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Gaussian Ensembles
Let X a GOE or GUE matrix (β = 1, 2),

X ∝ e−
nβ
4 trH2

d`(β)
n (H),

where `(β)
n is the Lebesgue measure on the space of symmetric

(β = 1) or Hermitian matrices (β = 2).

In probability,

(Wigner) µn = 1
n

n∑
i=1

δλi ⇒
n→+∞

µσ,

where λ1, . . . , λn are the eigenvalues of X and

µσ = 1
2π
√

4− x21|x|≤2dx.

How does µn fluctuate around µσ?
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Central limit theorems
The linear statistics associated to f : R→ R is the observable∫

fdµn = 1
n

n∑
i=1

f(λi).

What are the fluctuations of
∫
fdµn?

(Guionnet-Zeitouni): If f is a L-Lipschitz function, for any t > 0,

P
( ∫

fd(µn − Eµn) > t
)
≤ e−

Cn2t2
L2 .

For Lipschitz functions,

n

∫
fd(µn − Eµn) is tight. (1)

In sharp contrast with the i.i.d (Xi)i case where for
µ̂n = 1

n

∑n
i=1 δXi , and f bounded,

√
n

∫
fd(µ̂n − Eµ̂n) is tight.

(1) is the manifestation of cancellations happening due to the
rigidity of the eigenvalues.
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Fluctuations of smooth functions

(Johansson, 98’): For a smooth function f ,

n

∫
fd(µn − Eµn) ⇒

n→+∞
N (0, σ(f)2),

Variance structure:

σ(f)2 = 1
4π2

∫ 2

−2

f(t)√
4− t2

( ∫ 2

−2

f ′(s)
√

4− s2

t− s
ds
)
dt.

Expression of the centering:

n

∫
fdEµn = n

∫
fdµσ +

( 2
β
− 1

) ∫
fdνβ + o(1),

with νβ a signed measure supported on [−2, 2].
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Fluctuations of linear statistics
• Smooth functions

Var
(
n

∫
fdµn

)
� 1.

• Non-smooth functions: f interval indicator function

Var
(
n

∫
fdµn

)
� logn,

(Gustavsson): GOE, GUE case.
(Boa, Pan, Zhou): Hermitian Wigner matrices

with 4 moments matching the GUE.
(Shcherbina): β-ensembles with polynomial potential, β = 1, 2, 4.

For z ∈ (−2, 2), f = log |z − .|, what are the fluctuations of

n

∫
fdµn = log |det(zIn −X)|, X GUE matrix?
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Variance of the log determinant: heuristics
As a matter of fact

Var(log |φn(z)|) � logn.

6/23



Variance of the log determinant: heuristics
As a matter of fact

Var(log |φn(0)|) � logn.

6/23



Variance of the log determinant: heuristics
log |φn(0)| =

∑n
i=1 log |λi|

0−2 2λj

1/n

6/23



Variance of the log determinant: heuristics
log |φn(0)| =

∑n
i=1 log |λi|

−2 2λj

1/n

Typically no eigenvalues in an interval of length 1/n around 0.

6/23



Variance of the log determinant: heuristics
log |φn(0)| =

∑n
i=1 log |λi| = log |φn(i/n)|+O(1) (variance-wise).

−2 2λj

i/n

1/n

Typically no eigenvalues in an interval of length 1/n around 0.
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Variance of the log determinant: heuristics

log |φn(i/n)| =
N∑
k=0

(
log |φn(i2−(k+1))|−log |φ(i2−k)|

)
+log |φn(i)|.

−2 20 λj

i/n

i

i2−k

i2−(k+1)
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Variance of the log determinant: heuristics

log |φn(i2−(k+1))| − log |φ(i2−k)| =
∫
fkdµn, σ(fk)2 � 1.

0−2 2

i/n

i

i2−k

i2−(k+1)

−K2−k −ε2−k K2−kε2−k
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Variance of the log determinant: heuristics
With N � logn,

log |φn(i/n)| = log |φn(i)|+
N−1∑
k=0

(
log |φn(i2−(k+1))|−log |φ(i2−k)|

)
For a fixed k,

(Johansson) Var
(

log
∣∣∣φn(i2−(k+1))
φn(i2−k)

∣∣∣) ∼ σ(fk)2 � 1.

One expect the cross terms to vanish, which gives

Var
(

log |φn(i/n)|
)
� logn,

and thus Var(log |φn(0)|) � logn.
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The field of the characteristic polynomial

Let X a GUE matrix and φn(z) = det(zIn −X).

z ∈ [−2, 2] 7→ |φn(z)|e−E log |φn(z)|, n = 60
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The maximum modulus of the characteristic polynomial

Conjecture (Fydororov- Simm, 15’):

max
z∈[−2,2]

(
log |φn(z)| − E log |φn(z)|

)
− logn+ 3

4 log logn ⇒
n→+∞

ξ,

where the law of ξ is explicit.

