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Motivation (LeDoussal, Majumdar, Schehr, ’18)

Joint statistics of the momenta {pi} of N non-interacting fermions in 1-dimension
and of the largest one pmax in a trap

V (x) ∼ x2n, n ≥ 1

R

x2
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Harmonic trap (n = 1)

There is a one-to-one correspondence with the eigenvalues of GUE:
macroscopic density = Wigner semicircle law;

edge behaviour ρ(p) ∼ (pmax − p)
1
2 , Tracy–Widom distribution.

F2(x) = exp

{
−
∫ +∞

s
(s− x)q2(s)ds

}
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Flat trap (n > 1)

macroscopic density related to matrix models with multicritical points
(Di Francesco, Ginsparg, Zinn-Justin, ’95; Brézin, Kazakov, Eynard, . . . );

edge behaviour ρ(p) ∼ (pmax − p)
1
2n

What is the equivalent of the Tracy–Widom distribution?
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Statistical setup

The set of momenta of the N fermions is a point process on R.

(gap probability) The distribution of the largest momentum is P (pmax < s)

The same arguments hold in the limit as N →∞:

(generalized) TW distribution
= P(ζmax < s)

⇔ infinitesimal oscillations
at the edge of the spectrum
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Theorem (LeDoussal, Majumdar, Schehr, ’18)

The set of momenta {pi}i=1,...,N and the rescaled fermion momenta near the
edge ζmax are both Determinantal Point Processes.

The n-point correlation function reads

p(x1, . . . , xn) = det


K(x1, x1) K(x1, x2) . . . K(x1, xn)
K(x2, x1) K(x2, x2)

...
. . .

K(xn, x1) . . . K(xn, xn)


for some kernel K(x, y) – containing all the statistical information –.
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In particular, the gap probability over I = (s,+∞) ⊂ R becomes:

P (ζmax < s) = det
(

Id− K|(s,+∞)

)
the Fredholm determinant of an integral operator with universal kernel

K(x, y) =

∫
γR

dµ

2πi

∫
γL

dλ

2πi

e
(−1)n+1

(
µ2n+1

2n+1
−λ

2n+1

2n+1

)
−xµ+yλ

λ− µ
,

which depends on the order of the potential V (x) = x2n.

ϑ = n
2n+1π

γL γR
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P (ζmax < s) = det
(

Id− K|(s,+∞)

)

Remark

the largest point ζmax in the process exists almost surely, since the Fredholm
determinant is well-defined;

in general, we can analyze the quantity

F (s; %) := det(Id− %K|[s,+∞)), % ∈ (0, 1],

which represents the probability distribution of the largest particle ζ
(%)
max in

the associated thinned process, which is obtained from the original process by
removing each of the particles independently with probability 1− %.
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The higher-order Airy kernel

K(x, y) =

∫
γR

dµ

2πi

∫
γL

dλ

2πi

e
(−1)n+1

(
µ2n+1

2n+1
−λ

2n+1

2n+1

)
−xµ+yλ

λ− µ

=

∫ ∞
0

Ai2n+1(x+ t)Ai2n+1(y + t) dt

where

Ai2n+1(x) =

∫
γR

e
(−1)n+1µ

2n+1
−xµ dµ

2πi

solves d2n

dx2n
φ(x) = (−1)n+1xφ(x) (Kohno, ’79).

For n = 1 we recover the Airy kernel:

KAi(x, y) =
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y
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Our results

More generally, we will be interested in the following
Fredholm determinant:

det(Id− K|[s,+∞))

with kernel

K(x, y) =

∫
γR

dµ

2πi

∫
γL

dλ

2πi

e(−1)n+1
(
p2n+1(µ)−p2n+1(λ)

)
−xµ+yλ

λ− µ
,

where x, y ∈ R, n ∈ N and

p2n+1(x) =
x2n+1

2n+ 1
+

n−1∑
j=1

τj

2j + 1
x2j+1,

with τ1, . . . , τn−1 ∈ R.

