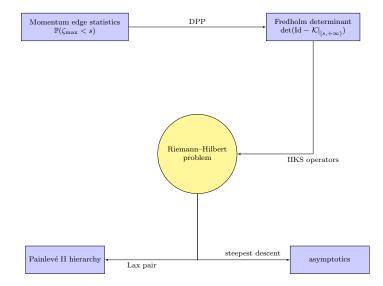
Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00

Fredholm Determinant Solutions of the Painlevé II Hierarchy and Gap Probabilities of Determinantal Point Processes

Manuela Girotti joint with Mattia Cafasso (Univ. Angers) and Tom Claeys (UC Louvain)

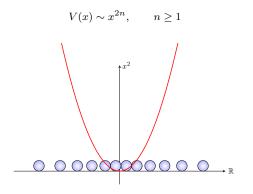
Universality and Integrability in Random Matrix Theory and Interacting Particle Systems, September 21st, 2021

Overview



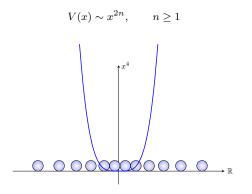
Motivation (LeDoussal, Majumdar, Schehr, '18)

Joint statistics of the momenta $\{p_i\}$ of N non-interacting fermions in 1-dimension and of the largest one p_{\max} in a trap



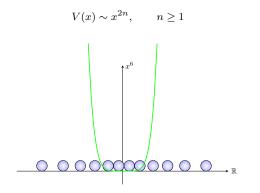
Motivation (LeDoussal, Majumdar, Schehr, '18)

Joint statistics of the momenta $\{p_i\}$ of N non-interacting fermions in 1-dimension and of the largest one p_{\max} in a trap



Motivation (LeDoussal, Majumdar, Schehr, '18)

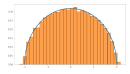
Joint statistics of the momenta $\{p_i\}$ of N non-interacting fermions in 1-dimension and of the largest one p_{\max} in a trap



Introduction $0 \bullet 000000000$	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
	0000000000000	0000000	00000000000000	00
Harmonic 1	trap $(n=1)$			

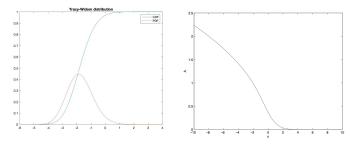
There is a one-to-one correspondence with the eigenvalues of GUE:

• macroscopic density = Wigner semicircle law;



• edge behaviour $\rho(p) \sim (p_{\max} - p)^{\frac{1}{2}}$, Tracy–Widom distribution.

$$F_2(x) = \exp\left\{-\int_s^{+\infty} (s-x)q^2(s)\mathrm{d}s\right\}$$



Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00
Flat trap ((n > 1)			

• macroscopic density related to matrix models with multicritical points (Di Francesco, Ginsparg, Zinn-Justin, '95; Brézin, Kazakov, Eynard, ...);

• edge behaviour
$$\rho(p) \sim (p_{\max} - p)^{\frac{1}{2n}}$$

What is the equivalent of the Tracy–Widom distribution?

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00
Flat trap ((n > 1)			

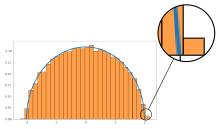
• macroscopic density related to matrix models with multicritical points (Di Francesco, Ginsparg, Zinn-Justin, '95; Brézin, Kazakov, Eynard, ...);

• edge behaviour
$$\rho(p) \sim (p_{\max} - p)^{\frac{1}{2n}}$$

What is the equivalent of the Tracy–Widom distribution?

Introduction $000000000000000000000000000000000000$	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
	00000000000000	0000000	00000000000000	00
Statistical	setup			

- The set of momenta of the N fermions is a *point process* on \mathbb{R} .
- (gap probability) The distribution of the largest momentum is $\mathbb{P}(p_{\max} < s)$



The same arguments hold in the limit as $N \to \infty$:

 $\begin{array}{ll} (\text{generalized}) \ \text{TW distribution} \\ = \mathbb{P}(\zeta_{\max} < s) \end{array} \Leftrightarrow \begin{array}{ll} \text{infinitesimal oscillations} \\ \text{at the edge of the spectrum} \end{array}$

Introduction	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
000000000	000000000000	000000	0000000000000	00

Theorem (LeDoussal, Majumdar, Schehr, '18)

The set of momenta $\{p_i\}_{i=1,...,N}$ and the rescaled fermion momenta near the edge ζ_{\max} are both Determinantal Point Processes.

The n-point correlation function reads

$$\mathfrak{p}(x_1, \dots, x_n) = \det \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \dots & K(x_1, x_n) \\ K(x_2, x_1) & K(x_2, x_2) & & \\ \vdots & & \ddots & \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}$$

for some kernel K(x, y) – containing all the statistical information –.

Introduction	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000000000000000000000000000000	00

Theorem (LeDoussal, Majumdar, Schehr, '18)

The set of momenta $\{p_i\}_{i=1,...,N}$ and the rescaled fermion momenta near the edge ζ_{\max} are both Determinantal Point Processes.

The n-point correlation function reads

$$\mathfrak{p}(x_1, \dots, x_n) = \det \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \dots & K(x_1, x_n) \\ K(x_2, x_1) & K(x_2, x_2) & & \\ \vdots & & \ddots & \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}$$

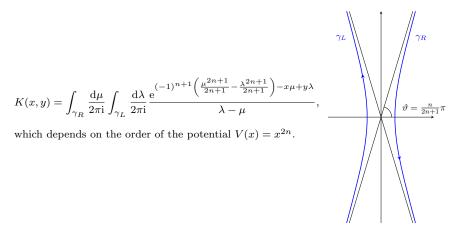
for some kernel K(x, y) – containing all the statistical information –.

Introduction	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	0000000000000	00

In particular, the gap probability over $I = (s, +\infty) \subset \mathbb{R}$ becomes:

$$\mathbb{P}\left(\zeta_{\max} < s\right) = \det\left(\mathrm{Id} - \mathcal{K}|_{(s, +\infty)}\right)$$

the Fredholm determinant of an integral operator with universal kernel



Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

$$\mathbb{P}\left(\zeta_{\max} < s\right) = \det\left(\mathrm{Id} - \mathcal{K}|_{(s, +\infty)}\right)$$

Remark

- the largest point ζ_{\max} in the process exists almost surely, since the Fredholm determinant is well-defined;
- in general, we can analyze the quantity

$$F(s; \varrho) := \det(\mathrm{Id} - \varrho \mathcal{K}|_{[s, +\infty)}), \qquad \varrho \in (0, 1],$$

which represents the probability distribution of the largest particle $\zeta_{\max}^{(\varrho)}$ in the associated *thinned* process, which is obtained from the original process by removing each of the particles independently with probability $1-\varrho$.

