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X oc e~ T o) (),

where 6%5) is the Lebesgue measure on the space of symmetric
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where 6%5) is the Lebesgue measure on the space of symmetric
(8 = 1) or Hermitian matrices (3 = 2). In probability,

. 1 ¢
(Wigner) Hn = o ; O, n_ﬁoo Hos
where A{,..., A, are the eigenvalues of X and

1
Mo = % V 4 — .7112]].|w‘§2d$

How does p,, fluctuate around 1,7

2/23



Central limit theorems
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Central limit theorems
The linear statistics associated to f : R — R is the observable

[ =37 100,
=1

What are the fluctuations of [ fdu,?
(Guionnet-Zeitouni): If f is a L-Lipschitz function, for any ¢ > 0,

cn2t2

P(/fd(,un —Epy,) > t) <e 7.
For Lipschitz functions,
n [ fd(in ~ Eua) is tight. (1)

In sharp contrast with the i.i.d (X;); case where for
fln, = =3 0x,, and [ bounded,

Vi [ fd(in ~ Efn) is tight.

(1) is the manifestation of cancellations happening due to the
rigidity of the eigenvalues.
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Fluctuations of smooth functions

4/23



Fluctuations of smooth functions

(Johansson, 98'): For a smooth function f,

n [ fdlpn ~Bpm) | 2 NO0(?),

Variance structure:

o(f)? = — /2 /f - Sszds)dt.

a2 J o —t2

Expression of the centering:
2
n/deun :n/fd,ug—l- (B 1) /fdl/g—l-o(l),

with 15 a signed measure supported on [—2, 2].
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Fluctuations of linear statistics

e Smooth functions

Var(n/fd,un> = 1.

5/23



Fluctuations of linear statistics

e Smooth functions

Var(n/fd,un> = 1.

e Non-smooth functions: f interval indicator function

Var(n/fdun) = logn,

5/23



Fluctuations of linear statistics

e Smooth functions

Var(n/fd,un> = 1.

e Non-smooth functions: f interval indicator function

Var(n/fdun) = logn,

(Gustavsson): GOE, GUE case.
(Boa, Pan, Zhou): Hermitian Wigner matrices

with 4 moments matching the GUE.

(Shcherbina): [-ensembles with polynomial potential, 5 = 1,2, 4.

5/23



Fluctuations of linear statistics

e Smooth functions

Var(n/fd,un> = 1.

e Non-smooth functions: f interval indicator function

Var(n/fdun) = logn,

(Gustavsson): GOE, GUE case.
(Boa, Pan, Zhou): Hermitian Wigner matrices
with 4 moments matching the GUE.
(Shcherbina): [-ensembles with polynomial potential, 5 = 1,2, 4.

For z € (—=2,2), f =log|z — .|, what are the fluctuations of
n/fdun = log | det (2], — X)|, X GUE matrix?
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Variance of the log determinant: heuristics

As a matter of fact

Var(log |¢n(2)]) < logn.
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Variance of the log determinant: heuristics
log [¢n (0)] = 32121 log | Al

-2 Aj 2
1/n

Typically no eigenvalues in an interval of length 1/n around 0.
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Variance of the log determinant: heuristics

log |n(0)] = Y01 log |Ai| = log |¢n(i/n)| + O(1) (variance-wise).

Typically no eigenvalues in an interval of length 1/n around 0.
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Variance of the log determinant: heuristics

N

log [¢n(i/n)| = (log|¢n(i2~ ") —log |p(i2 ")) +log |¢n(i)].

k=0

6/23



Variance of the log determinant: heuristics

log (12 1)| = log 612 )| = [ fudin, o(f1)? = 1.

+ 12

Lio—(k+1)

i/n

-2 —K2=k _co—k 0 e2—k  go—k 2
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Variance of the log determinant: heuristics
With N = logn,

N-1
log [¢n(i/n)| = log 6n(i) 1+ >_ (log|on(i2” V)| —log|(i27")])
k=0
For a fixed k&,
o—(k+1)
(Johansson) Var(log ‘%D ~o(fp)? =1

One expect the cross terms to vanish, which gives

Var(log ]¢n(z/n)|) = logmn,

and thus Var(log |¢,,(0)|) = logn.
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The field of the characteristic polynomial

Let X a GUE matrix and ¢,,(z) = det(z1, — X).