ϑ = n
2n+1π

γL γR
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Tracy-Widom-like identity

Theorem (Cafasso, Claeys, G., ’19)

Let n ∈ N, τ1, . . . , τn−1 ∈ R and let F (s) = det(Id− K|[s,+∞)), then

F (s) = exp

{
−
∫ +∞

s
(x− s) q2

(
(−1)n+1x

)
dx

}
,

where q(s) = q(s; τ1, . . . , τn−1) is the solution to the equation of order 2n in the
Painlevé II hierarchy with prescribed asymptotics.

Note: the same result holds also for F (s; %) := det(Id− %K|[s,+∞)), % ∈ (0, 1].
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A little detour: Painlevé equations and their hierarchy

In the quest for classifying 2nd-order ODEs of the type

q′′ = R
(
s, q, q′

)
(R a rational function) whose solutions have no movable singularities other than
poles (Painlevé property), Painlevé (1902) and Gambier (1910) found 50 different
classes.

Only 6 of them are irreducible (i.e. their solutions cannot be expressed in terms of
elementary functions or previously known transcendental functions):

q′′ = 2q3 + sq + α, α ∈ R (Painlevé II).

Furthermore, the Painlevé equations are integrable systems (Lax pair!).
In fact, they are connected to solutions of integrable non-linear PDEs
(Ablowitz–Segur, ’77).
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The Painlevé II hierarchy

The Painlevé II hierarchy (Flaschka, Newell, ’80) is a sequence of ODEs obtained
from the equations of the KdV hierarchy via self-similar reduction.

The n-th member of the Painlevé II hierarchy is an equation for q = q(s) defined
as follows:(

d

ds
+ 2q

)
Ln[qs − q2] +

n−1∑
`=1

τ`

(
d

ds
+ 2q

)
L`[qs − q2] = sq − α, n ≥ 1,

where α, τ1, . . . , τn−1 ∈ R and the operators {Ln}n≥0 are the Lenard operators
defined recursively by

d

ds
Lj+1f =

(
d3

ds3
+ 4f

d

ds
+ 2fs

)
Ljf, L0f =

1

2
, Lj1 = 0, j ≥ 1.
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The first members of the hierarchy are

n = 1
q′′ − 2q3 = sq − α (Painlevé II)

n = 2
q′′′′ − 10q(q′)2 − 10q2q′′ + 6q5 + τ1(q′′ − 2q3) = sq − α

n = 3

q′′′′′′ − 14q2q′′′′ − 56qq′q′′′ − 70(q′)2q′′ − 42q(q′′)2 + 70q4q′′ + 140q3(q′)2 − 20q7

+ τ2(q′′′′ − 10q(q′)2 − 10q2q′′ + 6q5) + τ1(q′′ − 2q3) = sq − α,

We will be interested in the homogeneous Painlevé II hierarchy (α = 0).

16 / 48



Introduction TW identity Asymptotics as s → +∞ Asymptotics as s → −∞ Epilogue

The first members of the hierarchy are

n = 1
q′′ − 2q3 = sq − �α (Painlevé II)

n = 2
q′′′′ − 10q(q′)2 − 10q2q′′ + 6q5 + τ1(q′′ − 2q3) = sq − �α

n = 3

q′′′′′′ − 14q2q′′′′ − 56qq′q′′′ − 70(q′)2q′′ − 42q(q′′)2 + 70q4q′′ + 140q3(q′)2 − 20q7

+ τ2(q′′′′ − 10q(q′)2 − 10q2q′′ + 6q5) + τ1(q′′ − 2q3) = sq − �α,

We will be interested in the homogeneous Painlevé II hierarchy (α = 0).
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Back to our Fredholm Determinant

q2
(
(−1)n+1s

)
= −

d2

ds2
log det(Id− K|[s,+∞)),

from the Physical point of view, we provide a rigorous description of the
statistics of the fluctuations of the largest momentum of a collection of
fermions in a “flat trap”;

from the Mathematical point of view, we construct a family of solutions to
the Painlevé II hierarchy in terms of Fredholm determinants (which can be
numerically computed with high accuracy; Bornemann, ’10).
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q2
(
(−1)n+1s