• (Lambert-Paquette) identified the logn term for a certain
class of unitarily invariant Hermitian matrices.
• The 3

4 is the manifestation of the correlation structure:
log |φn(z)| is a log-correlated field:

If X1, . . . , Xn are i.i.d N (0, 1
2 logn), then w.h.p

max
1≤i≤n

Xi = logn− 1
4 log logn+O(1),
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The maximum modulus of the characteristic polynomial

Let φUn be the characteristic polynomial of a Haar distributed
unitary matrix.
Conjecture (Fydororov- Hiary- Keating, 12’):

max
|z|=1

log |φUn(z)| − logn+ 3
4 log logn ⇒

n→+∞
η,

where the law of η is explicit.

• (Arguin-Belus-Bourgade, 17’) identified the logn term.
• (Paquette-Zeitouni, 18’) obtained the logn− 3

4 log logn
developpement.
• (Chahabi-Madaule-Najnudel, 18’) proved the tightness for the

Circular β Ensemble.
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Gaussian β-Ensembles
Let β > 0. The probability measure Pn,β on Rn,

dPn,β = Z−1
n,β

∏
i<j

|λi − λj |βe−
nβ
4
∑n

i=1 λ
2
i

n∏
i=1

dλi.

is the eigenvalues distribution of the
• GOE (β = 1), GUE (β = 2), GSE (β = 4).
• random Jacobi matrix with independent parameters (ai), (bj)

1√
n



bn an−1

an−1

a1

a1 b1


,

bj ∼ N (0, 1)
ai ∼ Xjβ.
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Random Jacobi matrices

Jn =



bn an−1

an−1

a1

a1 b1


.

Assumptions: (aj),(bk) are independent,
1. Ebk = 0, Var(bk) = v +O(1/k).
2. There exists gj such that Egj = 0, Vargj = v +O(1/j),

a2
j = j +O(1) +

√
jgj .

3. aj and bk have absolutely continuous laws w.r.t Lebesgue.
4. gj and bk have a finite exponential moment.

Gaussian β-ensembles satisfy these assumptions with v = 2/β.
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Fluctuations of the characteristic polynomial

(A.-Butez-Zeitouni, 20):

Let z ∈ (−2, 2) \ {0}. Define φn = log | det(zIn − Jn/
√
n)|.

log |φn(z)| − logCn(z)√
v logn/2

⇒
n→+∞

N (0, 1).

where

logCn(z) = n
(z2

4 −
1
2
)

︸ ︷︷ ︸∫
log(z−x)dµσ(x)

+avlogn+O(1).
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Fluctuations of the characteristic polynomial
(A.-Butez-Zeitouni, 20):

Let z ∈ (−2, 2) \ {0}. Define φn = log | det(zIn − Jn/
√
n)|.

log |φn(z)| − logCn(z)√
v logn/2

⇒
n→+∞

N (0, 1).

where

logCn(z) = n
(z2

4 −
1
2
)

︸ ︷︷ ︸∫
log(z−x)dµσ(x)

+avlogn+O(1).

• The case z = 0 exhibits special symmetries: see (Tao,Vu 11’).
• (Bourgade-Mody-Pain): Multi-dimensional CLT for
β-ensembles with generic potential.
• (Lambert-Paquette): CLT at the edge for Gaussian
β-ensembles.
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The three-terms recursion
The sequence pk = det(z

√
nIk − Jk) satisfies the recursion

∀k ∈ {1, . . . , n}, pk+1 = (z
√
n− bk+1)pk − a2

k︸︷︷︸
'k

pk−1,

Choose the normalization ψk = pk/
√
k!. We get the new recursion:

ψk+1 =
(
z

√
n

k
− bk√

k

)
ψk −

a2
k−1
k︸ ︷︷ ︸
'1

ψk−1.

Equivalently, if Xk = (ψk, ψk−1),

Xk+1 = TkXk, Tk =

z√n
k −

bk√
k
−a2

k−1
k

1 0

 .
The dynamics will depend on the spectrum of the matrices Tk.
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Spectrum of the transfer matrix

Tk =

z√n
k −

bk√
k
−a2

k−1
k

1 0

 , ETk =
(
z
√

n
k −1

1 0

)
,

Note that det(ETk) = 1.
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Scalar regime
For k ≤ k0, the recursion is

∀k ∈ {1, . . . , n}, ψk+1 =
(
z

√
n

k
− bk+1√

k

)
ψk −

a2
k

k
ψk−1.