T f T T T 7 T T
-2 -18 -16 -14 -12 -1 -08 -06 -04 -02 O 02 04 06 08 1 12 14 16 18 2

2 € [=2,2] = |pn(2)|e Eloglen(2) = 60
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The field of the characteristic polynomial
Let X a GUE matrix and ¢,,(z) = det(zI,, — X).

L A O T VR T Y
S P M S

T T T T T T T T T T T T T T T T T T T
-2 -18 -16 -14 -12 -1 -08 -06 -04 -02 O 02 04 06 08 1 12 14 16 18 2

z € [2,2] = log |¢n(2)| — Elog |én(2)

,n =060
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The maximum modulus of the characteristic polynomial

Conjecture (Fydororov- Simm, 15):
3
max (log|¢,(2)| — Elog|én(2)]) — logn + 1 loglogn = g,

z€[—2,2]

where the law of ¢ is explicit.

9/23



The maximum modulus of the characteristic polynomial

Conjecture (Fydororov- Simm, 15):

3

JDnax, (log|én(2)] — Elog|on(2)]) —logn + loglogn. = &,

where the law of ¢ is explicit.

e (Lambert-Paquette) identified the logn term for a certain
class of unitarily invariant Hermitian matrices.

9/23



The maximum modulus of the characteristic polynomial

Conjecture (Fydororov- Simm, 15):

3
max (log|¢,(2)| — Elog|dn(2)]) —logn + — loglogn njoo £,

2€[-2,2] 4
where the law of ¢ is explicit.
e (Lambert-Paquette) identified the logn term for a certain
class of unitarily invariant Hermitian matrices.

e The % is the manifestation of the correlation structure:

log |¢n(2)] is a log-correlated field:

9/23



The maximum modulus of the characteristic polynomial

Conjecture (Fydororov- Simm, 15):

3

JDnax, (log|én(2)] — Elog|on(2)]) —logn + loglogn. = &,

where the law of ¢ is explicit.

e (Lambert-Paquette) identified the logn term for a certain
class of unitarily invariant Hermitian matrices.

e The % is the manifestation of the correlation structure:

log |¢n(2)] is a log-correlated field:

If X1,...,X, are i.i.d N(0, 3 logn), then w.h.p

1
1%1%}% X, =logn — 1 loglogn + O(1),
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The maximum modulus of the characteristic polynomial

Let ¢ be the characteristic polynomial of a Haar distributed
unitary matrix.
Conjecture (Fydororov- Hiary- Keating, 12'):

3
Y _ e
max log |¢, (z)| — logn + 1 loglogn W

|z|=1

where the law of 7 is explicit.
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The maximum modulus of the characteristic polynomial

Let ¢ be the characteristic polynomial of a Haar distributed
unitary matrix.
Conjecture (Fydororov- Hiary- Keating, 12'):

3
|r£1|i)1<10g |pv(2)| — logn + 1 loglogn W
where the law of 7 is explicit.
e (Arguin-Belus-Bourgade, 17') identified the logn term.
e (Paquette-Zeitouni, 18') obtained the logn — %log logn
developpement.

e (Chahabi-Madaule-Najnudel, 18") proved the tightness for the
Circular 3 Ensemble.
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Gaussian S-Ensembles

Let 3 > 0. The probability measure P, g on R",

_ _@ n 2 n
dPpg = Z, 5[ [ 1IN = AjlPe™ 7 2 M T dona.
=1

i<j
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Gaussian S-Ensembles
Let 3 > 0. The probability measure P, g on R",
P = Z, 5] N — AilPe T 2 ] an.
1<J =1

is the eigenvalues distribution of the
e GOE (8 =1), GUE (8 =2), GSE (5 = 4).
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Gaussian S-Ensembles
Let 3 > 0. The probability measure P, g on R",
-1 g —ns Z” A2 .
dPnp = Z, g] [ 1N — Mjle™ % 20 [T ds.
i<j i=1
is the eigenvalues distribution of the
e GOE (8 =1), GUE (8 =2), GSE (5 = 4).
e random Jacobi matrix with independent parameters (a;), (b;)
bn anfl.