Introduction				Epilogue
0000000000	0000000000000	0000000	0000000000000	00

The higher-order Airy kernel

$$\begin{split} K(x,y) &= \int_{\gamma_R} \frac{\mathrm{d}\mu}{2\pi \mathrm{i}} \int_{\gamma_L} \frac{\mathrm{d}\lambda}{2\pi \mathrm{i}} \frac{\mathrm{e}^{(-1)^{n+1} \left(\frac{\mu^{2n+1}}{2n+1} - \frac{\lambda^{2n+1}}{2n+1}\right) - x\mu + y\lambda}}{\lambda - \mu} \\ &= \int_0^\infty \mathrm{Ai}_{2n+1}(x+t) \mathrm{Ai}_{2n+1}(y+t) \, \mathrm{d}t \end{split}$$

where

Ai_{2n+1}(x) =
$$\int_{\gamma_R} e^{\frac{(-1)^{n+1}\mu}{2n+1} - x\mu} \frac{d\mu}{2\pi i}$$

solves $\frac{\mathrm{d}^{2n}}{\mathrm{d}x^{2n}}\phi(x) = (-1)^{n+1}x\phi(x)$ (Kohno, '79).

For n = 1 we recover the Airy kernel:

$$K_{\mathrm{Ai}}(x,y) = \frac{\mathrm{Ai}(x)\mathrm{Ai}'(y) - \mathrm{Ai}(y)\mathrm{Ai}'(x)}{x - y}$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00

The higher-order Airy kernel

$$\begin{split} K(x,y) &= \int_{\gamma_R} \frac{\mathrm{d}\mu}{2\pi \mathrm{i}} \int_{\gamma_L} \frac{\mathrm{d}\lambda}{2\pi \mathrm{i}} \frac{\mathrm{e}^{(-1)^{n+1} \left(\frac{\mu^{2n+1}}{2n+1} - \frac{\lambda^{2n+1}}{2n+1}\right) - x\mu + y\lambda}}{\lambda - \mu} \\ &= \int_0^\infty \mathrm{Ai}_{2n+1}(x+t) \mathrm{Ai}_{2n+1}(y+t) \, \mathrm{d}t \end{split}$$

where

Ai_{2n+1}(x) =
$$\int_{\gamma_R} e^{\frac{(-1)^{n+1}\mu}{2n+1} - x\mu} \frac{d\mu}{2\pi i}$$

solves $\frac{d^{2n}}{dx^{2n}}\phi(x) = (-1)^{n+1}x\phi(x)$ (Kohno, '79).

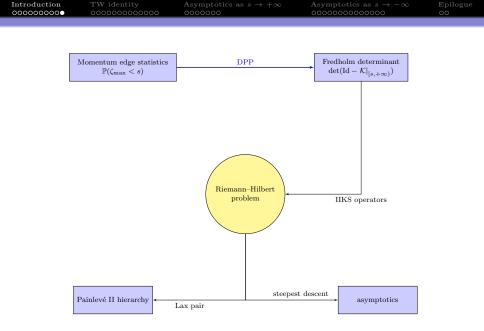
For n = 1 we recover the Airy kernel:

$$K_{\mathrm{Ai}}(x,y) = \frac{\mathrm{Ai}(x)\mathrm{Ai}'(y) - \mathrm{Ai}(y)\mathrm{Ai}'(x)}{x - y}$$

Introduction $000000000000000000000000000000000000$	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
	0000000000000	0000000	00000000000000	00

Our results

More generally, we will be interested in the following Fredholm determinant: γ_L $\det(\mathrm{Id} - \mathcal{K}|_{[s, +\infty)})$ with kernel $K(x,y) = \int_{\gamma_{D}} \frac{\mathrm{d}\mu}{2\pi i} \int_{\gamma_{L}} \frac{\mathrm{d}\lambda}{2\pi i} \frac{\mathrm{e}^{(-1)^{n+1} \left(p_{2n+1}(\mu) - p_{2n+1}(\lambda)\right) - x\mu + y\lambda}}{\lambda - \mu}$ $\vartheta = \frac{n}{2n+1}$ where $x, y \in \mathbb{R}, n \in \mathbb{N}$ and $p_{2n+1}(x) = \frac{x^{2n+1}}{2n+1} + \sum_{j=1}^{n-1} \frac{\tau_j}{2j+1} x^{2j+1},$ with $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$.



IntroductionTW identityAsymptotics as $s \to +\infty$ Asymptotics as $s \to -\infty$ 00

Tracy-Widom-like identity

Theorem (Cafasso, Claeys, G., '19)

Let $n \in \mathbb{N}$, $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$ and let $F(s) = \det(\mathrm{Id} - \mathcal{K}|_{[s, +\infty)})$, then

$$F(s) = \exp\left\{-\int_{s}^{+\infty} (x-s) q^{2} \left((-1)^{n+1} x\right) \mathrm{d}x\right\},\$$

where $q(s) = q(s; \tau_1, \ldots, \tau_{n-1})$ is the solution to the equation of order 2n in the **Painlevé II hierarchy** with prescribed asymptotics.

Note: the same result holds also for $F(s; \varrho) := \det(\mathrm{Id} - \varrho \mathcal{K}|_{[s, +\infty)}), \ \varrho \in (0, 1].$

IntroductionTW identityAsymptotics as $s \to +\infty$ Asymptotics as $s \to -\infty$ Epilogue00000000000000000000000000000000000000

A little detour: Painlevé equations and their hierarchy

In the quest for classifying 2nd-order ODEs of the type

$$q^{\prime\prime} = \mathcal{R}\left(s, q, q^{\prime}\right)$$

 $(\mathcal{R} \text{ a rational function})$ whose solutions have no movable singularities other than poles (*Painlevé property*), Painlevé (1902) and Gambier (1910) found 50 different classes.

Only 6 of them are irreducible (i.e. their solutions cannot be expressed in terms of elementary functions or previously known transcendental functions):

$$q^{\prime\prime}=2q^3+sq+\alpha,\qquad \alpha\in\mathbb{R}\quad (\text{Painlevé II}).$$

Furthermore, the Painlevé equations are integrable systems (Lax pair!). In fact, they are connected to solutions of integrable non-linear PDEs (Ablowitz–Segur, '77). IntroductionTW identityAsymptotics as $s \to +\infty$ Asymptotics as $s \to -\infty$ Epilogue00000000000000000000000000000000000000

A little detour: Painlevé equations and their hierarchy

In the quest for classifying 2nd-order ODEs of the type

$$q^{\prime\prime} = \mathcal{R}\left(s, q, q^{\prime}\right)$$

 $(\mathcal{R} \text{ a rational function})$ whose solutions have no movable singularities other than poles (*Painlevé property*), Painlevé (1902) and Gambier (1910) found 50 different classes.

Only 6 of them are irreducible (i.e. their solutions cannot be expressed in terms of elementary functions or previously known transcendental functions):

$$q'' = 2q^3 + sq + \alpha, \qquad \alpha \in \mathbb{R}$$
 (Painlevé II).

Furthermore, the Painlevé equations are integrable systems (Lax pair!). In fact, they are connected to solutions of integrable non-linear PDEs (Ablowitz–Segur, '77).

