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Coulomb kernel

—|x| d=
—log|x| d

Ix] -
sz d2

Fundamental solution of Laplacian

—Ag = cq0p (in the sense of distributions)

— solution g = Coulomb kernel — solve Poisson’s equation.

Also consider g = — log |x| for d = 1, log gas



One-component Coulomb gas / plasma

»d>1, N>1

» Xy = (x1,...,xy) positions of point particles in RY with
same charge +1.

» V confining potential, smooth and large at oo

» Total energy of the system in state Xy

N

Hy(Xn) ;:% > gl x)+ > N-V(x).

1<i#j<N i=1
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»d>1, N>1

» Xy = (x1,...,xy) positions of point particles in RY with
same charge +1.

v

V' confining potential, smooth and large at co

v

Total energy of the system in state Xy

N

Hy(Xn) ;:% > gl x)+ > N-V(x).

1<i#j<N i=1

v

(Canonical) Gibbs measure

1
dPng(x1,...,xn) = Zn s exp (—SHN(Xn))dx1 ... xn

Zn p= partition function



Motivations / history

» In RMT

» Ginibre ensemble: random N x N with complex iid Gaussian
entries. Law of eigenvalues is

ocexp( Z log(x +NZ\X/\>

1<i#<N

= a 2D Coulomb gas at 8 = 2 (Dyson, Mehta, Wigner)
» GOE and GUE: law of eigenvalues is a 1D log gas with
V(x) = |x]?, B=1,2.
» RMT model for 1D log gas / S-ensemble for all 3
Dumitriu-Edelman.



Motivations / history

» In RMT

» Ginibre ensemble: random N x N with complex iid Gaussian
entries. Law of eigenvalues is

ocexp( Z log(x +NZ\X/\>

1<i#<N

= a 2D Coulomb gas at 8 = 2 (Dyson, Mehta, Wigner)
» GOE and GUE: law of eigenvalues is a 1D log gas with
V(x) = |x]?, B=1,2.
» RMT model for 1D log gas / S-ensemble for all 3
Dumitriu-Edelman.

» in quantum mechanics: fractional Hall effet via the “plasma
analogy” Laughlin <> 2D log gas



Motivations / history

» In RMT

» Ginibre ensemble: random N x N with complex iid Gaussian
entries. Law of eigenvalues is

ocexp( Z log(x +NZ\X/\>

1<i#<N

= a 2D Coulomb gas at 8 = 2 (Dyson, Mehta, Wigner)
» GOE and GUE: law of eigenvalues is a 1D log gas with
V(x) = |x]?, B=1,2.
» RMT model for 1D log gas / S-ensemble for all 3
Dumitriu-Edelman.
» in quantum mechanics: fractional Hall effet via the “plasma

analogy” Laughlin <> 2D log gas

» other 1D quantum mechanics models, self-avoiding paths in
probability, see [Forrester '10] <+ 1D log gas



» in statistical physics: plasmas, astrophysics <+ d > 2 classical
Coulomb gas
[Lieb-Lebowitz '72,Lieb-Narnhofer '75, Penrose-Smith '72,
Sari-Merlini '76, Kiessling-Spohn '99, Alastuey-Jancovici '81,
Jancovici-Lebowitz-Manificat’ 93...]

» d = 2 logarithmic, “two-component plasma™: particles of +
charges ~~ theoretical physics models (XY, sine-Gordon,
Kosterlitz-Thouless)

[Gunson-Panta '77, Frohlich-Spencer '81, Leblé-S-Zeitouni
'17]



» in statistical physics: plasmas, astrophysics <+ d > 2 classical
Coulomb gas
[Lieb-Lebowitz '72,Lieb-Narnhofer '75, Penrose-Smith '72,
Sari-Merlini '76, Kiessling-Spohn '99, Alastuey-Jancovici '81,
Jancovici-Lebowitz-Manificat’ 93...]

» d = 2 logarithmic, “two-component plasma™: particles of +
charges ~~ theoretical physics models (XY, sine-Gordon,
Kosterlitz-Thouless)

[Gunson-Panta '77, Frohlich-Spencer '81, Leblé-S-Zeitouni
'17]
Two technical challenges:
1. Singularity at the origin, and particles living in the continuum.
2. Long-range interaction.

+o0o
/ g(r)ri~tdr = +o0.
0

2.1 — The effect of one particle at 0 is felt everywhere in the
system.

2.2 — Interaction energy is not spatially additive (even up to a
small error).
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[ Recall Hy = 3 37, 8(xi — x1) + N 32, V()]

Limit of empirical measure



Global behavior

[ Recall Hy = 3 37, 8(xi — x1) + N 32, V()]

Limit of empirical measure

wy = Frostman equilibrium measure is the unique minimizer
among probabilities of

£ =5 /R =) () dly) + / V(x) dpu(x).