We take the normalization such that ψ ≡ 1 is solution of the
deterministic recursion:

ψ̃k =
( k∏
i=1

λ−1
j

)
ψk,

where λk is the top eigenvalue of ETk.
This has the effet of changing the top eigenvalue of ETk to 1 and
top eigenvector to (1, 1).
I We show that ψ̃ remains close to the direction (1, 1)
I We linearize the equation around the stable solution ψ̃ ≡ 1,

leading to a recursion of order 1.

16/23



Scalar regime
For k ≤ k0, the recursion is

∀k ∈ {1, . . . , n}, ψk+1 =
(
z

√
n

k
− bk+1√

k

)
ψk −

a2
k

k
ψk−1.

We take the normalization such that ψ ≡ 1 is solution of the
deterministic recursion:

ψ̃k =
( k∏
i=1

λ−1
j

)
ψk,

where λk is the top eigenvalue of ETk.

This has the effet of changing the top eigenvalue of ETk to 1 and
top eigenvector to (1, 1).
I We show that ψ̃ remains close to the direction (1, 1)
I We linearize the equation around the stable solution ψ̃ ≡ 1,

leading to a recursion of order 1.

16/23



Scalar regime
For k ≤ k0, the recursion is

∀k ∈ {1, . . . , n}, ψk+1 =
(
z

√
n

k
− bk+1√

k

)
ψk −

a2
k

k
ψk−1.

We take the normalization such that ψ ≡ 1 is solution of the
deterministic recursion:

ψ̃k =
( k∏
i=1

λ−1
j

)
ψk,

where λk is the top eigenvalue of ETk.
This has the effet of changing the top eigenvalue of ETk to 1

and
top eigenvector to (1, 1).
I We show that ψ̃ remains close to the direction (1, 1)
I We linearize the equation around the stable solution ψ̃ ≡ 1,

leading to a recursion of order 1.

16/23



Scalar regime
For k ≤ k0, the recursion is

∀k ∈ {1, . . . , n}, ψk+1 =
(
z

√
n

k
− bk+1√

k

)
ψk −

a2
k

k
ψk−1.

We take the normalization such that ψ ≡ 1 is solution of the
deterministic recursion:

ψ̃k =
( k∏
i=1

λ−1
j

)
ψk,

where λk is the top eigenvalue of ETk.
This has the effet of changing the top eigenvalue of ETk to 1 and
top eigenvector to (1, 1).
I We show that ψ̃ remains close to the direction (1, 1)

I We linearize the equation around the stable solution ψ̃ ≡ 1,
leading to a recursion of order 1.

16/23



Scalar regime
For k ≤ k0, the recursion is

∀k ∈ {1, . . . , n}, ψk+1 =
(
z

√
n

k
− bk+1√

k

)
ψk −

a2
k

k
ψk−1.

We take the normalization such that ψ ≡ 1 is solution of the
deterministic recursion:

ψ̃k =
( k∏
i=1

λ−1
j

)
ψk,

where λk is the top eigenvalue of ETk.
This has the effet of changing the top eigenvalue of ETk to 1 and
top eigenvector to (1, 1).
I We show that ψ̃ remains close to the direction (1, 1)
I We linearize the equation around the stable solution ψ̃ ≡ 1,

leading to a recursion of order 1.

16/23



Oscillatory regime
ETk has eigenvalues eiθk , e−iθk .

Therefore,

ETk = Q−1
k RθkQk, Rθk rotation matrix of angle θk

Naturally, we look at the recursion for Yk = QkXk:
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ETk has eigenvalues eiθk , e−iθk . Therefore,

ETk = Q−1
k RθkQk, Rθk rotation matrix of angle θk

Naturally, we look at the recursion for Yk = QkXk:

Yk+1 = (Rθk+1 +Wk+1)Qk+1Q
−1
k Yk

' (Rθk+1 +Wk+1︸ ︷︷ ︸
noise

+ ∆k+1︸ ︷︷ ︸
drift

)Yk.

k0 n
0

θ(z)

k

θk

E‖Wk‖2 �
1

k − k0

‖∆k‖ �
1

k − k0
Rθk faster and faster
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Oscillatory regime

A trajectory of Yk, k0 ≤ k ≤ n, n = 2000
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Analysis of the recursion on a section
Output from the scalar regime: Initial condition of the oscillatory
regime Yk0 is close to the direction (1, 0).

We define “return times” of the recursion in the direction (1, 0)
k0 ≤ `1 ≤ . . . ≤ `m.

