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Coulomb kernel

g(x) =


−|x | d = 1

− log |x | d = 2
1
|x | d = 3

1
|x |d−2 d ≥ 3.

Fundamental solution of Laplacian

−∆g = cdδ0 (in the sense of distributions)

→ solution g = Coulomb kernel → solve Poisson’s equation.

Also consider g = − log |x | for d = 1, log gas



One-component Coulomb gas / plasma

I d ≥ 1, N ≥ 1

I XN := (x1, . . . , xN) positions of point particles in Rd with
same charge +1.

I V confining potential, smooth and large at ∞
I Total energy of the system in state XN

HN(XN) :=
1

2

∑
1≤i 6=j≤N

g(xi − xj ) +
N∑

i=1

N · V (xi ).

I (Canonical) Gibbs measure

dPN,β(x1, . . . , xN) =
1

ZN,β
exp (−βHN(XN))dx1 . . . xN

ZN,β= partition function
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Motivations / history

I In RMT
I Ginibre ensemble: random N × N with complex iid Gaussian

entries. Law of eigenvalues is

∝ exp
( ∑

1≤i 6=j≤N

log(xi − xj ) + N
N∑

i=1

|xi |2
)

= a 2D Coulomb gas at β = 2 (Dyson, Mehta, Wigner)
I GOE and GUE: law of eigenvalues is a 1D log gas with

V (x) = |x |2, β = 1, 2.
I RMT model for 1D log gas / β-ensemble for all β

Dumitriu-Edelman.

I in quantum mechanics: fractional Hall effet via the “plasma
analogy” Laughlin ↔ 2D log gas

I other 1D quantum mechanics models, self-avoiding paths in
probability, see [Forrester ’10] ↔ 1D log gas
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I in statistical physics: plasmas, astrophysics ↔ d ≥ 2 classical
Coulomb gas
[Lieb-Lebowitz ’72,Lieb-Narnhofer ’75, Penrose-Smith ’72,
Sari-Merlini ’76, Kiessling-Spohn ’99, Alastuey-Jancovici ’81,
Jancovici-Lebowitz-Manificat’ 93...]

I d = 2 logarithmic, “two-component plasma”: particles of ±
charges  theoretical physics models (XY, sine-Gordon,
Kosterlitz-Thouless)
[Gunson-Panta ’77, Frohlich-Spencer ’81, Leblé-S-Zeitouni
’17]

Two technical challenges:

1. Singularity at the origin, and particles living in the continuum.
2. Long-range interaction.ˆ +∞

0
g(r)r d−1dr = +∞.

2.1 → The effect of one particle at 0 is felt everywhere in the
system.

2.2 → Interaction energy is not spatially additive (even up to a
small error).
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’17]

Two technical challenges:

1. Singularity at the origin, and particles living in the continuum.
2. Long-range interaction.ˆ +∞

0
g(r)r d−1dr = +∞.

2.1 → The effect of one particle at 0 is felt everywhere in the
system.

2.2 → Interaction energy is not spatially additive (even up to a
small error).



Global behavior

[ Recall HN = 1
2

∑
i 6=j g(xi − xj ) + N

∑
i V (xi )]

Limit of empirical measure

µ̂N :=
1

N

N∑
i=1

δxi ?

µV = Frostman equilibrium measure is the unique minimizer
among probabilities of

E(µ) =
1

2

ˆ
Rd×Rd

g(x − y) dµ(x) dµ(y) +

ˆ
Rd

V (x) dµ(x).
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Equilibrium measure

Euler-Lagrange equations associated to the minimization problem
show that:

µV =

(
1

4π
∆V

)
1Σ.

I Finding Σ is challenging.

I If V (x) = |x |2, Coulomb case, then

µV =
1

cd
1B1 (circle law)

I d = 1, g = − log |x |, V (x) = x2 then

µV (x) =
1

2π

√
4− x2 1|x |<2 (semicircle law)
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Comments

I The convergence µ̂N → µV holds at speed βN2, in the sense
of a Large Deviations Principle: [Petz-Hiai ’98, Ben
Arous-Guionnet ’97, Ben Arous -Zeitouni ’98...]