Rd



Equilibrium measure

Euler-Lagrange equations associated to the minimization problem
show that: .
wy = <AV> 1s.
4

» Finding X is challenging.

» If V(x) = |x|?, Coulomb case, then

1
uy = —1pg, (circle law)
Cd



Equilibrium measure

Euler-Lagrange equations associated to the minimization problem
show that: .
wy = <AV> 1s.
4

» Finding X is challenging.

» If V(x) = |x|?, Coulomb case, then

1
uy = —1pg, (circle law)
Cd

» d=1,g=—log|x|, V(x) = x? then

1
pv(x) = Z\M — x2 1|y <2 (semicircle law)



Comments

» The convergence jiy — juv holds at speed SN2, in the sense
of a Large Deviations Principle: [Petz-Hiai '98, Ben
Arous-Guionnet '97, Ben Arous -Zeitouni '98...]

Py, (in € B, €)) = exp (~BN*(E(n) — E(nv))) »

» The support and the density depend strongly on V, but not
on !
» Could take 3 small (high temperature) as long as N5 — +oc.

» Global scale: system of N particles in X compact,
scalelength ~ 1.

» Local/micro scale: finite number of particles, scale ~ N—1/d,

» Mesoscopic scales: between N~1/9 and 1.



Questions

We know fiy — py at speed SN?. What's next?

Fluctuations
For ¢ : RY — R test function:

» Measure the size of fiy — v in a dual sense.

size of / o(x) (dfin(x) — dpv(x)) ?

» What if ¢ is smooth and lives at some mesoscopic scale?

» What if ¢ is the indicator function of a mesoscopic domain?



Local arrangement of points

Pick X inside ¥ and zoom in by a factor N*/¢ around X?.

>

>

>

What do we see? At the limit N — oo a point process?
Does it depend on 37

How much does it depend on py (universality)?

Can we characterize the local arrangement in a variational
way?

Is there a phase-transition as [ changes?

Describe the 5 — 0 and 8 — oo limits?



Free energy expansions

Asymptotics of free energy —% log Zy,g as N — oo?
Easy:
1

B

Next order terms?

log Z,5 ~ N*E(pv) + o(N?)



Free energy expansions

Asymptotics of free energy —% log Zy,g as N — oo?
Easy:

1
3 log Zn g ~ N?E(uv) + o(N?)

Next order terms?

Link with fluctuations: Laplace transform of linear statistics

Epy 4

N
exp(tN Z go(x,-))]

i=1

N
Z/\ll exp( ﬁZg )<J+NZVX, tNZ(p(X,-))dXN

i#j i=1 i=1
_ gV +ty)
Zns(V)



1d log-gas: fluctuations

Theorem (CLT for fluctuations)
Let B > 0. Take ¢ smooth enough, assume V is nice. Then:

N

> 00) = N [ o) = N [ o) (dn(x) — div ()
i=1

has a Gaussian limit.

True at mesoscopic scales i.e. ¢ = ¢(x/l) for some ¢ >> 1/N.
No LN normalization!

Johansson,Borot-Guionnet, Bourgade-Erdos-Yau, Bekerman-Lodhia, M.
Shcherbina, Borot-Guionnet, Bekerman-Leblé-S

Theorem (Expansion of free energy to all orders)

1 C
— 5108 Zn s = N2E(uy) + Nlog N + AgN + Bg + =

Shcherbina, Borot-Guionnet



1d log-gas: existence of limiting point processes

Theorem (Limiting point process)

Take V' quadratic, duy(x) = %\/4 — x? (semi-circle) and
Y = [-2,2]. Consider the zoomed point configuration:

N
Z IN(x—%)
=i

» If x = %2, limiting point process Airy-f
» If x is inside (—2,2), limiting point process Sine-3.

Ramirez-Rider-Virdg (edge), Valké-Virdg & Killip-Stoiciu (bulk).
CLT for linear statistics of Sine-5 Leblé



1d log-gas: existence of limiting point processes

Theorem (Limiting point process)
Take V' quadratic, duy(x) = %\/4 — x? (semi-circle) and

Y = [-2,2]. Consider the zoomed point configuration:

N
Z IN(x—%)
=i

» If x = %2, limiting point process Airy-f
» If x is inside (—2,2), limiting point process Sine-3.

Ramirez-Rider-Virdg (edge), Valké-Virdg & Killip-Stoiciu (bulk).
CLT for linear statistics of Sine-5 Leblé
Theorem (Universality)

The local statistics depend on V' only through a rescaling by the
mean density py .