)
= −

d2

ds2
log det(Id− K|[s,+∞)),

Remark

the occurrence of the Painlevé-II hierarchy for the monic potential was first
established for selected values of n in the arXiv version of LeDoussal,
Majumdar, Schehr’s paper.

this family of solutions contains natural generalizations of the
Hastings–McLeod (ρ = 1) and the Ablowitz–Segur (ρ < 1) solutions to the
Painlevé II equation.

generalizations of the TW-distribution were also obtained by Claeys, Its,
Krasovsky (’10) for extreme eigenvalues of unitary random matrices with
critical edge points, but α = 1

2
.
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Treasure map

1 establish the equality

gap probability ⇔ Fredholm determinant of IIKS integral operator

P(ζmax < s) = det (Id− Ls)

2 build up the corresponding

RH problem

3 prove the link

RH problem ⇔ Malgrange-Bertola τ -function;

4 derive some meaningful/explicit conclusions (Painlevé hierarchy +
asymptotics)
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The proof

We follow a general method introduced by Bertola-Cafasso (’11).

Proposition

Via a conjugation with a Fourier-type transform, we obtain

det
(

Id− K|[s,+∞)

)
= det (Id− Ls) ,

where Ls is an integral operator in the sense of Its-Izergin-Korepin-Slavnov (’90)
with kernel of the form

Ls(λ, µ) =
f(λ)>g(µ)

λ− µ
, λ, µ ∈ γL ∪ γR

f(λ),g(λ) ∈ C2×1, with regularity condition f(λ)T g(λ) = 0.

Note: the original operator K has IIKS kernel, but it’s not practical.
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A Riemann–Hilbert problem

The IIKS operator Ls naturally carries an associated Riemann–Hilbert
problem:

RH problem

Find a matrix-valued function Γ(z) ∈ C2×2 such that

(a) Γ is analytic on C \ (γL ∪ γR)

(b) Γ has continuous boundary values Γ± as ζ ∈ γL ∪ γR is approached from the
left (+) or right (−) side, and they are related by

Γ+(ζ) = Γ−(ζ)
[
I − 2πif(ζ)g>(ζ)

]
︸ ︷︷ ︸

jump J

ζ ∈ γL ∪ γR,

(c) there exists a matrix Γ1 independent of ζ (but depending on n, τj and s) such
that Γ satisfies

Γ(ζ) = I +
Γ1

ζ
+O(ζ−2), ζ →∞.
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The jump condition:

+ −

Γ+(ζ) = Γ−(ζ)

(
1 0

−e−(−1)n+1p2n+1(ζ)+sζ 1

)
Γ+(ζ) = Γ−(ζ)

(
1 −e(−1)n+1p2n+1(ζ)−sζ

0 1

)

+−
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Why do we care about the RHP?

It can be proven (Bertola, ’10 and Bertola, Cafasso, ’11) that

d

ds
logF (s) =

∫
γR∪γL

Tr

[
Γ−1
− (ζ)Γ′−(ζ)(∂sJ)(ζ)J−1(ζ)

]
dζ

2πi
,

where Γ′ is the derivative of Γ and J is the jump matrix.

Proposition

The Fredholm determinant F (s) satisfies the differential identity

d

ds
logF (s) = Γ1,11,

where Γ1 is the first coefficient in the expansion of the RHP solution Γ at infinity:

Γ(ζ) = I +
Γ1

ζ
+O(ζ−2), ζ →∞.
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Via an invertible transformation, we define

Ψ(ζ) := σ3 Γ(2iζ)σ3 eTs(2iζ)

with Ts(ζ) :=
(

(−1)n+1

2
p2n+1(ζ)− 1

2
sζ
)
σ3 and σ3 =

(
1 0
0 −1

)
.

The RHP for Ψ has constant jumps!

Ψ+(ζ) = Ψ−(ζ)

(
1 0
1 1

)

Ψ+(ζ) = Ψ−(ζ)

(
1 −1
0 1

)
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We can easily find Ψ’s Lax pair

Ψλ = AΨ
Ψs = BΨ

which turns out to be same one as the one for the Painlevé II hierarchy in the case
α = 0, with Stokes parameters s1 = −s2n+1 = 1, s2 = . . . = s2n = 0.

