Introduction to Water Waves Lecture 2

Daniel Tataru

University of California, Berkeley

Feb. 2020

Low regularity well-posedness for water waves

Main issues/ features:

- fully nonlinear system \rightarrow differentiate/ linearize/ paralinearize
- non-diagonal system \rightarrow use Alinhac style good variables
- dispersive flow \rightarrow use dispersive decay/ Strichartz estimates
- gauge independence → carefully choose coordinates
- complex (non)-resonant structure \rightarrow use normal form methods

Well-posedness for nonlinear equations

Equation:
$$u_t = F(u)$$
 Linearization: $v_t = DF(u)v$

Para-diff:
$$u_t = T_{DF(u)}u + N(u)$$
 Linearized: $v_t = T_{DF(u)}v + N_{lin}(u)v$

- Existence of regular solutions
 - ► Regularization/iteration scheme
- Uniqueness of regular solutions
 - ► Estimates for differences in a weaker topology
- Rough solutions as unique limits of smooth solutions
 - ▶ Lipschitz bounds for linearized equation in a weaker topology
 - Uniform propagation of higher regularity
- Continuous dependence on initial data
 - ▶ Lipschitz bounds for linearized equation in a weaker topology
 - Frequency envelopes

Low regularity well-posedness: a quick guide

Following [T., Bahouri-Chemin '98-00, nonlinear wave eqn.]

Step 1. Energy estimates:

$$\frac{d}{dt}E^s(u) \lesssim ||D^{\sigma}u||_{L^{\infty}}E^s(u), \qquad E^s(u) \approx ||u||_{H^s}^2$$

- Similar bounds for the linearized equation in H^{s_0} for a fixed s_0 .
- Gives well-posedness in H^s if $H^s \subset C^{\sigma}$.

Step 2. Strichartz estimates:

$$||D^{\sigma}u||_{L^pL^{\infty}} \lesssim ||u||_{H^s}$$

- Frequency localized, paradifferential
- Also for the linearized equation
- parametrices, dispersion on semiclassical time scales

Water waves: Alinhac's "good variable"

Idea: diagonalize the principal (transport) part of the equation.

Good variables for differentiated equation (Hunter-Ifrim-T. '14):

$$\left(\mathbf{W} = W_{\alpha}, R = \frac{Q_{\alpha}}{1 + W_{\alpha}}\right).$$

Differentiated equation | with omitted projections |:

equation [with omitted projections]:
$$\begin{cases} (\partial_t + b\partial_\alpha)\mathbf{W} + \frac{1+\mathbf{W}}{1+\bar{\mathbf{W}}}R_\alpha = G(\mathbf{W}, R) \\ (\partial_t + b\partial_\alpha)R - i\frac{(g+a)\mathbf{W}}{1+\mathbf{W}} = K(\mathbf{W}, R) \end{cases}$$

$$= \begin{cases} (\partial_t + b\partial_\alpha)\mathbf{W} + \frac{1+\mathbf{W}}{1+\bar{\mathbf{W}}}R_\alpha = G(\mathbf{W}, R) \\ (\partial_t + b\partial_\alpha)R - i\frac{(g+a)\mathbf{W}}{1+\bar{\mathbf{W}}} = K(\mathbf{W}, R) \end{cases}$$

where

$$b = 2\Re P\left[\frac{R}{1+\mathbf{W}}\right], \qquad a = 2\Im P[R\bar{R}_{\alpha}]$$

Taylor coefficient: $a \geq 0$, necessary for well-posedness.

[Wu,H-I-T] (deep water) + [Lannes, HG-I-T](shallow water)

Note: Good variable in Eulerian setting: Alazard-Burg-Zuily '11

Water waves: paradifferential equation

Slightly oversimplified:

$$\begin{cases} (\partial_t + T_b \partial_\alpha) w + r_\alpha = 0 \\ (\partial_t + T_b \partial_\alpha) r - i T_{g+a} w + i \sigma T_{J^{-\frac{1}{2}}} \partial^2 w = 0 \end{cases}$$

Scalar version:

$$(\partial_t + T_b \partial_\alpha) u + i((g+a)|D| + \sigma |D|^3)^{\frac{1}{2}} u = 0$$
onal
onal

Energy functional

$$E(w,r) = \int (g+a)|w|^2 + \sigma J^{-1}|w_{\alpha}|^2 + \Im(r\bar{r}_{\alpha})d\alpha$$
$$\approx g||w||_{L^2}^2 + \sigma ||w_{\alpha}||_{L^2}^2 + ||r||_{\dot{H}^{\frac{1}{2}}}^2$$

Low regularity local well-posedness: 2-d

Theorem

- a) Gravity waves are locally well-posed for $(\mathbf{W}_0, R_0) \in H^{1+\sigma} \times H^{\frac{3}{2}+\sigma}$.
- b) Capillary waves are locally well-posed for $(\mathbf{W}_0, R_0) \in H^{2+\sigma} \times H^{\frac{3}{2}+\sigma}$.