Bourgade-Erdos-Yau-Yin, Bekerman-Figalli-Guionnet.



What about Coulomb gases (in d > 2)?



Simulation of 2D log gas for V(x) = |x|?

g = —log, V = |x|?, 100 points, 3 € [0.7,400] (simul: Thomas
Leblé)
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Numerical observations

» The local behavior depends strongly on 5. Order increases
with S.

» The local behavior depends on py, only through a scaling
(universality).

» For d = 2,3, a phase transition (?) happens at finite 5 (1507)
(computational physics literature in the 80's:
Choquard-Clerouin, Alastuey-Jancovici,
Caillol-Levesque-Weis-Hansen).

» As 3 — oo, for d = 2, the points arrange themselves on a
triangular lattice (Wigner crystal, ~ Abrikosov lattice in
superconductivity).

Proofs?

No proof of phase transition, no proof of Abrikosov conjecture. No
good order parameter. No universality for general ...



The case of the Ginibre ensemble d =2, 8 =2, V = |x|?

It is determinantal i.e. the k-point correlation function can be
computed as k X k determinants.
» CLT for fluctuations at all scales Rider-Virag,
Ameur-Hedenmalm-Makarov, Shirai
» Universality in V

» Existence of a limiting point process: the infinite Ginibre

process.
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The case of the Ginibre ensemble d =2, 3 =2, V = |x|?

It is determinantal i.e. the k-point correlation function can be
computed as k X k determinants.

>

CLT for fluctuations at all scales Rider-Virag,
Ameur-Hedenmalm-Makarov, Shirai

» Universality in V

» Existence of a limiting point process: the infinite Ginibre

process.

Many quantitites can be estimated, or even explicitly
computed.

Number-rigidity of the Ginibre p.p. : the knowledge of the
(infinite) configuration outside a ball determines the number
of points inside almost surely. Ghosh-Peres
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The case of the Ginibre ensemble d =2, 3 =2, V = |x|?

It is determinantal i.e. the k-point correlation function can be
computed as k X k determinants.

» CLT for fluctuations at all scales Rider-Virag,
Ameur-Hedenmalm-Makarov, Shirai

» Universality in V

» Existence of a limiting point process: the infinite Ginibre
process.

» Many quantitites can be estimated, or even explicitly
computed.

» Number-rigidity of the Ginibre p.p. : the knowledge of the
(infinite) configuration outside a ball determines the number
of points inside almost surely. Ghosh-Peres

» Hyperuniformity (a la Torquato):

Var [# points in disk D(0,R)] ~ R as R — oo Shirai

What about general g7 d > 37



A few positive results



CLT for smooth linear statistics in 2D log / Coulomb case

Theorem
Assume d = 2, B > 0 arbitrary fixed, V € C>'. Let o € C>}(X) Then

N

> elx) — N/zsoduv

i=1

converges in law as N — oo to a Gaussian distribution with

1 /1 1 1
=—(=—=- Aplog AV = — Vol?.
mean = on (,8 4) / e var 2mp /Rz| l

~ AL gle_l O — Nuv) converges to the Gaussian Free Field.
The result can be localized with ¢ supported on all mesoscales
0>> N~1/2,

Leblé-S, Bauerschmidt-Bourgade-Nikula-Yau, S, case of ¢
overlapping 02 in Leblé-S.



Local laws in any dimension

Theorem (Armstrong-S. '20)

- Control in exponential moments of energy and of fluctuations of
(nonsmooth) linear statistics in boxes, down to a
temperature-dependent minimal scale ~ N—1/9 max(1, 5~%/?)
- Free energy expansion to next order (existence of thermodynamic
limit) in the case of uniform

(can couple /5 and N)



Local laws in any dimension

Theorem (Armstrong-S. '20)

- Control in exponential moments of energy and of fluctuations of
(nonsmooth) linear statistics in boxes, down to a
temperature-dependent minimal scale ~ N—1/9 max(1, 5~%/?)
- Free energy expansion to next order (existence of thermodynamic
limit) in the case of uniform

(can couple /5 and N)

Corollary

For fixed B, bound on the number of points in microscopic boxes
~> existence of a limit point process after subsequence.



A Large Deviations Principle for limiting point processes

Theorem (Leblé-S, '17, Armstrong-S '20)

For Coulomb or log (or Riesz interactions |x|™°, d —2 <s < d),
there is an LDP for the “empirical field”, averaged at any mesoscale
after zoom by (v (x)N)Y9 around x, at speed N**a with rate
function Fg — min Fpg,

Fs(P) := BW(P) + ent[P|N] N = Poisson 1

W = Coulomb renormalized energy for an infinite point
configuration (jellium)

~> The Gibbs measure concentrates asymptotically on point
processes which minimize Fg

» competition between energy and relative entropy

» 3 < 1 entropy dominates ~~ convergence to Poisson point
process

» 3 >> 1 convergence to minimizers of W



Corollary

Variational characterization of Sine-f3 and Ginibre (minimize
LW + ent).