The compatibility conditions

Ψsλ = Ψλs ⇔ ∂sA− ∂λB + [A,B] = 0

yields

d
ds

Ψ1,11 = −2i (Ψ1,12)2

25 / 48
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Asymptotics as s→ +∞

Theorem (Cafasso, Claeys, G., ’19)

Let n ∈ N, τ1, . . . , τn−1 ∈ R. There is a real solution q(s) = q(s; τ1, . . . , τn−1) to
the equation of order 2n in the Painlevé II hierarchy which has no poles for real
s, such that

q2
(
(−1)n+1s

)
= −

d2

ds2
log det(Id− K|[s,+∞)),

and with asymptotic behaviour

q((−1)n+1s) = O
(
e−Cs

2n+1
2n

)
, as s→ +∞, for some C > 0,

q((−1)n+1s) ∼
(
n!2

(2n)!
|s|
) 1

2n

, as s→ −∞.
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the equation of order 2n in the Painlevé II hierarchy which has no poles for real
s, such that

q2
(
(−1)n+1s

)
= −

d2

ds2
log det(Id− K|[s,+∞)),

and with asymptotic behaviour

q((−1)n+1s) = O
(
e−Cs

2n+1
2n

)
, as s→ +∞, for some C > 0,

q((−1)n+1s) ∼
(
n!2

(2n)!
|s|
) 1

2n

, as s→ −∞.

27 / 48



Introduction TW identity Asymptotics as s → +∞ Asymptotics as s → −∞ Epilogue

Sketch of the proof

Consider a rescaled and rotated version Ξ of our RHP Γ: 1 0

e
2iΘ

(
s

1
2n ζ;s,~τ

)
1



1 −e
−2iΘ

(
s

1
2n ζ;s,~τ

)
0 1



with Θ
(
s

1
2n ζ; s, ~τ

)
= s

2n+1
2n

(
(2ζ)2n+1

4n+2
+ ζ

)
+O

(
s

2n−1
2n ζ2n−1

)
.
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Θ
(
s

1
2n ζ; s, ~τ

)
= s

2n+1
2n

( (2ζ)2n+1

4n+ 2
+ ζ

)
+O

(
s

2n−1
2n ζ2n−1

)

We would like to smartly choose the contours in such a way that

Im

[
(2ζ)2n+1

4n+ 2
+ ζ

]
> 0, ζ ∈ γU , Im

[
(2ζ)2n+1

4n+ 2
+ ζ

]
< 0, ζ ∈ γD.

so that the off-diagonal terms in the jumps e±2iΘ → 0 as s→ +∞.

 1 0

e
2iΘ

(
s

1
2n ζ;s,~τ

)
1



1 −e
−2iΘ

(
s

1
2n ζ;s,~τ

)
0 1


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We can actually do so:

(a) n = 1 (b) n = 2 (c) n = 3

Figure: The white areas are the zones where Im > 0 while the grey areas are the zones
where Im < 0.
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This way, the jump matrices are asymptotically equal to the identity matrix:

Ξ+(ζ) = Ξ−(ζ)

I +O

 e−Cs
2n+1
2n

ζ2

 , ζ ∈ γU ∪ γD.

By the Small Norm Theorem, we can infer

Ξ(ζ) = I +O

 e−Cs
2n+1
2n

ζ

 as s→ +∞,

for some C > 0.

Getting back to q: as s→ +∞,

q
(
(−1)n+1s

)
∼ Ξ1,12(s) = O

(
e−Cs

2n+1
2n

)
.
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Finer asymptotics for higher order Airy

From the integral formula

Ξ(ζ) = I +

∫
γU∪γD

Ξ−(w) [I − J(w, s;~τ)]

w − ζ
dw

2πi
,

and its asymptotic expansion in ζ, we obtain

Corollary

If τ1 = . . . = τn−1 = 0,

q
(
(−1)n+1s

)
= Ai2n+1(s)(1 + o(1)), as s→ +∞.