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	00000000000000	0000000	00000000000000	00
The Painle	evé II hierarchy			

The Painlevé II hierarchy (Flaschka, Newell, '80) is a sequence of ODEs obtained from the equations of the KdV hierarchy via self-similar reduction.

The n-th member of the Painlevé II hierarchy is an equation for q = q(s) defined as follows:

$$\left(\frac{\mathrm{d}}{\mathrm{d}s}+2q\right)\mathcal{L}_n[q_s-q^2]+\sum_{\ell=1}^{n-1}\tau_\ell\left(\frac{\mathrm{d}}{\mathrm{d}s}+2q\right)\mathcal{L}_\ell[q_s-q^2]=sq-\alpha,\qquad n\ge 1,$$

where $\alpha, \tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$ and the operators $\{\mathcal{L}_n\}_{n \geq 0}$ are the Lenard operators defined recursively by

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{L}_{j+1}f = \left(\frac{\mathrm{d}^3}{\mathrm{d}s^3} + 4f\frac{\mathrm{d}}{\mathrm{d}s} + 2f_s\right)\mathcal{L}_jf, \qquad \mathcal{L}_0f = \frac{1}{2}, \qquad \mathcal{L}_j1 = 0, \quad j \ge 1.$$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	000000000000000000000000000000000000000	00

The first members of the hierarchy are

$$n = 1$$

$$q'' - 2q^{3} = sq - \alpha$$
 (Painlevé II)
$$n = 2$$

$$q'''' - 10q(q')^{2} - 10q^{2}q'' + 6q^{5} + \tau_{1}(q'' - 2q^{3}) = sq - \alpha$$

$$n = 3$$

$$q'''''' - 14q^{2}q'''' - 56qq'q''' - 70(q')^{2}q'' - 42q(q'')^{2} + 70q^{4}q'' + 140q^{3}(q')^{2} - 20q^{7}$$

$$+ \tau_{2}(q'''' - 10q(q')^{2} - 10q^{2}q'' + 6q^{5}) + \tau_{1}(q'' - 2q^{3}) = sq - \alpha$$

We will be interested in the homogeneous Painlevé II hierarchy ($\alpha = 0$).

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	00000000000000	000000	000000000000000000000000000000000000000	00

The first members of the hierarchy are

$$n = 1$$

$$q'' - 2q^{3} = sq - \phi$$
(Painlevé II)
$$n = 2$$

$$q'''' - 10q(q')^{2} - 10q^{2}q'' + 6q^{5} + \tau_{1}(q'' - 2q^{3}) = sq - \phi$$

$$n = 3$$

$$q'''''' - 14q^{2}q'''' - 56qq'q''' - 70(q')^{2}q'' - 42q(q'')^{2} + 70q^{4}q'' + 140q^{3}(q')^{2} - 20q^{7}$$

$$+ \tau_{2}(q'''' - 10q(q')^{2} - 10q^{2}q'' + 6q^{5}) + \tau_{1}(q'' - 2q^{3}) = sq - \phi$$

We will be interested in the homogeneous Painlevé II hierarchy ($\alpha = 0$).

Back to our Fredholm Determinant

$$q^{2}\left((-1)^{n+1}s\right) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log\det(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)})$$

- from the Physical point of view, we provide a rigorous description of the statistics of the fluctuations of the largest momentum of a collection of fermions in a "flat trap";
- from the Mathematical point of view, we construct a family of solutions to the Painlevé II hierarchy in terms of Fredholm determinants (which can be numerically computed with high accuracy; Bornemann, '10).

Back to our Fredholm Determinant

$$q^{2}\left((-1)^{n+1}s\right) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log\det(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)})$$

- from the Physical point of view, we provide a rigorous description of the statistics of the fluctuations of the largest momentum of a collection of fermions in a "flat trap";
- from the Mathematical point of view, we construct a family of solutions to the Painlevé II hierarchy in terms of Fredholm determinants (which can be numerically computed with high accuracy; Bornemann, '10).

	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	000000000000000000000000000000000000000	00

$$q^{2}\left((-1)^{n+1}s\right) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log\det(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)}),$$

Remark

- the occurrence of the Painlevé-II hierarchy for the monic potential was first established for selected values of n in the arXiv version of LeDoussal, Majumdar, Schehr's paper.
- this family of solutions contains natural generalizations of the Hastings–McLeod ($\rho = 1$) and the Ablowitz–Segur ($\rho < 1$) solutions to the Painlevé II equation.
- generalizations of the TW-distribution were also obtained by Claeys, Its, Krasovsky ('10) for extreme eigenvalues of unitary random matrices with critical edge points, but $\alpha = \frac{1}{2}$.

Introduction 0000000000	TW identity 0000000000000	Asymptotics as $s \to +\infty$ 0000000	Asymptotics as $s \to -\infty$ 00000000000000	Epilogue 00
Treasure r	nap			

establish the equality

gap probability \Leftrightarrow Fredholm determinant of IIKS integral operator $\mathbb{P}(\zeta_{\max} < s) = \det (\mathrm{Id} - \mathcal{L}_s)$

2 build up the corresponding

RH problem

ø prove the link

RH problem \Leftrightarrow Malgrange-Bertola τ -function;

derive some meaningful/explicit conclusions (Painlevé hierarchy + asymptotics)

Introduction 0000000000	TW identity 0000000000000	Asymptotics as $s \to +\infty$ 0000000	Asymptotics as $s \to -\infty$ 00000000000000	Epilogue 00
Treasure r	nap			

establish the equality

gap probability \Leftrightarrow Fredholm determinant of IIKS integral operator $\mathbb{P}(\zeta_{\max} < s) = \det (\mathrm{Id} - \mathcal{L}_s)$

2 build up the corresponding

RH problem

ø prove the link

RH problem \Leftrightarrow Malgrange-Bertola τ -function;

derive some meaningful/explicit conclusions (Painlevé hierarchy + asymptotics)

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	00000000000000	0000000	00000000000000	00

The proof

We follow a general method introduced by Bertola-Cafasso ('11).

Proposition

Via a conjugation with a Fourier-type transform, we obtain

$$\det\left(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)}\right)=\det\left(\mathrm{Id}-\mathcal{L}_{s}\right),$$

where \mathcal{L}_s is an integral operator in the sense of Its-Izergin-Korepin-Slavnov ('90) with kernel of the form

$$L_s(\lambda,\mu) = rac{\mathbf{f}(\lambda)^{\top} \mathbf{g}(\mu)}{\lambda - \mu}, \qquad \lambda, \mu \in \gamma_L \cup \gamma_R$$

 $\mathbf{f}(\lambda), \mathbf{g}(\lambda) \in \mathbb{C}^{2 \times 1}$, with regularity condition $\mathbf{f}(\lambda)^T \mathbf{g}(\lambda) = 0$.

Note: the original operator \mathcal{K} has IIKS kernel, but it's not practical.