PN,β (µ̂N ∈ B(µ, ε)) ' exp
(
−βN2(E(µ)− E(µV ))

)
,

I The support and the density depend strongly on V , but not
on β!

I Could take β small (high temperature) as long as Nβ → +∞.

I Global scale: system of N particles in Σ compact,
scalelength ∼ 1.

I Local/micro scale: finite number of particles, scale ∼ N−1/d .

I Mesoscopic scales: between N−1/d and 1.



Questions

We know µ̂N → µV at speed βN2. What’s next?

Fluctuations

For ϕ : Rd → R test function:

I Measure the size of µ̂N − µV in a dual sense.

size of

ˆ
ϕ(x) (d µ̂N(x)− dµV (x)) ?

I What if ϕ is smooth and lives at some mesoscopic scale?

I What if ϕ is the indicator function of a mesoscopic domain?



Local arrangement of points

Pick x̄ inside Σ and zoom in by a factor N1/d around x̄?.

I What do we see? At the limit N →∞ a point process?

I Does it depend on β?

I How much does it depend on µV (universality)?

I Can we characterize the local arrangement in a variational
way?

I Is there a phase-transition as β changes?

I Describe the β → 0 and β →∞ limits?



Free energy expansions

Asymptotics of free energy − 1
β log ZN,β as N →∞?

Easy:

− 1

β
log ZN,β ∼ N2E(µV ) + o(N2)

Next order terms?

Link with fluctuations: Laplace transform of linear statistics

EPN,β

[
exp(tN

N∑
i=1

ϕ(xi ))

]

=
1

ZN,β

ˆ
exp

(
−β

∑
i 6=j

g(xi−xj )+N
N∑

i=1

V (xi )+tN
N∑

i=1

ϕ(xi )
)

dXN

=
ZN,β(V + tϕ)

ZN,β(V )
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1d log-gas: fluctuations

Theorem (CLT for fluctuations)

Let β > 0. Take ϕ smooth enough, assume V is nice. Then:

N∑
i=1

ϕ(xi )− N

ˆ
ϕ(x)dµV (x) = N

ˆ
ϕ(x) (d µ̂N(x)− dµV (x))

has a Gaussian limit.
True at mesoscopic scales i.e. ϕ = ϕ̄(x/`) for some ` >> 1/N.

No 1√
N

normalization!
Johansson,Borot-Guionnet, Bourgade-Erdös-Yau, Bekerman-Lodhia, M.

Shcherbina, Borot-Guionnet, Bekerman-Leblé-S

Theorem (Expansion of free energy to all orders)

− 1

β
log ZN,β = N2E(µV ) + N log N + AβN + Bβ +

Cβ
N

+ ....

Shcherbina, Borot-Guionnet



1d log-gas: existence of limiting point processes

Theorem (Limiting point process)

Take V quadratic, dµV (x) = 1
2π

√
4− x2 (semi-circle) and

Σ = [−2, 2]. Consider the zoomed point configuration:
N∑

i=1

δN(xi−x̄)

I If x̄ = ±2, limiting point process Airy-β

I If x̄ is inside (−2, 2), limiting point process Sine-β.

Raḿırez-Rider-Virág (edge), Valkó-Virág & Killip-Stoiciu (bulk).
CLT for linear statistics of Sine-β Leblé

Theorem (Universality)

The local statistics depend on V only through a rescaling by the
mean density µV .

Bourgade-Erdös-Yau-Yin, Bekerman-Figalli-Guionnet.
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What about Coulomb gases (in d ≥ 2)?



Simulation of 2D log gas for V (x) = |x |2
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g = − log, V = |x |2, 100 points, β ∈ [0.7, 400] (simul: Thomas
Leblé)
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Simulation of 2D log gas for V (x) = |x |2
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Numerical observations

I The local behavior depends strongly on β. Order increases
with β.

I The local behavior depends on µV only through a scaling
(universality).

I For d = 2, 3, a phase transition (?) happens at finite β (150?)
(computational physics literature in the 80’s:
Choquard-Clerouin, Alastuey-Jancovici,
Caillol-Levesque-Weis-Hansen).