(we suspect this holds also for general τ1, . . . , τn−1 6= 0)
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Asymptotics as s→ −∞

Theorem (Cafasso, Claeys, G., ’19)

Let n ∈ N, τ1, . . . , τn−1 ∈ R, and let F (s) = det(Id− K|[s,+∞)). There is a real

solution q(s) = q(s; τ1, . . . , τn−1) to the equation of order 2n in the Painlevé II
hierarchy which has no poles for real s, such that

q2
(
(−1)n+1s

)
= −

d2

ds2
logF (s),

and with asymptotic behaviour

q((−1)n+1s) = O
(
e−Cs

2n+1
2n

)
, as s→ +∞, for some C > 0,

q((−1)n+1s) ∼
(
n!2

(2n)!
|s|
) 1

2n

, as s→ −∞.
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Large gap asymptotics for the pure potential

In the case τ1 = . . . = τn−1 = 0 (higher-order Airy)

Theorem (Cafasso, Claeys, G., ’19)

There exists a constant C > 0, possibly depending on n, such that

logF (s) = −
n2

(n+ 1)(2n+ 1)

(2n

n

)− 1
n
|s|2+ 1

n + c log |s|+ logC + o(1),

as s→ −∞,with c = − 1
8

if n = 1 and c = − 1
2

otherwise. Moreover, the
asymptotics can be improved to

q((−1)n+1s) =

(
n!2

(2n)!
|s|
) 1

2n

+
c

2

(
(2n)!

n!2

) 1
2n

|s|−2− 1
2n +O

(
|s|−2− 1

n

)
,

as s→ −∞.

Note: our method does not allow to evaluate the overall constant C. In the Airy

case n = 1, it was proved that C = e
1
24

log 2+ζ′(−1), where ζ′ is the derivative of
the Riemann ζ function (Deift, Its, Krasovsky, 2008).
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In the general case with τ1, . . . , τn−1 ∈ R consider

λ(z) :=
n∑
k=1

(−1)n−k
(2k

k

)
τkz

2k, λ̃(z) :=
n∑
k=1

(−1)n−k
(2k

k

)
τkz

k,

and define θ1, . . . , θ2n and θ
[2]
1 , . . . , θ

[2]
2n as follows:

θi(τ1, . . . , τn) ≡ θi :=


(2n

n

)− 1
2n

i = 0,

1

2i− 1
res
z=∞

λ
2i−1
2n (z), i ≥ 1,

where the residue at infinity is minus the coefficient of z−1 in the large z

expansion of the branch of λ
2i−1
2n (z) which is positive for large z > 0, and similarly

θ
[2]
i (τ1, . . . , τn) ≡ θ[2]

i :=


θ2
0 , i = 0,
τn−1

4n− 2
, i = 1,

1

i− 1
res
z=∞

λ̃
i−1
n (z), i ≥ 2.
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Large gap asymptotics for generic potential

Theorem (Cafasso, Claeys, G., ’19)

Let n ∈ N, τ1, . . . , τn−1 ∈ R. As s→ −∞, there exists a constant
C = C(n; τ ) > 0, such that we have the asymptotics

logF (s) = −
2n∑
j=0

j 6=n+1

n2

(n+ 1− j)(2n+ 1− j)
θ
[2]
j |s|

2n−j+1
n + c log |s|+ logC + o(1),

with c = − 1
8

if n = 1 and c = − 1
2

otherwise. Moreover, the asymptotics can be
improved to

q((−1)n+1s) =
2n∑
i=0

θi|s|
1
2n
− i
n +

c

2θ0
|s|−2− 1

2n +O
(
|s|−2− 1

n

)
, as s→ −∞.
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The nitty gritty

n = 1 There are no parameters of deformation τi and our result gives: as s→ −∞

logF (s) = −
|s|3

12
−

1

8
log |s|+ logC + o(1) (Tracy–Widom distribution).

n = 2 In the first non-trivial case, we obtain as s→ −∞

logF (s) = −
2

45

√
6|s|5/2−

1

12
τ1|s|2−

√
6

54
τ2
1 |s|3/2−

√
6

432
τ4
1 |s|1/2−

1

2
log |s|+logC+o(1).