A Riemann–Hilbert problem

The IIKS operator \mathcal{L}_s naturally carries an associated **Riemann–Hilbert** problem:

RH problem

Find a matrix-valued function $\Gamma(z) \in \mathbb{C}^{2 \times 2}$ such that

- (a) Γ is analytic on $\mathbb{C} \setminus (\gamma_L \cup \gamma_R)$
- (b) Γ has continuous boundary values Γ_{\pm} as $\zeta \in \gamma_L \cup \gamma_R$ is approached from the left (+) or right (-) side, and they are related by

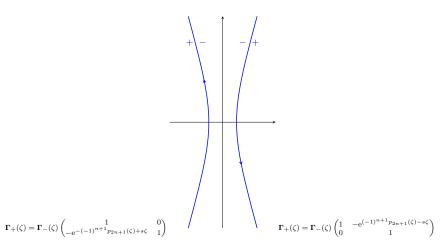
$$\boldsymbol{\Gamma}_{+}(\zeta) = \boldsymbol{\Gamma}_{-}(\zeta) \underbrace{\left[\boldsymbol{I} - 2\pi \mathbf{i} \mathbf{f}(\zeta) \mathbf{g}^{\top}(\zeta) \right]}_{jump \ \boldsymbol{J}} \qquad \zeta \in \gamma_{L} \cup \gamma_{R},$$

(c) there exists a matrix Γ_1 independent of ζ (but depending on n, τ_j and s) such that Γ satisfies

$$\Gamma(\zeta) = I + \frac{\Gamma_1}{\zeta} + \mathcal{O}(\zeta^{-2}), \quad \zeta \to \infty.$$

	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	00000000000000	000000	0000000000000	00

The jump condition:



Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	000000000000000	0000000	00000000000000	00
TT 71 1	1 (1	DIID9		

Why do we care about the RHP?

It can be proven (Bertola, '10 and Bertola, Cafasso, '11) that

$$\frac{\mathrm{d}}{\mathrm{d}s}\log F(s) = \int_{\gamma_R\cup\gamma_L} \operatorname{Tr}\left[\mathbf{\Gamma}_{-}^{-1}(\zeta)\mathbf{\Gamma}_{-}'(\zeta)(\partial_s \boldsymbol{J})(\zeta)\boldsymbol{J}^{-1}(\zeta)\right] \frac{\mathrm{d}\zeta}{2\pi\mathrm{i}},$$

where Γ' is the derivative of Γ and J is the jump matrix.

Proposition

The Fredholm determinant F(s) satisfies the differential identity

$$\frac{\mathrm{d}}{\mathrm{d}s}\log F(s) = \mathbf{\Gamma}_{1,11},$$

where Γ_1 is the first coefficient in the expansion of the RHP solution Γ at infinity:

$$\Gamma(\zeta) = I + \frac{\Gamma_1}{\zeta} + \mathcal{O}(\zeta^{-2}), \quad \zeta \to \infty.$$

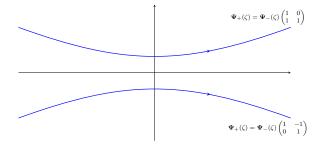
	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	000000000000000	0000000	000000000000000000000000000000000000000	00

Via an invertible transformation, we define

$$\Psi(\zeta) := \boldsymbol{\sigma}_3 \, \boldsymbol{\Gamma}(2\mathrm{i}\zeta) \, \boldsymbol{\sigma}_3 \, \mathrm{e}^{\boldsymbol{T}_s(2\mathrm{i}\zeta)}$$

with
$$T_s(\zeta) := \left(\frac{(-1)^{n+1}}{2}p_{2n+1}(\zeta) - \frac{1}{2}s\zeta\right)\boldsymbol{\sigma}_3$$
 and $\boldsymbol{\sigma}_3 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$.

The RHP for Ψ has constant jumps!



	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	000000000000	000000	000000000000000000000000000000000000000	00

We can easily find Ψ 's Lax pair

$$egin{aligned} \Psi_\lambda &= A\Psi \ \Psi_s &= B\Psi \end{aligned}$$

which turns out to be same one as the one for the Painlevé II hierarchy in the case $\alpha = 0$, with Stokes parameters $s_1 = -s_{2n+1} = 1$, $s_2 = \ldots = s_{2n} = 0$.

The compatibility conditions

$$\Psi_{s\lambda} = \Psi_{\lambda s} \quad \Leftrightarrow \quad \partial_s A - \partial_\lambda B + [A, B] = 0$$

yields

$$\frac{\mathrm{d}}{\mathrm{d}s}\Psi_{1,11} = -2\mathrm{i}\,(\Psi_{1,12})^2$$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	000000000000	000000	000000000000000000000000000000000000000	00

We can easily find Ψ 's Lax pair

$$egin{aligned} \Psi_\lambda &= oldsymbol{A}\Psi\ \Psi_s &= oldsymbol{B}\Psi \end{aligned}$$

which turns out to be same one as the one for the Painlevé II hierarchy in the case $\alpha = 0$, with Stokes parameters $s_1 = -s_{2n+1} = 1$, $s_2 = \ldots = s_{2n} = 0$.

The compatibility conditions

$$\Psi_{s\lambda} = \Psi_{\lambda s} \quad \Leftrightarrow \quad \partial_s A - \partial_\lambda B + [A, B] = 0$$

yields

$$\frac{\mathrm{d}}{\mathrm{d}s}\Psi_{1,11} = -2\mathrm{i}\,(\Psi_{1,12})^2$$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	00000000000000	00

We can easily find Ψ 's Lax pair

$$egin{aligned} \Psi_\lambda &= oldsymbol{A}\Psi\ \Psi_s &= oldsymbol{B}\Psi \end{aligned}$$

which turns out to be same one as the one for the Painlevé II hierarchy in the case $\alpha = 0$, with Stokes parameters $s_1 = -s_{2n+1} = 1$, $s_2 = \ldots = s_{2n} = 0$.

The compatibility conditions

$$\Psi_{s\lambda} = \Psi_{\lambda s} \quad \Leftrightarrow \quad \partial_s A - \partial_\lambda B + [A, B] = 0$$

yields

$$\frac{\mathrm{d}}{\mathrm{d}s}\Psi_{1,11}=-2\mathrm{i}\left(\Psi_{1,12}\right)^2$$

$$q((-1)^{n+1}s) \text{ solution to PII hierarchy}$$

	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	00000000000000	00

We can easily find Ψ 's Lax pair

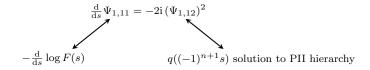
$$egin{aligned} \Psi_\lambda &= oldsymbol{A}\Psi\ \Psi_s &= oldsymbol{B}\Psi \end{aligned}$$

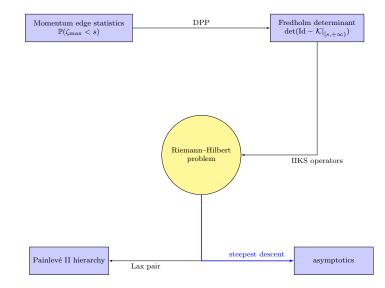
which turns out to be same one as the one for the Painlevé II hierarchy in the case $\alpha = 0$, with Stokes parameters $s_1 = -s_{2n+1} = 1$, $s_2 = \ldots = s_{2n} = 0$.