I As β →∞, for d = 2, the points arrange themselves on a
triangular lattice (Wigner crystal, ∼ Abrikosov lattice in
superconductivity).

Proofs?

No proof of phase transition, no proof of Abrikosov conjecture. No
good order parameter. No universality for general β...



The case of the Ginibre ensemble d = 2, β = 2, V = |x |2

It is determinantal i.e. the k-point correlation function can be
computed as k × k determinants.
I CLT for fluctuations at all scales Rider-Virág,

Ameur-Hedenmalm-Makarov, Shirai
I Universality in V
I Existence of a limiting point process: the infinite Ginibre

process.

I Many quantitites can be estimated, or even explicitly
computed.

I Number-rigidity of the Ginibre p.p. : the knowledge of the
(infinite) configuration outside a ball determines the number
of points inside almost surely. Ghosh-Peres

I Hyperuniformity (à la Torquato):

Var [# points in disk D(0,R)] ∼ R as R →∞ Shirai

What about general β? d ≥ 3?
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A few positive results



CLT for smooth linear statistics in 2D log / Coulomb case

Theorem

Assume d = 2, β > 0 arbitrary fixed, V ∈ C 3,1. Let ϕ ∈ C 2,1
c (Σ) Then

N∑
i=1

ϕ(xi )− N

ˆ
Σ

ϕ dµV

converges in law as N →∞ to a Gaussian distribution with

mean =
1

2π

(
1

β
− 1

4

)ˆ
∆ϕ log ∆V var=

1

2πβ

ˆ
R2

|∇ϕ|2.

 ∆−1
(∑N

i=1 δxi − NµV

)
converges to the Gaussian Free Field.

The result can be localized with ϕ supported on all mesoscales

` >> N−1/2.

Leblé-S, Bauerschmidt-Bourgade-Nikula-Yau, S, case of ϕ
overlapping ∂Ω in Leblé-S.



Local laws in any dimension

Theorem (Armstrong-S. ’20)

- Control in exponential moments of energy and of fluctuations of
(nonsmooth) linear statistics in boxes, down to a
temperature-dependent minimal scale ' N−1/d max(1, β−1/2)
- Free energy expansion to next order (existence of thermodynamic
limit) in the case of uniform µV

(can couple β and N)

Corollary

For fixed β, bound on the number of points in microscopic boxes
 existence of a limit point process after subsequence.
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 existence of a limit point process after subsequence.



A Large Deviations Principle for limiting point processes

Theorem (Leblé-S, ’17, Armstrong-S ’20)

For Coulomb or log (or Riesz interactions |x |−s , d − 2 ≤ s < d),
there is an LDP for the “empirical field”, averaged at any mesoscale
after zoom by (µV (x)N)1/d around x, at speed N1+ s

d with rate
function Fβ −minFβ,

Fβ(P) := βW(P) + ent[P|Π] Π = Poisson 1

W = Coulomb renormalized energy for an infinite point
configuration (jellium)

 The Gibbs measure concentrates asymptotically on point
processes which minimize Fβ
I competition between energy and relative entropy
I β � 1 entropy dominates  convergence to Poisson point

process
I β >> 1 convergence to minimizers of W



Corollary

Variational characterization of Sine-β and Ginibre (minimize
βW + ent).

The jellium energy W (defined in [Sandier-S ’12, Rougerie-S ’16,
Petrache-S ’17]) seems to favor crystalline configurations in low
dimensions

I In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z.

I In dimension d = 8 the minimum of W is achieved by the E8

lattice and in dimension d = 24 by the Leech lattice:
consequence (by [Petrache-S ’19] of the Cohn-Kumar
conjecture proven in
[Cohn-Kumar-Miller-Radchenko-Viazovska ’19]

I the Cohn-Kumar in dimension 2 implies that minW is
achieved at the triangular lattice, but remains open
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Free energy expansion with a rate (Coulomb any d)

Theorem (Leblé-S ’17, S ’20)

Let s = d − 2.

log ZN,β = −βN2E(µV ) +

(
β

4
N log N

)
1d=2

− N

(
1− β

4

)(ˆ
µV logµV

)
1d=2

− N1+ s
d

ˆ
fd (βµ

s/d
V )dµV + βO(N1+ s

d
−ε)

with ε = 1
2d and

fd (β) = min
stationary p.p.

