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A model for one vortex filament dynamics

Vortex filaments appear in 3-D fluids when vorticity is large and
concentrated in a thin tube around a curve in R3.

“Vortex motions are sinews and muscles of fluid motions”
(Küchement 64, Saffman-Baker 79, Moffatt-Kida-Ohkitani 94,...).

Considering the vorticity to be a singular measure on a curve in R3 is too
singular for Euler’s equations  need to smooth the data or the equation.

The binormal flow (or LIA or VFE) is the oldest, simpler and richer
formally derived model for one vortex filament dynamics
(Da Rios 1906, Levi-Civita 32, Murakami-Takahashi-Ukita-Fujiwara 37,
Arms-Hama 65, Callegari-Ting 78; Jerrard-Seis 17).
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Sketch of the formal derivation

Suppose the vorticity ω(t) is a singular vectorial measure located on a
curve χ(t) in R3, i.e. ωχ(t, x) = Γχx(t, x)δχ(t,x).

For getting the dynamics of a vortex filament we look at the fluid velocity
near the filament by using the Biot-Savart law (u = (−∆)−1(∇× ω)):

u(t, x) =
Γ

4π

∫ ∞
−∞

(x − χ(t, s))× χs(t, s)

|x − χ(t, s)|3 ds.

given t suppose χ(t, 0) = (0, 0, 0), χs(t, 0) = C (0, 0, 1); to

approximate χt(t, 0) we look at u(t, (x1, x2, 0)) for ε = (x2
1 + x2

2 )
1
2 ,

take into account only the local contributions s ∈ [−L, L],

perform a Taylor development of χ(t, s) around s = 0:
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Sketch of the formal derivation

u(t, (x1, x2, 0)) ≈
Γ

4π

∫ L

−L

((x1, x2, 0)− sχs(t, 0)− s2

2
χss(t, 0))× (χs(t, 0) + sχss(t, 0))

|(x1, x2,−Cs)|3
ds

=
Γ

4πC3

(−x2, x1, 0)

ε2

∫ LC/ε

−LC/ε

ds̃

(1 + s̃2)
3
2

+
Γ

4π
(x1, x2, 0)× χss(t, 0)

∫ L

−L

s

|ε2 + C2s2|
3
2

ds

−
Γ

8πC3
χs(t, 0)× χss(t, 0)

∫ LC/ε

−LC/ε

s̃2

|1 + s̃2|
3
2

ds̃.

the first term will be neglected as it is the standard spinning around
a still straight vortex filament,

the second term vanishes by parity,

the last term diverges logarithmically.

 rescaling the time variable, the dynamics of the vortex is governed by

χt =
χx × χxx

|χx |3
.
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Some smooth BF dynamics coherent with fluid mechanics

Type BF Euler Nature

Line (0, 0, x) use of 2D solutions Tornados

Fraenkel -Berger 74
Circle (cos x , sin x , t) Ambrosetti-Struwe 89 Smoke rings

Benedetto-Caglioti–Marchioro 00

Helix (cos(x − t
2
√

2
), Levy-Forsdyke 28 Eden 1911

sin(x − t
2
√

2
), x + t

2
√

2
) Dávila-Del Pino-Musso-Wei 20

TW on Hasimoto 72 ? Hopfinger
helices -Browand 81
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Jerrard-Seis’s result (2017)

χ(t) smooth closed curve of length L, ∀t ∈ [0,T ]

uε conservative weak Eulerε solution , ∀ε ∈ (0, L2 )

1
2

∫
|uε(0)|2 ≤ | log ε|

4π L + C

‖ωε(t)− ωχ(t)‖F ≤ Lε, ∀t ∈ [0,T ]


=⇒ χ solves BF.