The compatibility conditions

$$\Psi_{s\lambda} = \Psi_{\lambda s} \quad \Leftrightarrow \quad \partial_s A - \partial_\lambda B + [A, B] = 0$$

yields





	TW identity	Asymptotics as $s \rightarrow +\infty$		
0000000000	0000000000000	000000	0000000000000	00

Asymptotics as $s \to +\infty$

Theorem (Cafasso, Claeys, G., '19)

Let $n \in \mathbb{N}$, $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$. There is a real solution $q(s) = q(s; \tau_1, \ldots, \tau_{n-1})$ to the equation of order 2n in the Painlevé II hierarchy which has no poles for real s, such that

$$q^{2}\left((-1)^{n+1}s\right) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log\det(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)}),$$

and with asymptotic behaviour

$$q((-1)^{n+1}s) = \mathcal{O}\left(e^{-Cs^{\frac{2n+1}{2n}}}\right), \qquad \text{as } s \to +\infty, \text{ for some } C > 0,$$
$$q((-1)^{n+1}s) \sim \left(\frac{n!^2}{(2n)!}|s|\right)^{\frac{1}{2n}}, \qquad \text{as } s \to -\infty.$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$ 00000000000000	Epilogue
0000000000	00000000000000	000000	000000000000000	00

Asymptotics as $s \to +\infty$

Theorem (Cafasso, Claeys, G., '19)

Let $n \in \mathbb{N}$, $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$. There is a real solution $q(s) = q(s; \tau_1, \ldots, \tau_{n-1})$ to the equation of order 2n in the Painlevé II hierarchy which has no poles for real s, such that

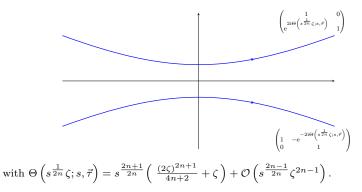
$$q^{2}\left((-1)^{n+1}s\right) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log\det(\mathrm{Id}-\mathcal{K}|_{[s,+\infty)}),$$

and with asymptotic behaviour

$$q((-1)^{n+1}s) = \mathcal{O}\left(e^{-Cs\frac{2n+1}{2n}}\right), \qquad \text{as } s \to +\infty, \text{ for some } C > 0,$$
$$q((-1)^{n+1}s) \sim \left(\frac{n!^2}{(2n)!}|s|\right)^{\frac{1}{2n}}, \qquad \text{as } s \to -\infty.$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00
Sketch of t	he proof			

Consider a rescaled and rotated version Ξ of our RHP Γ :



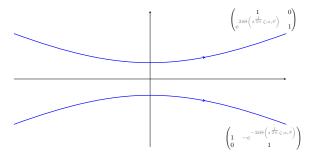
IntroductionTW identityAsymptotics as $s \to +\infty$ Asymptotics as $s \to -\infty$ Epilogu00000000000000000000000000000000000

$$\Theta\left(s^{\frac{1}{2n}}\zeta;s,\vec{\tau}\right) = s^{\frac{2n+1}{2n}}\left(\left|\frac{(2\zeta)^{2n+1}}{4n+2} + \zeta\right|\right) + \mathcal{O}\left(s^{\frac{2n-1}{2n}}\zeta^{2n-1}\right)$$

We would like to smartly choose the contours in such a way that

$$\operatorname{Im}\left[\frac{(2\zeta)^{2n+1}}{4n+2}+\zeta\right] > 0, \ \zeta \in \gamma_U, \qquad \operatorname{Im}\left[\frac{(2\zeta)^{2n+1}}{4n+2}+\zeta\right] < 0, \ \zeta \in \gamma_D.$$

so that the off-diagonal terms in the jumps $e^{\pm 2i\Theta} \to 0$ as $s \to +\infty$.



	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

We can actually do so:

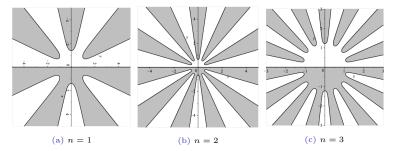


Figure: The white areas are the zones where $\mathrm{Im}>0$ while the grey areas are the zones where $\mathrm{Im}<0.$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

This way, the jump matrices are asymptotically equal to the identity matrix:

$$\mathbf{\Xi}_{+}(\zeta) = \mathbf{\Xi}_{-}(\zeta) \left(\mathbf{I} + \mathcal{O}\left(\frac{\mathrm{e}^{-Cs^{\frac{2n+1}{2n}}}}{\zeta^{2}} \right) \right), \quad \zeta \in \gamma_{U} \cup \gamma_{D}.$$

By the Small Norm Theorem, we can infer

$$\boldsymbol{\Xi}(\zeta) = \boldsymbol{I} + \mathcal{O}\left(\frac{\mathrm{e}^{-Cs^{\frac{2n+1}{2n}}}}{\zeta}\right) \qquad \text{as } s \to +\infty,$$

for some C > 0.

Getting back to q: as $s \to +\infty$,

$$q((-1)^{n+1}s) \sim \Xi_{1,12}(s) = \mathcal{O}\left(e^{-Cs^{\frac{2n+1}{2n}}}\right).$$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

This way, the jump matrices are asymptotically equal to the identity matrix:

$$\boldsymbol{\Xi}_{+}(\zeta) = \boldsymbol{\Xi}_{-}(\zeta) \left(\boldsymbol{I} + \mathcal{O}\left(\frac{\mathrm{e}^{-Cs^{\frac{2n+1}{2n}}}}{\zeta^{2}} \right) \right), \quad \zeta \in \gamma_{U} \cup \gamma_{D}.$$

By the Small Norm Theorem, we can infer

$$\boldsymbol{\Xi}(\zeta) = \boldsymbol{I} + \mathcal{O}\left(\frac{\mathrm{e}^{-Cs^{\frac{2n+1}{2n}}}}{\zeta}\right) \qquad \text{as } s \to +\infty,$$

for some C > 0.