2-d gravity waves:

σ	result	method	year
-1/2	scaling		never
4	Wu	energy estimates	'99
ϵ	Alazard-Burq-Zuily	energy estimates (EE)	'11
0	Hunter-Ifrim-T.	cubic energy estimates	'14
-1/24	Alazard-Burq-Zuily	EE+Strichartz	'15
-1/12	Ai	EE +Strichartz	'17
-1/8	Ai	EE +lossless Strichartz	'18
-1/4	Ai-Ifrim-T.	balanced energy estimates	'19
-3/8	Ai-Ifrim-T.	balanced EE + Strichartz	ongoing

Long time solutions

Question: Given initial data of size $\epsilon \ll 1$, find optimal bound T_{ϵ} on lifespan of solutions.

Rules of the game: Balance dispersive decay with growth caused by nonlinear interactions.

Dispersive equations in 1-d

Model linear problem:

$$iu_t = A(D_x)u, \qquad u(0) = u_0$$

Dispersion relation:

$$\xi \to a(\xi)$$

Characteristic set:

$$C = \{\tau + a(\xi) = 0\}$$

Grup velocity:

$$v_{\xi} = \partial_{\xi} a(\xi)$$

Linear scattering (if $a_{\xi\xi} \neq 0$)

$$u(t,x) \approx U(v) \frac{1}{\sqrt{t}} e^{it\phi(v)}, \qquad v = \frac{x}{t}$$

where ϕ solves an eikonal equation.

Strichartz estimates:

$$||u||_{L^4L^\infty} \lesssim ||u_0||_{L^2}$$

Bilinear interactions in dispersive flows

Model nonlinear linear problem:

$$iu_t = A(D_x)u + Q(u, u), u(0) = u_0$$

Characteristic set (a real valued):

$$C = \{\tau + a(\xi) = 0\}$$

Grup velocity:

$$v_{\xi} = \partial_{\xi} a(\xi)$$

Resonant interactions:

$$(\xi_1, \tau_1) \in C, \quad (\xi_2, \tau_2) \in C \longrightarrow (\xi_1 + \xi_2, \tau_1 + \tau_2) \in C$$

Null condition: $q(\xi_1, \xi_2) = 0$ on resonant set.

Long time existence via energy estimates

Question: Obtain lifespan estimates for small data.

(i) Equations with quadratic nonlinearities:

$$\frac{d}{dt}E(u) \lesssim ||u||E(u)|$$

For data $||u(0)|| = \epsilon \ll 1$ this leads by Gronwall to a lifespan

$$T_{\epsilon} \approx \epsilon^{-1}$$
 (quadratic lifespan)

(ii) Equations with cubic nonlinearities:

$$\frac{d}{dt}E(u) \lesssim ||u||^2 E(u)$$

For data $||u(0)|| = \epsilon \ll 1$ this leads by Gronwall to a lifespan

$$T_{\epsilon} \approx \epsilon^{-2}$$
 (cubic lifespan)

This analysis neglects dispersion and resonance analysis! e.g. Burgers

The normal form method (Shatah '85)

Transform an equation with a quadratic nonlinearity

$$iu_t = A(D_x)u + Q(u, u), \qquad u(0) = u_0$$

into one with a cubic one via a normal form transformation,

$$u \to v = u + B(u, u)$$

so that

$$iv_t = A(D_x)v + Q_3(u, u, u),$$
 $u(0) = u_0$

Algebraic computation:

$$b(\xi_1, \xi_2) = \frac{q(\xi_1, \xi_2)}{a(\xi_1) + a(\xi_2) - a(\xi_1 + \xi_2)}$$

- works for nonresonant and null resonant interactions, but
- it is unbounded for quasilinear problems
- computations more involved for systems

Normal form methods for quasilinear pde's

1. Modified energy method (Hunter-Ifrim-T. '12-'14)

Issue: incompatible estimates

Quasilinear:
$$\frac{d}{dt}E^Q(u) \lesssim \|\mathbf{u}\|E^Q(u)$$

Normal form:
$$\frac{d}{dt}E^{NF}(u) \lesssim ||u||^2 E^{NF,1}(u)$$

Solution: Modify the energy functionals rather than the unknown,

$$\frac{d}{dt}E^{NL}(u) \lesssim ||u||^2 E^{NL}(u)$$

where

$$E^{NL}(u) = E^{Q}(u) + cubic\ l.o.t., \qquad E^{NL}(u) = E^{NF}(u) + quartic$$

- works for quasilinear problems, also for more null interactions
- we provide an algorithm to compute these energies

Normal form methods for quasilinear pde's

2. Normal form flow method:

[Hunter-Ifrim ('12, Burgers-Hilbert), Ifrim (ongoing, WW)] Replace unbounded NF

$$v = u + B(u, u)$$

with a bounded transformation

$$v = u + B(u, u) + higher$$

constructed via a Hamiltonian flow

$$w_t = B(w, w),$$
 $w(0) = u,$ $w(1) = v$

- provides a nonlinear, symplectic change of coordinates in the phase space
- most elegant, but problem specific
- other non-flow based transformations [Wu, Berti-Feola-Pusateri]

Normal form methods for quasilinear pde's

3. Paradiagonalization (Delort, Alazard-Delort '13) Combines a partial normal form with a paradifferential symmetrization.

Writing the nonlinear flow

$$u_t = F(u)$$

in a paradifferential form

$$u_t = T_{DF(u)}u + N(u)$$

one applies different tools to the terms on the right:

- use an invertible normal form to eliminate quadratic terms in N(u).
- use a microlocal conjugation to (anti)symmetrize the paradifferential term

Thank you!