scheme

Uniqueness of regular solutions
I Estimates for di↵erences in a weaker topology

Rough solutions as unique limits of smooth solutions
I Lipschitz bounds for linearized equation in a weaker topology
I Uniform propagation of higher regularity

Continuous dependence on initial data
I Lipschitz bounds for linearized equation in a weaker topology
I Frequency envelopes
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Low regularity well-posedness: a quick guide
Following [T., Bahouri-Chemin ’98-00, nonlinear wave eqn.]
Step 1. Energy estimates:

d

dt
E

s(u) . kD�
ukL1E

s(u), E
s(u) ⇡ kuk2Hs

Similar bounds for the linearized equation in H
s0 for a fixed s0.

Gives well-posedness in H
s if Hs ⇢ C

�.

Step 2. Strichartz estimates:

kD�
ukLpL1 . kukHs

Frequency localized, paradi↵erential

Also for the linearized equation

parametrices, dispersion on semiclassical time scales
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Water waves: Alinhac’s “good variable”
Idea: diagonalize the principal (transport) part of the equation.
Good variables for di↵erentiated equation (Hunter-Ifrim-T. ’14):

✓
W = W↵, R =

Q↵

1 +W↵

◆
.

Di↵erentiated equation [with omitted projections]:
8
>><

>>:

(@t + b@↵)W +
1 +W

1 + W̄
R↵ = G(W, R)

(@t + b@↵)R� i
(g + a)W

1 +W
= K(W, R)

where

b = 2<P


R

1 +W

�
, a = 2=P [RR̄↵]

Taylor coe�cient: a � 0, necessary for well-posedness.
[Wu,H-I-T] (deep water) + [Lannes, HG-I-T](shallow water)

Note: Good variable in Eulerian setting: Alazard-Burq-Zuily ’11
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Water waves: paradi↵erential equation

Slightly oversimplified:

(
(@t + Tb@↵)w + r↵ = 0

(@t + Tb@↵)r � iTg+aw + i�T
J
� 1

2
@
2
w = 0

Scalar version:

(@t + Tb@↵)u+ i((g + a)|D|+ �|D|3)
1
2u = 0

Energy functional

E(w, r) =

Z
(g + a)|w|2 + �J

�1|w↵|2 + =(rr̄↵)d↵

⇡ gkwk2
L2 + �kw↵k2L2 + krk2

Ḣ
1
2
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Low regularity local well-posedness: 2-d

Theorem

a) Gravity waves are locally well-posed for (W0, R0) 2 H
1+� ⇥H

3
2+�.

b) Capillary waves are locally well-posed for (W0, R0) 2 H
2+� ⇥H

3
2+�.

2-d gravity waves:
� result method year

�1/2 scaling never
4 Wu energy estimates ’99
✏ Alazard-Burq-Zuily energy estimates (EE) ’11
0 Hunter-Ifrim-T. cubic energy estimates ’14

�1/24 Alazard-Burq-Zuily EE+Strichartz ’15
�1/12 Ai EE +Strichartz ’17
�1/8 Ai EE +lossless Strichartz ’18
�1/4 Ai-Ifrim-T. balanced energy estimates ’19
�3/8 Ai-Ifrim-T. balanced EE + Strichartz ongoing
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Long time solutions

Question: Given initial data of size ✏ ⌧ 1, find optimal bound T✏ on
lifespan of solutions.

Rules of the game: Balance dispersive decay with growth caused by
nonlinear interactions.
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Dispersive equations in 1-d
Model linear problem:

iut = A(Dx)u, u(0) = u0

Dispersion relation:
⇠ ! a(⇠)

Characteristic set:
C = {⌧ + a(⇠) = 0}

Grup velocity:
v⇠ = @⇠a(⇠)

Linear scattering (if a⇠⇠ 6= 0)

u(t, x) ⇡ U(v)
1p
t
e
it�(v)

, v =
x

t

where � solves an eikonal equation.
Strichartz estimates:

kukL4L1 . ku0kL2
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Bilinear interactions in dispersive flows
Model nonlinear linear problem:

iut = A(Dx)u+Q(u, u), u(0) = u0

Characteristic set (a real valued):

C = {⌧ + a(⇠) = 0}
Grup velocity:

v⇠ = @⇠a(⇠)

Resonant interactions:

(⇠1, ⌧1) 2 C, (⇠2, ⌧2) 2 C �! (⇠1 + ⇠2, ⌧1 + ⌧2) 2 C

Null condition: q(⇠1, ⇠2) = 0 on resonant set.
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Long time existence via energy estimates
Question: Obtain lifespan estimates for small data.

(i) Equations with quadratic nonlinearities:

d

dt
E(u) . kukE(u)

For data ku(0)k = ✏ ⌧ 1 this leads by Gronwall to a lifespan

T✏ ⇡ ✏
�1 (quadratic lifespan)

(ii) Equations with cubic nonlinearities:

d

dt
E(u) . kuk2E(u)

For data ku(0)k = ✏ ⌧ 1 this leads by Gronwall to a lifespan

T✏ ⇡ ✏
�2 (cubic lifespan)

This analysis neglects dispersion and resonance analysis ! e.g. Burgers
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The normal form method (Shatah ’85)
Transform an equation with a quadratic nonlinearity

iut = A(Dx)u+Q(u, u), u(0) = u0

into one with a cubic one via a normal form transformation,

u ! v = u+B(u, u)

so that
ivt = A(Dx)v +Q3(u, u, u), u(0) = u0

Algebraic computation:

b(⇠1, ⇠2) =
q(⇠1, ⇠2)

a(⇠1) + a(⇠2)� a(⇠1 + ⇠2)

works for nonresonant and null resonant interactions, but

it is unbounded for quasilinear problems

computations more involved for systems
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Normal form methods for quasilinear pde’s
1. Modified energy method (Hunter-Ifrim-T. ’12-’14)
Issue: incompatible estimates

Quasilinear:
d

dt
E

Q(u) . kukEQ(u)

Normal form:
d

dt
E

NF (u) . kuk2ENF,1(u)

Solution: Modify the energy functionals rather than the unknown,

d

dt
E

NL(u) . kuk2ENL(u)

where

E
NL(u) = E

Q(u) + cubic l.o.t., E
NL(u) = E

NF (u) + quartic

works for quasilinear problems, also for more null interactions

we provide an algorithm to compute these energies
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Normal form methods for quasilinear pde’s
2. Normal form flow method:
[Hunter-Ifrim (’12, Burgers-Hilbert), Ifrim (ongoing, WW) ]
Replace unbounded NF

v = u+B(u, u)

with a bounded transformation

v = u+B(u, u) + higher

constructed via a Hamiltonian flow

wt = B(w,w), w(0) = u, w(1) = v

provides a nonlinear, symplectic change of coordinates in the
phase space

most elegant, but problem specific

other non-flow based transformations [Wu, Berti-Feola-Pusateri]
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Normal form methods for quasilinear pde’s

3. Paradiagonalization (Delort, Alazard-Delort ’13) Combines a
partial normal form with a paradi↵erential symmetrization.

Writing the nonlinear flow

ut = F (u)

in a paradi↵erential form

ut = TDF (u)u+N(u)

one applies di↵erent tools to the terms on the right:

use an invertible normal form to eliminate quadratic terms in
N(u).

use a microlocal conjugation to (anti)symmetrize the
paradi↵erential term
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Thank you !
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