Getting back to q: as $s \to +\infty$,

$$q((-1)^{n+1}s) \sim \Xi_{1,12}(s) = \mathcal{O}\left(e^{-Cs\frac{2n+1}{2n}}\right).$$

Finer asymptotics for higher order Airy

From the integral formula

$$\boldsymbol{\Xi}(\boldsymbol{\zeta}) = \boldsymbol{I} + \int_{\gamma_U \cup \gamma_D} \frac{\boldsymbol{\Xi}_{-}(w) \left[\boldsymbol{I} - \boldsymbol{J}(w, s; \vec{\tau})\right]}{w - \boldsymbol{\zeta}} \frac{\mathrm{d}w}{2\pi \mathrm{i}},$$

and its asymptotic expansion in ζ , we obtain

Corollary

If
$$\tau_1 = \dots = \tau_{n-1} = 0$$
,
 $q((-1)^{n+1}s) = \operatorname{Ai}_{2n+1}(s)(1+o(1)), \quad \text{as } s \to +\infty.$

(we suspect this holds also for general $\tau_1, \ldots, \tau_{n-1} \neq 0$)

Finer asymptotics for higher order Airy

From the integral formula

$$\boldsymbol{\Xi}(\boldsymbol{\zeta}) = \boldsymbol{I} + \int_{\gamma_U \cup \gamma_D} \frac{\boldsymbol{\Xi}_{-}(w) \left[\boldsymbol{I} - \boldsymbol{J}(w, s; \vec{\tau})\right]}{w - \boldsymbol{\zeta}} \frac{\mathrm{d}w}{2\pi \mathrm{i}},$$

and its asymptotic expansion in ζ , we obtain

Corollary

If
$$\tau_1 = \ldots = \tau_{n-1} = 0$$
,
 $q((-1)^{n+1}s) = \operatorname{Ai}_{2n+1}(s)(1+o(1)), \quad \text{as } s \to +\infty.$

(we suspect this holds also for general $\tau_1, \ldots, \tau_{n-1} \neq 0$)

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000000000000000000000000000	00

Asymptotics as $s \to -\infty$

Theorem (Cafasso, Claeys, G., '19)

Let $n \in \mathbb{N}$, $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$, and let $F(s) = \det(\mathrm{Id} - \mathcal{K}|_{[s,+\infty)})$. There is a real solution $q(s) = q(s; \tau_1, \ldots, \tau_{n-1})$ to the equation of order 2n in the Painlevé II hierarchy which has no poles for real s, such that

$$q^{2}((-1)^{n+1}s) = -\frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}}\log F(s),$$

and with asymptotic behaviour

$$q((-1)^{n+1}s) = \mathcal{O}\left(e^{-Cs^{\frac{2n+1}{2n}}}\right), \qquad \text{as } s \to +\infty, \text{ for some } C > 0,$$
$$q((-1)^{n+1}s) \sim \left(\frac{n!^2}{(2n)!}|s|\right)^{\frac{1}{2n}}, \qquad \text{as } s \to -\infty.$$

TW identity

Large gap asymptotics for the pure potential

In the case $\tau_1 = \ldots = \tau_{n-1} = 0$ (higher-order Airy)

Theorem (Cafasso, Claeys, G., '19)

as a

There exists a constant C > 0, possibly depending on n, such that

$$\log F(s) = -\frac{n^2}{(n+1)(2n+1)} {\binom{2n}{n}}^{-\frac{1}{n}} |s|^{2+\frac{1}{n}} + c \log |s| + \log C + o(1),$$

as $s \to -\infty$, with $c = -\frac{1}{8}$ if n = 1 and $c = -\frac{1}{2}$ otherwise. Moreover, the asymptotics can be improved to

$$q((-1)^{n+1}s) = \left(\frac{n!^2}{(2n)!}|s|\right)^{\frac{1}{2n}} + \frac{c}{2}\left(\frac{(2n)!}{n!^2}\right)^{\frac{1}{2n}}|s|^{-2-\frac{1}{2n}} + \mathcal{O}\left(|s|^{-2-\frac{1}{n}}\right),$$

$$s \to -\infty.$$

Note: our method does not allow to evaluate the overall constant C. In the Airy case n = 1, it was proved that $C = e^{\frac{1}{24} \log 2 + \zeta'(-1)}$, where ζ' is the derivative of the Riemann ζ function (Deift, Its, Krasovsky, 2008).

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000	00

In the general case with $\tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$ consider

$$\lambda(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^{2k}, \qquad \tilde{\lambda}(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^k,$$

and define $\theta_1, \ldots, \theta_{2n}$ and $\theta_1^{[2]}, \ldots, \theta_{2n}^{[2]}$ as follows:

$$\theta_i(\tau_1,\ldots,\tau_n) \equiv \theta_i := \begin{cases} \binom{2n}{n}^{-\frac{1}{2n}} & i = 0, \\ \frac{1}{2i-1} \operatorname{res}_{z=\infty} \lambda^{\frac{2i-1}{2n}}(z), & i \ge 1, \end{cases}$$

where the residue at infinity is minus the coefficient of z^{-1} in the large z expansion of the branch of $\lambda^{\frac{2i-1}{2n}}(z)$ which is positive for large z > 0, and similarly

$$\theta_i^{[2]}(\tau_1, \dots, \tau_n) \equiv \theta_i^{[2]} := \begin{cases} \theta_0^2, & i = 0\\ \frac{\tau_{n-1}}{4n-2}, & i = 1\\ \frac{1}{i-1} \operatorname{res}_{z = \infty} \tilde{\lambda}^{\frac{i-1}{n}}(z), & i \ge 2 \end{cases}$$

Introduction 0000000000 TW identity 000000000000 Asymptotics as $s \rightarrow +\infty$ 0000000 Asymptotics as $s \to -\infty$ 0000000000000 Epilogue 00

Large gap asymptotics for generic potential

Theorem (Cafasso, Claeys, G., '19)

Let $n \in \mathbb{N}, \tau_1, \ldots, \tau_{n-1} \in \mathbb{R}$. As $s \to -\infty$, there exists a constant $C = C(n; \tau) > 0$, such that we have the asymptotics

$$\log F(s) = -\sum_{\substack{j=0\\j\neq n+1}}^{2n} \frac{n^2}{(n+1-j)(2n+1-j)} \theta_j^{[2]} |s|^{\frac{2n-j+1}{n}} + c\log|s| + \log C + o(1),$$

with $c=-\frac{1}{8}$ if n=1 and $c=-\frac{1}{2}$ otherwise. Moreover, the asymptotics can be improved to

$$q((-1)^{n+1}s) = \sum_{i=0}^{2n} \theta_i |s|^{\frac{1}{2n} - \frac{i}{n}} + \frac{c}{2\theta_0} |s|^{-2 - \frac{1}{2n}} + \mathcal{O}\left(|s|^{-2 - \frac{1}{n}}\right), \quad \text{as } s \to -\infty.$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

The nitty gritty

n=1 There are no parameters of deformation τ_i and our result gives: as $s \to -\infty$

$$\log F(s) = -\frac{|s|^3}{12} - \frac{1}{8}\log|s| + \log C + o(1) \qquad \text{(Tracy-Widom distribution)}.$$

n=2~ In the first non-trivial case, we obtain as $s \to -\infty$

$$\log F(s) = -\frac{2}{45}\sqrt{6}|s|^{5/2} - \frac{1}{12}\tau_1|s|^2 - \frac{\sqrt{6}}{54}\tau_1^2|s|^{3/2} - \frac{\sqrt{6}}{432}\tau_1^4|s|^{1/2} - \frac{1}{2}\log|s| + \log C + o(1).$$

n=3 We have two deformation parameters τ_1, τ_2 : as $s \to -\infty$

$$\begin{split} \log F(s) &= -\frac{9}{560} 20^{\frac{2}{3}} |s|^{7/3} - \frac{1}{20} \tau_2 |s|^2 + \frac{3\sqrt[3]{20}}{1000} \left(10\tau_1 - 3\tau_2^2\right) |s|^{5/3} \\ &+ \frac{3}{2000} 20^{\frac{2}{3}} \tau_2 \left(5\tau_1 - \tau_2^2\right) |s|^{4/3} - \frac{\sqrt[3]{20}}{5000} \tau_2 \left(50\tau_1^2 - 25\tau_2^2\tau_1 + 3\tau_2^4\right) |s|^{2/3} \\ &+ \frac{20^{\frac{2}{3}}}{900000} \left(1000\tau_1^3 - 1800\tau_2^2\tau_1^2 + 630\tau_2^4\tau_1 - 63\tau_2^6\right) |s|^{1/3} \\ &- \frac{1}{2} \log |s| + \log C + o(1) \end{split}$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