The jellium energy W (defined in [Sandier-S '12, Rougerie-S '16,
Petrache-S '17]) seems to favor crystalline configurations in low
dimensions

» In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z.

» In dimension d = 8 the minimum of W is achieved by the Eg
lattice and in dimension d = 24 by the Leech lattice:
consequence (by [Petrache-S '19] of the Cohn-Kumar
conjecture proven in
[Cohn-Kumar-Miller-Radchenko-Viazovska '19]



Corollary

Variational characterization of Sine-f3 and Ginibre (minimize
LW + ent).

The jellium energy W (defined in [Sandier-S '12, Rougerie-S '16,
Petrache-S '17]) seems to favor crystalline configurations in low
dimensions

» In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z.

» In dimension d = 8 the minimum of W is achieved by the Eg
lattice and in dimension d = 24 by the Leech lattice:
consequence (by [Petrache-S '19] of the Cohn-Kumar
conjecture proven in
[Cohn-Kumar-Miller-Radchenko-Viazovska '19]

» the Cohn-Kumar in dimension 2 implies that min W is
achieved at the triangular lattice, but remains open



Free energy expansion with a rate (Coulomb any d)

Theorem (Leblé-S '17, S '20)
Lets=d — 2.

log Zn g = —BNE(uv) + (fNIog N) 14—

_N (1 - f) (/Mv Iogﬂv) s

=N [ B )y + BONHE)

. _ 1
with € = 3 and

fa(8) = min  BW +ent(:|M)
stationary p.p.
Analogous result for log and Riesz interactions.
To be compared with [Borot-Guionnet '13, Shcherbina '13] (d =1,
log), [Wiegmann-Zabrodin '09] (d = 2, log) (formab)



Main ingredients

» The electric approach

» The screening procedure ~~ almost additivity of the (free)
energy over boxes

» A bootstrap on scales for local laws + free energy
expansion, which allow to perform the screening down to
smaller and smaller scales, and improve local laws + free
energy expansion, etc

» Transport approach for the CLT



The electric approach

» Exact splitting of the energy

N

Hy(Xn) = NE(uv) + N~ Cv(x)

i=1

+;//cg(x_ (25 —N,uv> (Zéx, - Nuv) y)

F(Xnv)

» Define the electric potential

h(x) = /g(x —) <Z Ox; — Nuv) (¥)
» use Coulomb

N
—Ah=cy (Z Oy, — NMV> !

i=1



» after integration by parts

1
FOwv) = — [ 1VAP

(except needs to be renormalized via truncations because of
the self-interaction removal...)
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after integration by parts

1
FOwv) = — [ 1VAP

(except needs to be renormalized via truncations because of
the self-interaction removal...)

the energy becomes local in the electric potential h. Can
hope to compute it additively over boxes (despite long range
nature etc)

Boundary conditions for solving h over a box will be
important: use both Neumann and Dirichlet boundary
conditions for solving provides sub/superadditive energy
quantities

Screening procedure allows to compare the two and show they
are close (up to a modification of the configuration) hence
almost additivity



» After blow-up at suitable scale + limit N — oo

» formally

~Ah= Y 6,—1  (jellium)

infinite

W = Iim][ |V h|?
R—o00 DR



Method of proof for the CLT

» Evaluate
Z(Vy)

Z(V)

where Vi := V + typ, equilibrium measure py,, t =




Method of proof for the CLT

» Evaluate
Z(Vy)

Z(V)
where Vi := V + typ, equilibrium measure py,, t =

» use map ®; that transports py to py,, ®¢ >~ [ + ti). By using
change of variables y; = ®(x;), we are led to compute

Epy 5 (FN(Pe(Xn), Pe#uv) — Fn(Xn, v))

(replaces “loop equations” / Dyson-Schwinger)



Method of proof for the CLT

» Evaluate
Z(Vr)
Z(V)
where Vi := V + typ, equilibrium measure py,, t =

» use map ®; that transports py to py,, ®¢ >~ [ + ti). By using
change of variables y; = ®(x;), we are led to compute

Epy 5 (FN(Pe(Xn), Pe#uv) — Fn(Xn, v))

(replaces “loop equations” / Dyson-Schwinger)
» use linearization in t small for the rhs + expansion of log Zyy 3
with a rate to evaluate this with o(1) error when t = 7/N.
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