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Energy estimates for gravity waves
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3. Balanced cubic energy bounds [AIT 19, (better) modified energy]
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@ reduction to paralinearization

e refined, variable coefficient normal form analysis for balanced
frequency interactions

@ modified energy for paralinearization
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Four water wave equations

@ Gravity waves in deep water (g)
» infinite bottom, gravity, no surface tension (long waves)
» (1-D cubic) NLS approximation for frequency localized data

@ Capillary waves in deep water (t)
» infinite bottom, surface tension, no gravity (short waves)
» NLS approximation for frequency localized data

@ Constant vorticity gravity waves in deep water (v)
» infinite bottom, no surface tension, gravity, constant vorticity (tides)
» Benjamin-Ono approximation at low frequency

@ Gravity waves in shallow water
» finite bottom, no surface tension, gravity
» KdV approximation at low frequency
Collaborators: Mihaela Ifrim (U. Wisconsin), John Hunter (UC
Davis), Benjamin Harrop-Griffiths (UCLA), Thomas Alazard (ENS
Saclay), Herbert Koch (Bonn), Albert Ai (U. Wisconsin), WW-group
of graduate students in Berkeley&Madison
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Dispersion relation for gravity waves in deep water (g)

Cubic NLS approximation:

(i0; + 0*)u = £|ul*u
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Figure: Dispersion relation for capillary waves in deep water (t)

Cubic NLS approximation:

(i0; + 0*)u = £|ul*u
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Figure: Dispersion relation for constant vorticity (v)

Benjamin-Ono approximation:

(0 + HO*)u = uuy
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Figure: Dispersion relation, gravity waves in shallow water (b)

KdV approximation:
(0 + 02)u = 6uu,
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Cubic lifespan bounds

Theorem

Consider the two dimensional differentiated water wave equation with
inatial data of size €. Then the solutions have a lifespan of at least

2

T, ~ e

The result applies to all four models (g), (v) (t) and (b).
The result applies equally in periodic and non-periodic setting.
Proof idea: quasilinear modified energy method

Bounds for all higher norms propagate on same timescale.

Additional difficulty for water waves, due to the fact that the
system is degenerate hyperbolic. Because of this, the modified
energy needs to be in the diagonal variables.

e Related work of Wu (g), Ionescu-Pusateri (g), (t),
Berti-Delort (g)/(t).
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Cubic NLS approximation

N

Theorem (Ifrim-T ’18)

Consider the two dimensional differentiated water wave equation (g)

with wave packet initial data of size e3. Then the solutions have a
lifespan of at least
T. ~ Me™?

and are well-approximated by a cubic NLS flow.

e Wave packet data = localized near a frequency &y on scale 6 = e.
@ M= NLS time, should be large M =~ loge.

@ Better corelation between water wave and NLS after normal form
transformation.

@ Related work of Wu, Schneider, Dull, etc
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Global solutions for water waves on the line

Question: Given small and localized data, are the solutions global in
time 7 If so what is their asymptotic behavior 7 J

Two different patterns:
1. Dispersion wins: The solution exhibits linear like dispersive decay,

u(z, )] S

Sl =

/f" gfw«&”

2. Nonlinearity balances the dispersion: Solitary waves form

Soliton resolution conjecture: Given small and localized data, all
the solutions are global and resolve into a superposition of dispersive
waves and one or more solitons.

Feb. 2020 10 / 22

D. Tataru (UC Berkeley) Water Waves



Global solutions for water waves on the line
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Linear vs. modified scattering

Linear equation:
iuy = A(Dy)u, u(0) = ug

Linear scattering ( U is called scattering profile)

1
u(t,z) ~ Uv)— W), v =

Vi

Nonlinear equation:

iug = A(Dg)u + \ulul?, u(0) = ug

Trying ansatz
L itg(v)

u(t, z) =~ y(t, U)W

yields the asymptotic equation

A

10y ~ z7|7|2 or equivalently 1057y & )\7\7|2,

New asymptotic profile W
V(s v) & W (w)e XV

s =logt
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Key difficulty: make a good choice for asympt. profile ~.
Two objectives, to show that

@ ~ is a good approximation for u
© 7 is an approximate solution to the asymptotic equation.
Earlier work:

@ Define v pointwise ( Lindblad-Soffer, etc. )

1 .
u(t, x) = y(t, v)% etV v=ua/t

@ Define « in Fourier space (Hayashi-Naumkin, etc)

fa(t7 g) — fy(t7 g)eita(§)7 5 = 5@ Vv = VQI 24%9)

@ Use the scattering transform (Deift-Zhou, integrable systems)
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A better way: Testing by wave packets

[Ifrim-T. ’14], balances better the linear and nonlinear errors in
asymptotic equation.