The nitty gritty

n=1 There are no parameters of deformation τ_i and our result gives: as $s \to -\infty$

$$\log F(s) = -\frac{|s|^3}{12} - \frac{1}{8}\log|s| + \log C + o(1) \qquad \text{(Tracy-Widom distribution)}.$$

n=2~ In the first non-trivial case, we obtain as $s \to -\infty$

$$\log F(s) = -\frac{2}{45}\sqrt{6}|s|^{5/2} - \frac{1}{12}\tau_1|s|^2 - \frac{\sqrt{6}}{54}\tau_1^2|s|^{3/2} - \frac{\sqrt{6}}{432}\tau_1^4|s|^{1/2} - \frac{1}{2}\log|s| + \log C + o(1).$$

n=3 We have two deformation parameters τ_1, τ_2 : as $s \to -\infty$

$$\begin{split} \log F(s) &= -\frac{9}{560} 20^{\frac{2}{3}} |s|^{7/3} - \frac{1}{20} \tau_2 |s|^2 + \frac{3\sqrt[3]{20}}{1000} \left(10\tau_1 - 3\tau_2^2\right) |s|^{5/3} \\ &+ \frac{3}{2000} 20^{\frac{2}{3}} \tau_2 \left(5\tau_1 - \tau_2^2\right) |s|^{4/3} - \frac{\sqrt[3]{20}}{5000} \tau_2 \left(50\tau_1^2 - 25\tau_2^2\tau_1 + 3\tau_2^4\right) |s|^{2/3} \\ &+ \frac{20^{\frac{2}{3}}}{900000} \left(1000\tau_1^3 - 1800\tau_2^2\tau_1^2 + 630\tau_2^4\tau_1 - 63\tau_2^6\right) |s|^{1/3} \\ &- \frac{1}{2} \log |s| + \log C + o(1) \end{split}$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

The nitty gritty

n=1 There are no parameters of deformation τ_i and our result gives: as $s \to -\infty$

$$\log F(s) = -\frac{|s|^3}{12} - \frac{1}{8}\log|s| + \log C + o(1) \qquad \text{(Tracy-Widom distribution)}.$$

n=2~ In the first non-trivial case, we obtain as $s \to -\infty$

$$\log F(s) = -\frac{2}{45}\sqrt{6}|s|^{5/2} - \frac{1}{12}\tau_1|s|^2 - \frac{\sqrt{6}}{54}\tau_1^2|s|^{3/2} - \frac{\sqrt{6}}{432}\tau_1^4|s|^{1/2} - \frac{1}{2}\log|s| + \log C + o(1).$$

n=3 We have two deformation parameters τ_1, τ_2 : as $s \to -\infty$

$$\begin{split} \log F(s) &= -\frac{9}{560} 20^{\frac{2}{3}} |s|^{7/3} - \frac{1}{20} \tau_2 |s|^2 + \frac{3\sqrt[3]{20}}{1000} \left(10\tau_1 - 3\tau_2^2\right) |s|^{5/3} \\ &+ \frac{3}{2000} 20^{\frac{2}{3}} \tau_2 \left(5\tau_1 - \tau_2^2\right) |s|^{4/3} - \frac{\sqrt[3]{20}}{5000} \tau_2 \left(50\tau_1^2 - 25\tau_2^2\tau_1 + 3\tau_2^4\right) |s|^{2/3} \\ &+ \frac{20^{\frac{2}{3}}}{900000} \left(1000\tau_1^3 - 1800\tau_2^2\tau_1^2 + 630\tau_2^4\tau_1 - 63\tau_2^6\right) |s|^{1/3} \\ &- \frac{1}{2} \log |s| + \log C + o(1) \end{split}$$

TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
		0000000000000	

Sketch of the proof

Like in the $s \to +\infty$, we would love to have a RHP with jumps of the type $J(\zeta) = I + \delta J(\zeta)$, however, the phases Θ in the jumps diverge as $s \to -\infty$.

We will recur to the steepest descent method (Deift, Zhou, '92).

The strategy is to apply a sequence of invertible transformations

 $\Gamma\mapsto \underbrace{\Psi\mapsto\ldots\mapsto S}_{g ext{-function}}\mapsto R$

in such away that, within the regime $s \ll -1$, the final RHP

$$\boldsymbol{R}(\zeta) = \boldsymbol{S}(\zeta)\boldsymbol{\Omega}^{-1}(\zeta)$$

has jumps close to the identity. We can then apply a small norm argument again: $R(\zeta) = I + \{\text{small}\}$ and

$$S(\zeta) = \underbrace{(I + \{\text{small}\})}_{R(\zeta)} \cdot \underbrace{\Omega(\zeta)}_{\text{"model"}}$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00
Sketch of t	he proof			

Like in the $s \to +\infty$, we would love to have a RHP with jumps of the type $J(\zeta) = I + \delta J(\zeta)$, however, the phases Θ in the jumps diverge as $s \to -\infty$.

We will recur to the steepest descent method (Deift, Zhou, '92).

The strategy is to apply a sequence of invertible transformations

$$\Gamma\mapsto \underbrace{\Psi\mapsto\ldots\mapsto S}_{q ext{-function}}\mapsto R$$

in such away that, within the regime $s \ll -1$, the final RHP

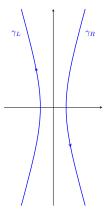
$$\boldsymbol{R}(\zeta) = \boldsymbol{S}(\zeta)\boldsymbol{\Omega}^{-1}(\zeta)$$

has jumps close to the identity. We can then apply a small norm argument again: $R(\zeta) = I + \{\text{small}\}$ and

$$\boldsymbol{S}(\zeta) = \underbrace{(\boldsymbol{I} + \{\text{small}\})}_{\boldsymbol{R}(\zeta)} \cdot \underbrace{\boldsymbol{\Omega}(\zeta)}_{\text{"model"}}$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00
Sketch of t	he proof			

Step 0: the original problem Γ



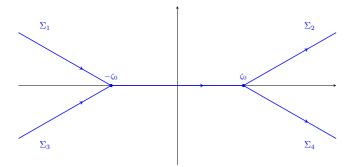
Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00
Sketch of t	the proof			

Step 1: $\Gamma \mapsto \Psi$, rotation

 γ_U

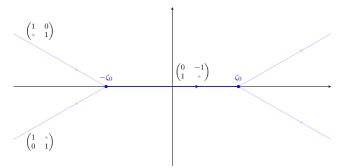
 γ_D

Step 2: $\Psi \mapsto S$, jump merging and rescaling; introduction of a *g*-function



Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000000000000000000000000000	00
Sketch of t	the proof			

Step 3: the magic of the *g*-function



	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

A note on the q-function

Ansatz:

$$g(\zeta;s) = \sum_{j=1}^{n} c_j (\zeta^2 - \zeta_0^2)^{\frac{2j+1}{2}}$$

with $(\zeta^2 - \zeta_0^2)^{\frac{2j+1}{2}}$ analytic on $\mathbb{C} \setminus [-\zeta_0, \zeta_0]$ and such that it behaves like ζ^{2j+1} as $\zeta \to \infty$.