(where ‖µ‖F = sup{〈µ, ψ〉, ψ ∈ C∞c (R3,R3), ‖∇ × ψ‖L∞ ≤ 1} is the flat-norm
of vector-valued Radon measures on R3)

The proof is driven by the Hamilton-Poisson structures of Euler and BF:

concentration of ωε in Vε(χ(t)) and 4π
| log ε|HE (ωε(t))− HB(χ(t)) small

 { 4π
| log ε|HE ,

∫
R3 ψ·}(ωε(t))− {HB ,

∫
· ψ·}(χ(t)) small, ∀ψ ∈ C2

c (R3,R3)

i.e. 4π
| log ε|

∫
∇(∇× ψ) : uε ⊗ uε −

∫
χ
∇(∇× ψ) : (I − χx ⊗ χx) small.

At the dynamical level ∂t〈ωε(t), ψ〉 − ∂t〈ωχ(t), ψ〉 small, provided χ solves BF

 use BF stability properties from Jerrard-Smets 15.
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Some other very recent results

Navier-Stokes: on small times one vortex filament evolves as
Lamb-Oseen vortex around the initial curve  large self-similar
solutions. The proof uses a heat ansatz in self-similar variables in the
plane normal to the curve (Bedrossian-Germain-Harrop-Griffiths 18).

Euler for particular cases with reductions: helices and leap-frogging
in axysymmetry without swirl. The proofs use Ettinger-Titi 09 helical
symmetry reduction and resp. local Fermi coordinates, a dynamical
ansatz and the gluing-method. (Dávila-Del Pino-Musso-Wei 20).

Superfluids: one almost-parallel to the z−axis quantized vortex
filament in Bose condensate in the incompressible limit evolves by a
linearized version of BF. The concentration of the Jacobian
1
2 curl(uε ∧∇uε) is tracked by dynamical arguments combined with
variational constraints in terms of the modulated Ginzburg-Landau
energy and the one of the curve equation (Jerrard-Smets 20).
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Models related to the binormal flow

+ axial flow (Moore-Saffman 72, Fukumoto-Miyazaki 88):

χt = χx × χxx + α(χxxx +
3

2
χxx × (χx × χxx))

leads to Hirota 73 equation (complex mKdV+cubic NLS):

iψt + ψxx +
1

2
|ψ|2ψ − iα(ψxxx +

3

2
|ψ|2ψx) = 0.

+ self-streching (Klein-Majda 91): perturbation of BF by a nonlocal
operator, leads to 1-D cubic NLS with a nonlocal term defined by the
Fourier multiplier −ξ2 log |ξ|+ ( 1

2
− γ)ξ2, with γ the Euler’s constant.

N vortex filaments nearly parallel (Zakharov 88, Klein-Majda-Damodaran
95): parametrized by (xj(t, z), yj(t, z), z), of circulation Γj , the evolution
of Ψj(t, z) = xj(t, z) + iyj(t, z) is modeled by the linear Schrödinger+2D
point vortex system:

i∂tΨj + Γj∂
2
z Ψj +

∑
k 6=j

Γk
Ψj −Ψk

|Ψj −Ψk |2
= 0, 1 ≤ j ≤ N.

Rigorous proof for superfluids (Jerrard-Smets 20).
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BF  Schrödinger map

Let χ(t) be a R3-curve parametrized by arclength x , solution of BF:

χt = χx × χxx

|
∂x |
↓

Its tangent vector T (t, x) = ∂xχ(t, x) solves the 1D Schrödinger map to
S2, that is the classical continuous Heisenberg model in ferromagnetism:

Tt = T × Txx
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Schrödinger map  1D cubic NLS

Let T be a solution of the Schrödinger map. By using Frenet’s system:(
T
n
b

)
x

=

(
0 c 0
−c 0 τ
0 −τ 0

)(
T
n
b

)
,

Ttx=Txt the filament function c(t, x)e i
∫ x

0
τ(t,s)ds solves the focusing 1D

cubic NLS (Hasimoto 72 ≈ Madelung−1).