ap—1

i - bj ~ N(O, 1)
NG “a @i~ Ajp-
.,zll . by
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Random Jacobi matrices

by, ~ Qn-1

anp—1

.al

.al . bl

12/23



Random Jacobi matrices

by, ~ Qn-1

anp—1

.(11
'a . bl
1
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Random Jacobi matrices

by, ~ Qn-1

anp—1

Assumptions: (a;),(by) are independent,
1. Eb, =0, Var(bk) =0+ O(l/k)
2. There exists g; such that Eg; = 0, Varg; = v + O(1/j),

(l —]+O +fg]

3. a; and by, have absolutely continuous laws w.r.t Lebesgue.

4. g; and b, have a finite exponential moment.

Gaussian [3-ensembles satisfy these assumptions with v = 2/.
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Fluctuations of the characteristic polynomial

(A.-Butez-Zeitouni, 20):

Let z € (—2,2) \ {0}. Define ¢,, = log|det(zl, — J,//n)|.

—1
log [pn(x)| Z108Cn(2)  _ yrig 1),
vlogn/2 n—+00
where
22 1
logCu() =n (G —3) auloxn+0().

———
J10g(=—2)duo (z)
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Fluctuations of the characteristic polynomial
(A.-Butez-Zeitouni, 20):

Let z € (—=2,2) \ {0}. Define ¢,, = log|det(z1l,, — J,,/\/n)|.

log|én(2)] =108 Cnl2) _ yrg 1),

vlogn/2 n—+00
where
22 1
logCh(z) =n <Z — 5) +aylogn + O(1).
—_———

[ log(z—2)dps ()

e The case z = 0 exhibits special symmetries: see (Tao,Vu 11').

e (Bourgade-Mody-Pain): Multi-dimensional CLT for
(B-ensembles with generic potential.

e (Lambert-Paquette): CLT at the edge for Gaussian

[B-ensembles.
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The three-terms recursion

The sequence py, = det(zy/nl — Jj) satisfies the recursion

vk € {]—7 oo 7”}7 Pk+1 = (Z\/ﬁ_ bk-i—l)pk - ai Pk—1,
g
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~1
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The three-terms recursion

The sequence py, = det(zy/nl — Jj) satisfies the recursion

vk € {]—7 oo 7”}7 Pk+1 = (Zf_ bk-i—l)pk - a% Pk—1,
g

Choose the normalization ¢, = pi/V k!. We get the new recursion:

Y1 = (Z\/Z— \b/%)i/)k - a%k_1 Vp—1.
——

~1

Equivalently, if X}, = (¢, ¢¥5_1),
n o_ bfk _ai—l
X1 = Tk Xg, T = (Z\/; vk ¢ ) :

The dynamics will depend on the spectrum of the matrices T},.
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Spectrum of the transfer matrix

z no_ bk _0‘12@7— 2/ -1
To=*VE~VE TTF | EG=(VE ),
1 0 1 0

Note that det(ET}) = 1.

-
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Spectrum of the transfer matrix

PO I T 2 /r -1
To=(*VE~VE TR | ELi=("VE ,
1 0 10

Note that det(ET},) = 1. Let kg := 2%n/4.

1 real eigenvalues ko complex eigenvalues

n

scalar oscillatory

e
—

15/23



Spectrum of the transfer matrix

n_ by % noo_
o= [VETVE TR ,IETk—<Z\/; 1),

1 0 1 0
Note that det(ET}) = 1. Let ko := z°n/4.