n = 3 We have two deformation parameters τ1, τ2: as s→ −∞

logF (s) =−
9

560
20

2
3 |s|7/3 −

1

20
τ2|s|2 +

3 3
√

20

1000

(
10τ1 − 3τ2

2

)
|s|5/3

+
3

2000
20

2
3 τ2

(
5τ1 − τ2

2

)
|s|4/3 −

3
√

20

5000
τ2
(
50τ2

1 − 25τ2
2 τ1 + 3τ4

2

)
|s|2/3

+
20

2
3

900000

(
1000τ3

1 − 1800τ2
2 τ

2
1 + 630τ4

2 τ1 − 63τ6
2

)
|s|1/3

−
1

2
log |s|+ logC + o(1)
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Sketch of the proof

Like in the s→ +∞, we would love to have a RHP with jumps of the type
J(ζ) = I + δJ(ζ), however, the phases Θ in the jumps diverge as s→ −∞.

We will recur to the steepest descent method (Deift, Zhou, ’92).

The strategy is to apply a sequence of invertible transformations

Γ 7→ Ψ 7→ . . . 7→ S︸ ︷︷ ︸
g-function

7→ R

in such away that, within the regime s� −1, the final RHP

R(ζ) = S(ζ)Ω−1(ζ)

has jumps close to the identity. We can then apply a small norm argument again:
R(ζ) = I + {small} and

S(ζ) = (I + {small})︸ ︷︷ ︸
R(ζ)

· Ω(ζ)︸ ︷︷ ︸
“model”

problem
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 0: the original problem Γ

γL γR
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 1: Γ 7→ Ψ, rotation

γU

γD
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 2: Ψ 7→ S, jump merging and rescaling; introduction of a g-function

ζ0−ζ0

Σ1 Σ2

Σ3 Σ4
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 3: the magic of the g-function

ζ0−ζ0

(
0 −1
1 ∗

)

(
1 0
∗ 1

)

(
1 ∗
0 1

)
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A note on the g-function

Ansatz:

g(ζ; s) =
n∑
j=1

cj(ζ
2 − ζ2

0 )
2j+1

2

with (ζ2 − ζ2
0 )

2j+1
2 analytic on C \ [−ζ0, ζ0] and such that it behaves like ζ2j+1 as

ζ →∞.

We fix the constants cj and the branch point ζ0 > 0 by imposing the asymptotic
behaviour

|s|
2n+1
2n g(ζ) = Θ(|s|

1
2n ζ)︸ ︷︷ ︸

jump phase

+
g1(s)

ζ
+O(ζ−2), as ζ →∞.
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This gives:

cn−m =
m∑
k=0

(−1)m−k22(n−m+k)−1τn−m+k|s|−
m−k
n

Γ
(
n−m+ k + 1

2

)
k!Γ

(
n−m+ 3

2

) ζ2k
0

g1(s) =
1

2

n∑
k=1

(−1)n−kτk

( 2k

k − 1

)
|s|

2k+1
2n ζ2k+2

0 .

and ζ0 = ζ0(s) defined implicitly as

n∑
k=1

(−1)n−k
(2k

k

)
τk|s|

k−n
n ζ2k

0 = 1.

We just need to solve the equation for ζ0, at least in the s→ −∞ regime...
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λ(z) :=
n∑
k=1

(−1)n−k
(2k

k

)
τkz

2k, λ̃(z) :=
n∑
k=1

(−1)n−k
(2k

k

)
τkz

k

and define

θi :=


(2n

n

)− 1
2n
, i = 0,

1

2i− 1
res
z=∞

λ
2i−1
2n (z), i ≥ 1.

θ
[2]
i :=



θ0, i = 0,

τn−1

4n− 2
, i = 1,

1

i− 1
res
z=∞

λ̃
i−1
n (z), i ≥ 2.

Then,

ζ0(s) ∼
∞∑
i=0

θi|s|−
i
n and ζ2

0 (s) ∼
∞∑
i=0

θ
[2]
i |s|

− i
n , as s→ −∞.

Note: the coefficients {θi}∞i=0 and {θ[2]
i }
∞
i=0 are related to topological minimal

models of type An and to flat coordinates for the corresponding Frobenius
manifolds.
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1
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n (z), i ≥ 2.