In order to avoid issues related to vanishing curvature, use Bishop parallel
frames (’75 “There are more than one way to frame a curve”): T

e1

e2


x

=

 0 α β
−α 0 0
−β 0 0

 T
e1

e2

 ,

 the filament function α(t, x) + iβ(t, x) solves the 1D cubic NLS.
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1D cubic NLS  BF: Hasimoto’s recipe

Given u solution of iut + uxx + (|u|2 − A(t))u = 0, a point P ∈ R3, an
o.n.b. (v1, v2, v3) of R3, (t0, x0) ∈ R2 construct a BF solution as follows:

initial data at (t0, x0) | (T ,N) = (v1, v2 + iv3)
evolution at fixed x = x0 | Tt = =uxN, Nt = −iψxT + i(|u|2 − A(t))N

evolution at fixed t | Tx = <(uN), Nx = −uT
↓

T (t, x) solves the Schrödinger map

initial data at (t0, x0) | χ(t0, x0) = P
evolution at fixed x = x0 | χt = T × Tx

evolution at fixed t | χx = T
↓

χ(t, x) solves BF.

Describing χ(t) geometrically might be difficult.

Note that u(t, x)e iΦ(t) yields (T (t, x),N(t, x)e iΦ(t)), so again χ(t, x).
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Some general existence results

BF well-posedness for (c , τ) in high Sobolev spaces (Hasimoto 72,
Nishiyama-Tani 94-97, Koiso 97-08).

Uniqueness for the Schrödinger map with T ∈ H2 or some T ∈ H1

(Chang-Shatah-Uhlenbeck 00, McGahagan 04,
Nahmod-Shatah-Vega-Zeng 06).

BF well-posedness for curves with one corner and curvature in
weighted space (B.-Vega 09-15).
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Other methods

Geometric methods: global existence of weak BF solutions for
integral currents in the sense of Federer 69, weak-strong uniqueness
(Jerrard-Smets 15).

Integrable system methods: linear stability properties, construction
of solutions, knotted curves analysis (Calini, Lafortune, Ivey 94–,
Grinevich-Schmidt 00, Ricca, Barenghi 90–).

Probabilistic methods: global existence for geometric rough paths in
the sense of Lyons 98 (Gubinelli&Co 05-13).
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Self-similar solutions and perturbations

Scaling for BF: λ−1χ(λ2t, λx) self-similar sol. χ(t, x) =
√
tG ( x√

t
)

form a family {χa}a∈R+∗ characterized by (ca, τa)(t, x) =
(

a√
t
, x

2t

)
( the filament function is ua(t, x) = a e i

x2

4t√
t

), used for the vortex

dynamics in superfluids (Schwarz 85, Buttke 88, Lipniacki 02,
Fonda&co 14), in ferromagnetism (Lakshmanan&co 76-81), and in
modeling the heart collagen fibers (Peskin&Co 94–),

χa(0) is a corner of angle θ s.t. sin( θ2 ) = e−π
a2

2  the formation of
a corner for the curve corresponds to a Dirac mass for 1D cubic
NLS, at the critical Sobolev and Fourier-Lebesgue regularity
(Gutierrez-Rivas-Vega 03, fine analysis of the profile’s ODE),

the formation of a corner and its instantaneously smoothening is
stable (B.-Vega 09-15, based on scattering techniques at NLS level
in Hasimoto’s recipe).
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Coherence with the experiments

Figure 1. Tourbillons filamentaires dans un fluide rencontrant
un obstacle triangulaire de type aile delta, Werlé, ONERA 63.

Figure 2. Direct observation of Kelvin waves excited by

quantized vortex reconnection, Fonda&Co, PNAS 14
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The periodic case of regular polygons

corners interaction  turbulent features appears for noncircular jets,
as axis switching (experiments Todoya-Hussain 89, numerics
Grinstein-De Vore 96).