1 real eigenvalues ko complex eigenvalues n

scalar intermediate oscillatory

e
—
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Scalar regime

For k < kg, the recursion is

b
ke {1,...,n}, G = (2 % f}l)w ——wk ..
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We take the normalization such that ¢» = 1 is solution of the
deterministic recursion:

U = (H )‘j_l)wka

where )y, is the top eigenvalue of ETj.
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Scalar regime

For k < kg, the recursion is

n o byl

2
Vke{l,...,n}, Ypp1 = (z - = 7)% — %lﬂkq-

ko vk
We take the normalization such that ¢» = 1 is solution of the
deterministic recursion:

k

U = (H )‘j_l)wka

=1

where )y, is the top eigenvalue of ETj.

This has the effet of changing the top eigenvalue of [ET} to 1 and

top eigenvector to (1,1).
» We show that ) remains close to the direction (1,1)

» We linearize the equation around the stable solution ¢ = 1,

leading to a recursion of order 1.
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Oscillatory regime

[ET}, has eigenvalues ek =10k
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Oscillatory regime

ET}. has eigenvalues ek e~k Therefore,
ET,. = lengQk, Rg, rotation matrix of angle 0,
Naturally, we look at the recursion for Y, = Q. X:

Yk+1 = (ngJrl + WkJrl)QkJrlQ];lYk'
——

noise
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Oscillatory regime
ET}. has eigenvalues ek e~k Therefore,
ETy, = Q,;leka, Ry, rotation matrix of angle ¢},
Naturally, we look at the recursion for Y, = Qp X4:

Vis1 = (Rop,y + Wi1) Qe Q1 'Y
~ (Roppy + Wit + Api1) Y
N~ =

noise drift

O

W2 =< —

1
k—ko
Ry, faster and faster

[FAV [
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Oscillatory regime

A trajectory of Yy, kg < k < n, n = 2000
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Analysis of the recursion on a section
Output from the scalar regime: Initial condition of the oscillatory
regime Y}, is close to the direction (1,0).
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Analysis of the recursion on

a section

Output from the scalar regime: Initial condition of the oscillatory

regime Y}, is close to the direction (1,0).

We define “return times” of the recursion in the direction (1,0)

ko <l <...</tlp.
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Oscillatory regime

On each block [¢;, £;+1],
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On each block [¢;, £;41],
e we can linearize the product of the transfer matrices H%:éi Ty
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e we control the change of the norm [|Y;,,[|/|Y%, ]| using that

Yy, and Yy, remain in the (1,0) direction.
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e we can linearize the product of the transfer matrices Hkiél Ty

Yo, = (Siv1 +Git1)Ye,.
N~
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Yy, and Yy, remain in the (1,0) direction.
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1Yo /11 Ye ll =1+ O(g) + % + second order terms,

with Eg; = 0, Varg; = O(1).
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Oscillatory regime

On each block [¢;, £;41],
e we can linearize the product of the transfer matrices H%:éi Ty
Yo > (Siv1+Gir1)Ys,.
——

——
signal noise

e we control the change of the norm [|Y;,,[|/|Y%, ]| using that

Yy, and Yy, remain in the (1,0) direction.

1 .
1Yo /11 Ye ll =1+ O(g) + % + second order terms,

with Eg; = 0, Varg; = O(1).
This allows us to represent log ||Y,,|| as a drifted martingale, and
the CLT follows.
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Fluctuations of the characteristic polynomial
(A.-Butez-Zeitouni, 20):

Let z € (—=2,2) \ {0}. Define ¢,, = log|det(z1l,, — J,,/\/n)|.

log|én(2)] =108 Cnl2) _ yrg 1),

vlogn/2 n—+00
where
22 1
logCh(z) =n <Z — 5) +aylogn + O(1).
—_———

[ log(z—2)dps ()

e The case z = 0 exhibits special symmetries: see (Tao,Vu 11').

e (Bourgade-Mody-Pain): Multi-dimensional CLT for
(B-ensembles with generic potential.

e (Lambert-Paquette): CLT at the edge for Gaussian

(B-ensembles.
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Further questions

e Multi-dimensional CLT (work in progress)
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Further questions

e Multi-dimensional CLT (work in progress)

e Can one strengthen the CLT to get a control on exponential
moments? — key to obtaining estimate on the maximum

zé?%iﬂ Oog‘¢n(z)|_’EHOg’¢n(Z)D'
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Thank you !
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