0

Yk0 Y`i Y`i+1

ti+1ti
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Oscillatory regime

On each block [`i, `i+1],

• we can linearize the product of the transfer matrices
∏`i+1
k=`i Tk

Y`i+1 ' (Si+1︸ ︷︷ ︸
signal

+Gi+1︸ ︷︷ ︸
noise

)Y`i .

• we control the change of the norm ‖Y`i+1‖/‖Y`i‖ using that
Y`i and Y`i+1 remain in the (1, 0) direction.

‖Y`i+1‖/‖Y`i‖ = 1 +O
(1
i

)
+ gi√

i
+ second order terms,

with Egi = 0, Vargi = O(1).
This allows us to represent log ‖Yn‖ as a drifted martingale, and
the CLT follows.

20/23



Oscillatory regime

On each block [`i, `i+1],
• we can linearize the product of the transfer matrices

∏`i+1
k=`i Tk

Y`i+1 ' (Si+1︸ ︷︷ ︸
signal

+Gi+1︸ ︷︷ ︸
noise

)Y`i .

• we control the change of the norm ‖Y`i+1‖/‖Y`i‖ using that
Y`i and Y`i+1 remain in the (1, 0) direction.

‖Y`i+1‖/‖Y`i‖ = 1 +O
(1
i

)
+ gi√

i
+ second order terms,

with Egi = 0, Vargi = O(1).
This allows us to represent log ‖Yn‖ as a drifted martingale, and
the CLT follows.

20/23



Oscillatory regime

On each block [`i, `i+1],
• we can linearize the product of the transfer matrices

∏`i+1
k=`i Tk

Y`i+1 ' (Si+1︸ ︷︷ ︸
signal

+Gi+1︸ ︷︷ ︸
noise

)Y`i .

• we control the change of the norm ‖Y`i+1‖/‖Y`i‖ using that
Y`i and Y`i+1 remain in the (1, 0) direction.

‖Y`i+1‖/‖Y`i‖ = 1 +O
(1
i

)
+ gi√

i
+ second order terms,

with Egi = 0, Vargi = O(1).
This allows us to represent log ‖Yn‖ as a drifted martingale, and
the CLT follows.

20/23



Oscillatory regime

On each block [`i, `i+1],
• we can linearize the product of the transfer matrices

∏`i+1
k=`i Tk

Y`i+1 ' (Si+1︸ ︷︷ ︸
signal

+Gi+1︸ ︷︷ ︸
noise

)Y`i .

• we control the change of the norm ‖Y`i+1‖/‖Y`i‖ using that
Y`i and Y`i+1 remain in the (1, 0) direction.

‖Y`i+1‖/‖Y`i‖ = 1 +O
(1
i

)
+ gi√

i
+ second order terms,

with Egi = 0, Vargi = O(1).

This allows us to represent log ‖Yn‖ as a drifted martingale, and
the CLT follows.

20/23



Oscillatory regime

On each block [`i, `i+1],
• we can linearize the product of the transfer matrices

∏`i+1
k=`i Tk

Y`i+1 ' (Si+1︸ ︷︷ ︸
signal

+Gi+1︸ ︷︷ ︸
noise

)Y`i .

• we control the change of the norm ‖Y`i+1‖/‖Y`i‖ using that
Y`i and Y`i+1 remain in the (1, 0) direction.

‖Y`i+1‖/‖Y`i‖ = 1 +O
(1
i

)
+ gi√

i
+ second order terms,

with Egi = 0, Vargi = O(1).
This allows us to represent log ‖Yn‖ as a drifted martingale, and
the CLT follows.

20/23



Fluctuations of the characteristic polynomial
(A.-Butez-Zeitouni, 20):

Let z ∈ (−2, 2) \ {0}. Define φn = log | det(zIn − Jn/
√
n)|.

log |φn(z)| − logCn(z)√
v logn/2

⇒
n→+∞

N (0, 1).

where

logCn(z) = n
(z2

4 −
1
2
)

︸ ︷︷ ︸∫
log(z−x)dµσ(x)

+avlogn+O(1).

• The case z = 0 exhibits special symmetries: see (Tao,Vu 11’).
• (Bourgade-Mody-Pain): Multi-dimensional CLT for
β-ensembles with generic potential.
• (Lambert-Paquette): CLT at the edge for Gaussian
β-ensembles.

21/23



Further questions

• Multi-dimensional CLT (work in progress)
• Can one strengthen the CLT to get a control on exponential

moments? → key to obtaining estimate on the maximum

max
z∈[−2,2]

(
log |φn(z)| − Elog |φn(z)|

)
.
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Thank you !
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