Then,

ζ0(s) ∼
∞∑
i=0
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i
n and ζ2

0 (s) ∼
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θ
[2]
i |s|

− i
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∞
i=0 are related to topological minimal
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 3: the magic of the g-function

ζ0−ζ0

(
0 −1
1 ∗

)

(
1 0
∗ 1

)

(
1 ∗
0 1

)
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 4: build the model problem Ω with parametrices P∞ and P±ζ0

−ζ0 ζ0

P∞ = 1
2

(
1 i
i 1

)
γ(ζ)σ3

(
1 −i
−i 1

)
, with γ(ζ) =

(
ζ+ζ0
ζ−ζ0

) 1
4
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 4: build the model problem Ω with parametrices P∞ and P±ζ0

P+ζ0P−ζ0

P∞
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 4: build the model problem Ω with parametrices P∞ and P±ζ0

P+ζ0P−ζ0

Airy parametrix

P∞
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Sketch of the proof

We solve the RHP Γ with the use of a global parametrix P∞ (and an explicit
g-function) and two local Airy parametrices P±ζ0 .

Step 5: taking care of the other small-norm jumps (the remainder R := SΩ−1)

−ζ0 ζ0
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A note on the remainder problem

We can compute the asymptotic expansion of the remainder to arbitrary order of
accuracy:

R(ζ) = I +R(1)(ζ)|s|−
2n+1
2n +R(2)(ζ)|s|−

2n+1
n +O

(
|s|−

6n+3
2n

)
,

for some matrices R(1)(ζ),R(2)(ζ), . . . which can be computed via a recursive
procedure.

In particular,

R(1)(ζ) =

∫
∂C+ζ0∪∂C−ζ0

I − JR(w)

w − ζ
dw

2πi
=
R

(1)
1

ζ
+O

(
1

ζ2

)
, as ζ →∞.
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Back to gap probabilities

Following backwards all the transformations Γ 7→ Ψ 7→ S 7→ R = SΩ−1, we have

d

ds
logF (s) = Γ1;11 = . . . = 2i|s|

1
2nR1,11 + 2|s|

1
2n g1(s)

where g1 is the residue of the g function at ζ =∞.

By explicitly calculating the terms involved (in the regime s→ −∞), we obtain

logF (s) = −c log |s| −
2n∑
j=0

j 6=n+1

n2

(n+ 1− j)(2n+ 1− j)
θ
[2]
j |s|

2n−j+1
n + logC + o(1).

with c = 1
8

for n = 1 and c = 1
2

otherwise.
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Back to q
(
(−1)n+1s

)

Similarly, we have

q
(
(−1)n+1s

)
= . . . = ζ0(s)|s|

1
2n + 2i|s|

1
2nR1,12.

Explicitly,

q
(
(−1)n+1s

)
=

2n∑
i=0

θi|s|
1
2n
− i
n +

c

2θ0
|s|−2− 1

2n +O
(
|s|−2− 1

n

)
, as s→ −∞.
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Conclusion

Momentum edge statistics
P(ζmax < s)

Fredholm determinant
det(Id− K|[s,+∞))

DPP

Riemann–Hilbert
problem

Painlevé II hierarchy asymptotics

IIKS operators

Lax pair

steepest descent
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Food for thought

Higher-order Airy kernels and their Fredholm determinant are ubiquitous...

- universality:
(Betea–Bouttier–Walsh, ’20) Fredholm Determinant of higher-order Airy is
connected to Schur measures (random partitions) where the edge fluctuation
is of the order 1

2n+1 ;

(Kimura–Zahabi, ’20-’21) further work on random partition and generating
functions in gauge theory.

- recent developments:
(Tarricone, ’20) matrix-valued version of the higher-order Airy function and
non-commutative PII hierarchy;

(Krajenbrink, ’20; Bothner–Cafasso–Tarricone, ’21) higher-order finite
temperature Airy kernel and integro-differential Painlevé-II hierarchy.

- open problems:
what about the integration constant C?

interpretation of generalized kernel (τj ’s 6= 0) as non-interacting fermions?

connection of higher-order (finite-temperature) Airy determinant with RMT?

Thank you!
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