V() = (u, ), 0 = x (:U \—/;t) pitd(v)
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Global water waves for small localized data
Theorem (Ifrim-T ’14, Ai-Ifrim-T. ’20)
Assume that the initial data for the water wave equation (g),(t) has
size

(W, Q)(0)ww S €

Then the solution exists globally in time, with energy bounds

(W, Q)(8)|lww S et

and pointwise decay

(W, Q) (1)l

< ©
TV
e WH is a (time dependent) weighted localized L? Sobolev norm.
@ Result includes modified scattering
e (g): Wu (ag), Ionescu-Pusateri, Alazard-Delort
Simpler, shorter proofs by Hunter-Ifrim-T. (ag), Ifrim-T.

Almost optimal result by Ai-Ifrim-T.

o (t): Ifrim-T., further work by Ionescu-Pusateri
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Proof idea: bootstrap argument

Make the bootstrap assumption

Ce
W, Q) S
g
Then proof in two steps: ¢
<2
e Cubic energy estimates (modified energy): C’(&i —~7 €
3 t
; o
S Ewn(W,Q) S [(W, Q)L Ewn(W, Q)
both for (W, Q) and for S(W, Q). ~ &ueavnd L3u.
e Pointwise estimates (improving the bootstrap assumption)
€
W, Q) S —=
(W, Q) (0] i
via the asymptotic profile v, using the asymptotic equation.
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No solitary waves in deep water

Theorem (Ifrim-T ’18)

For the two dimensional water wave equation (g) and (t) there are no
solitary waves.

@ Prior partial results for (g) by Craig, Hur, Sun.

e For gravity waves the result also forbids crested waves (e.g. like
the Stokes wave).

@ No uniform bound is required for the elevation

@ Proof relies critically on the holomorphic coordinates
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Soliton resolution for (v) with localized data

Key difficulty: Benjamin-Ono has small solitons, and likely, also (v) !

Conjecture

Any solution to (v) with small localized data resolves into a scattering
part and at most one soliton.

Partial results for Benjamin-Ono [Ifrim-T ’17] !

Theorem (Ifrim-T ’17)

Any solution to Benjamin-Ono with e- small localized data has
dispersive decay almost globally in time, i.e. for

t§T€:e§

@ The BO soliton (if any) can only emerge after this time ! (by
inverse scattering)

@ Work in progress to prove the same result for (v).
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Soliton resolution for (b) with localized data
Key difficulty: KdV has small solitons, and also (b) !

Conjecture

Any solution to (b) with small localized data resolves into a scattering
part and at most one soliton.

Partial results for KAV [Ifrim-Koch-T ’19] !
Theorem (Koch-Ifrim-T ’19)

Any solution to KdV with e- small localized data has dispersive decay
on quartic time, i.e. for
t 5 Te — @_3

@ The KdV soliton (if any) can only emerge after this time ! (by
inverse scattering)

@ Dispersive shocks can also form at the same time scale.

e Work in progress to prove the same result for (b).
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Morawetz inequalities for gravity waves
Theorem (Alazard- Ifrim-T ’18)

Let (n,v) be a solution for the two dimensional water wave equation
(g) or (b) which stays uniformly small in time,

sup ||(n, V) ()| £ < €K1
t€[0,7

Then the following local energy estimate holds

T rl1

te[0,T]

@ Result uniform in 7" > 0,9 > 0,h > 1.
@ No prior results that we are aware of.
@ Forbids small stationary solutions.

@ Result is stated in Eulerian coordinates but proof relies critically
on the holomorphic coordinates

e Similar results for gravity/capillary waves at low Bond number.
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References

1. Virtual Summer School in Water Waves, MSRI, Aug. 2020, with M.
Ifrim, (20 video lectures)

2. Local well-posedness for quasilinear pde’s, expository notes, arxiv

3. Testing by wave packets and modified scattering, expository notes,
soon to come

3. More to come !
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Thank you !

D. Tataru (UC Berkeley) Water Waves