Figure 3. Grinstein-DeVore, Dynamics of coherent structures
and transition to turbulence in free square jets, Phys. Fluids 96

through BF a planar regular polygon with n sides is expected to evolve to skew
polygons with nq sides at rational times of type p

q
(numerics Jerrard-Smets 15

and integration of the Frenet frame at rational times De la Hoz-Vega 15).

trajectory of one polygon’s corner linked with multifractal Riemann’s type
functions (numerics De la Hoz-Vega 15,18, De la Hoz-Kumar-Vega 20, see also
Peskin-McQueen 94).
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The non-periodic case of polygonal lines

Theorem (rough data evolution; singularity continuation) B.-Vega 18

Let χ0(x) be an arclength parametrized polygonal line with corners

located at x = k ∈ Z, of angles θk s.t. sin( θk2 ) = e−π
a2
k
2 with {ak} ∈ l2,3.

There exists a χ ∈ C(R, Lip) ∩ C(R∗, C4) unique solution of BF on R∗,
solution in the weak sense on R, with

|χ(t, x)− χ0(x)| ≤ C
√
t, ∀x ∈ R, |t| ≤ 1.

The evolution can have an intermittent behaviour in the sense that
at times t = p

q the curvature of χ(t) displays concentrations near

the locations x ∈ 1
qZ, and is almost straight segments between.

This is based on a Talbot effect we prove at the NLS level.

in Hasimoto’s recipe at the NLS level we prove existence of solutions

for t > 0 of type
∑

k∈Z e
−i |αk |

2

4π log
√
t(αk + Rk(t))e it∆δk(x), with

{Rk(t)} decaying as t goes to zero.
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Theorem (a finite energy framework) B.-Vega 19

Let χ be the BF evolution of a polygonal line from the previous theorem,
and T its tangent vector. For t > 0 we conserve

Ξ(t) := lim
n→∞

∫ n+1

n

|T̂x(t, ξ)|2dξ = 4π
∑
k

a2
k .

At t = 0 when singularities are created for BF we get a jump
discontinuity of Ξ(t):

∀n, Ξ(0) =

∫ n+1

n

|T̂x(0, ξ)|2dξ = 4
∑
k

(1− e−πa
2
k ) 6= 4π

∑
k

a2
k = Ξ(t).

Tx describes the variations of the direction of the vorticity  
Constantin-Fefferman-Majda’s criterium.

17/20



Vortex filaments dynamics
Binormal flow model methods of study

Singularities formation for the binormal flow model

One corner
Several corners
Properties of some singular solutions

Refined analysis for some families of polygonal lines

Let n ∈ N∗, ν ∈]0, 1], Θ > 0. We consider polygonal lines χn(0) with
finite but many corners of located at j ∈ Z with |j | ≤ nν , of same torsion
ω0 and angles θn such that

θn = π − Θ

n
+ o(

1

n
),

χn(0, 0) = 0R3 and χn(0, [−1, 1]) symmetric wrt the YZ−plane.
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Theorem (a Frish-Parisi multifractal behaviour) B.-Vega 20

For the previous solutions with torsion ω0 ∈ πQ we have the following
description of the trajectory of the corner χn(t, 0), uniformly on (0,T ):

nχn(t, 0)− (0,<(R̃(t)),=(R̃(t)))
n→∞−→ 0.

The function R̃ is multifractal, and its spectrum of singularities dR̃
satisfies the multifractal formalism of Frisch-Parisi:

dR̃(β) := dimH{t, R̃ ∈ Cβ(t)} = inf
p

(βp − ηR̃(p) + 1),

ηR̃(p) := sup{s, R̃ ∈ B
s
p ,∞
p },

a model for predicting the structure function exponents in turbulent flows.

In the torsion-free case R̃(t) = −ΘR(4π2t)
4π2 , where R(t) =

∑
j∈Z

e itj
2
−1

ij2 is
a complex version of Riemann’s non-differentiable function.
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Graph on [0, 2π] of Riemann’s function R(t) =
∑

j∈Z
e itj

2
−1

ij2 :

R satisfies the multifractal formalism of Frisch-Parisi (Jaffard 96) is
intermittent (Boritchev-Eceizabarrena-Da Rocha 19), its graph has
no tangents and has Haussdorf dimension ≤ 4

3 (Eceizabarrena 19),

The theorem gives a non-obvious non-linear geometric interpretation
for Riemman’s function.
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