βW + ent(·|Π)

Analogous result for log and Riesz interactions.
To be compared with [Borot-Guionnet ’13, Shcherbina ’13] (d = 1,
log), [Wiegmann-Zabrodin ’09] (d = 2, log) (formal)



Main ingredients

I The electric approach

I The screening procedure  almost additivity of the (free)
energy over boxes

I A bootstrap on scales for local laws + free energy
expansion, which allow to perform the screening down to
smaller and smaller scales, and improve local laws + free
energy expansion, etc

I Transport approach for the CLT



The electric approach

I Exact splitting of the energy

HN(XN) = N2E(µV ) + N
N∑

i=1

ζV (xi )

+
1

2

¨
4c

g(x − y)d

(
N∑

i=1

δxi − NµV

)
(x)d

(
N∑

i=1

δxi − NµV

)
(y)︸ ︷︷ ︸

F (XN ,µV )

I Define the electric potential

h(x) =

ˆ
g(x − y)

(
N∑

i=1

δxi − NµV

)
(y)

I use Coulomb

−∆h = cd

(
N∑

i=1

δxi − NµV

)
!



I after integration by parts

F (XN , µV ) =
1

cd

ˆ
Rd

|∇h|2

(except needs to be renormalized via truncations because of
the self-interaction removal...)

I the energy becomes local in the electric potential h. Can
hope to compute it additively over boxes (despite long range
nature etc)

I Boundary conditions for solving h over a box will be
important: use both Neumann and Dirichlet boundary
conditions for solving provides sub/superadditive energy
quantities

I Screening procedure allows to compare the two and show they
are close (up to a modification of the configuration) hence
almost additivity



I after integration by parts

F (XN , µV ) =
1

cd

ˆ
Rd

|∇h|2

(except needs to be renormalized via truncations because of
the self-interaction removal...)

I the energy becomes local in the electric potential h. Can
hope to compute it additively over boxes (despite long range
nature etc)

I Boundary conditions for solving h over a box will be
important: use both Neumann and Dirichlet boundary
conditions for solving provides sub/superadditive energy
quantities

I Screening procedure allows to compare the two and show they
are close (up to a modification of the configuration) hence
almost additivity



I after integration by parts

F (XN , µV ) =
1

cd

ˆ
Rd

|∇h|2

(except needs to be renormalized via truncations because of
the self-interaction removal...)

I the energy becomes local in the electric potential h. Can
hope to compute it additively over boxes (despite long range
nature etc)

I Boundary conditions for solving h over a box will be
important: use both Neumann and Dirichlet boundary
conditions for solving provides sub/superadditive energy
quantities

I Screening procedure allows to compare the two and show they
are close (up to a modification of the configuration) hence
almost additivity



I after integration by parts

F (XN , µV ) =
1

cd

ˆ
Rd

|∇h|2

(except needs to be renormalized via truncations because of
the self-interaction removal...)

I the energy becomes local in the electric potential h. Can
hope to compute it additively over boxes (despite long range
nature etc)

I Boundary conditions for solving h over a box will be
important: use both Neumann and Dirichlet boundary
conditions for solving provides sub/superadditive energy
quantities

I Screening procedure allows to compare the two and show they
are close (up to a modification of the configuration) hence
almost additivity



I After blow-up at suitable scale + limit N →∞

−∆h =
∑

infinite

δp − 1 (jellium)

I formally

W = lim
R→∞

−
ˆ
�R

|∇h|2



Method of proof for the CLT

I Evaluate
Z (Vt)

Z (V )

where Vt := V + tϕ, equilibrium measure µVt , t = τ
N

I use map Φt that transports µV to µVt , Φt ' I + tψ. By using
change of variables yi = Φt(xi ), we are led to compute

EPN,β
(FN(Φt(XN),Φt#µV )− FN(XN , µV ))

(replaces “loop equations” / Dyson-Schwinger)

I use linearization in t small for the rhs + expansion of log ZN,β

with a rate to evaluate this with o(1) error when t = τ/N.
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