We fix the constants c_j and the branch point $\zeta_0>0$ by imposing the asymptotic behaviour

$$|s|^{\frac{2n+1}{2n}}g(\zeta) = \underbrace{\Theta(|s|^{\frac{1}{2n}}\zeta)}_{\text{jump phase}} + \frac{g_1(s)}{\zeta} + \mathcal{O}(\zeta^{-2}), \qquad \text{as } \zeta \to \infty$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	00000000000000	0000000	00000000000000	00

A note on the q-function

Ansatz:

$$g(\zeta;s) = \sum_{j=1}^{n} c_j (\zeta^2 - \zeta_0^2)^{\frac{2j+1}{2}}$$

with $(\zeta^2 - \zeta_0^2)^{\frac{2j+1}{2}}$ analytic on $\mathbb{C} \setminus [-\zeta_0, \zeta_0]$ and such that it behaves like ζ^{2j+1} as $\zeta \to \infty$.

We fix the constants c_j and the branch point $\zeta_0>0$ by imposing the asymptotic behaviour

$$|s|^{\frac{2n+1}{2n}}g(\zeta) = \underbrace{\Theta(|s|^{\frac{1}{2n}}\zeta)}_{\text{jump phase}} + \frac{g_1(s)}{\zeta} + \mathcal{O}(\zeta^{-2}), \qquad \text{as } \zeta \to \infty$$

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

This gives:

$$\begin{split} c_{n-m} &= \sum_{k=0}^{m} (-1)^{m-k} 2^{2(n-m+k)-1} \tau_{n-m+k} |s|^{-\frac{m-k}{n}} \frac{\Gamma\left(n-m+k+\frac{1}{2}\right)}{k! \Gamma\left(n-m+\frac{3}{2}\right)} \zeta_0^{2k} \\ g_1(s) &= \frac{1}{2} \sum_{k=1}^{n} (-1)^{n-k} \tau_k \binom{2k}{k-1} |s|^{\frac{2k+1}{2n}} \zeta_0^{2k+2}. \end{split}$$

and $\zeta_0 = \zeta_0(s)$ defined implicitly as

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k |s|^{\frac{k-n}{n}} \zeta_0^{2k} = 1.$$

We just need to solve the equation for ζ_0 , at least in the $s \to -\infty$ regime...

	TW identity	Asymptotics as $s \rightarrow +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00

This gives:

$$\begin{split} c_{n-m} &= \sum_{k=0}^{m} (-1)^{m-k} 2^{2(n-m+k)-1} \tau_{n-m+k} |s|^{-\frac{m-k}{n}} \frac{\Gamma\left(n-m+k+\frac{1}{2}\right)}{k! \Gamma\left(n-m+\frac{3}{2}\right)} \zeta_0^{2k} \\ g_1(s) &= \frac{1}{2} \sum_{k=1}^{n} (-1)^{n-k} \tau_k \binom{2k}{k-1} |s|^{\frac{2k+1}{2n}} \zeta_0^{2k+2}. \end{split}$$

and $\zeta_0 = \zeta_0(s)$ defined implicitly as

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k |s|^{\frac{k-n}{n}} \zeta_0^{2k} = 1.$$

We just need to solve the equation for ζ_0 , at least in the $s \to -\infty$ regime...

$$\lambda(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^{2k}, \qquad \tilde{\lambda}(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^k$$

and define

$$\begin{split} \theta_i &:= \begin{cases} \binom{2n}{n}^{-\frac{1}{2n}}, & i = 0, \\ \frac{1}{2i-1} \mathop{\mathrm{res}}_{z = \infty} \lambda^{\frac{2i-1}{2n}}(z), & i \geq 1. \\ \\ \theta_i^{[2]} &:= \begin{cases} \theta_0, & i = 0, \\ \frac{\tau_{n-1}}{4n-2}, & i = 1, \\ \frac{1}{i-1} \mathop{\mathrm{res}}_{z = \infty} \tilde{\lambda}^{\frac{i-1}{n}}(z), & i \geq 2. \end{cases} \end{split}$$

Then,

$$\zeta_0(s)\sim \sum_{i=0}^\infty \theta_i |s|^{-\frac{i}{n}} \quad \text{and} \quad \zeta_0^2(s)\sim \sum_{i=0}^\infty \theta_i^{[2]} |s|^{-\frac{i}{n}}, \qquad \text{as $s\to -\infty$}.$$

Note: the coefficients $\{\theta_i\}_{i=0}^{\infty}$ and $\{\theta_i^{[2]}\}_{i=0}^{\infty}$ are related to *topological minimal models of type* A_n and to flat coordinates for the corresponding Frobenius manifolds.

$$\lambda(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^{2k}, \qquad \tilde{\lambda}(z) := \sum_{k=1}^{n} (-1)^{n-k} \binom{2k}{k} \tau_k z^k$$

and define

$$\theta_{i} := \begin{cases} \binom{2n}{n}^{-\frac{1}{2n}}, & i = 0, \\ \frac{1}{2i - 1} \mathop{\rm res}\limits_{z = \infty} \lambda^{\frac{2i - 1}{2n}}(z), & i \ge 1. \end{cases}$$
$$\theta_{i}^{[2]} := \begin{cases} \theta_{0}, & i = 0, \\ \frac{\tau_{n - 1}}{4n - 2}, & i = 1, \\ \frac{1}{i - 1} \mathop{\rm res}\limits_{z = \infty} \tilde{\lambda}^{\frac{i - 1}{n}}(z), & i \ge 2. \end{cases}$$

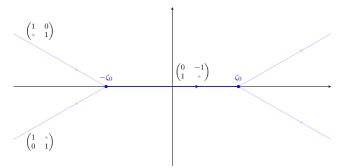
Then,

$$\zeta_0(s)\sim \sum_{i=0}^\infty \theta_i |s|^{-\frac{i}{n}} \quad \text{and} \quad \zeta_0^2(s)\sim \sum_{i=0}^\infty \theta_i^{[2]} |s|^{-\frac{i}{n}}, \qquad \text{as $s\to -\infty$}.$$

Note: the coefficients $\{\theta_i\}_{i=0}^{\infty}$ and $\{\theta_i^{[2]}\}_{i=0}^{\infty}$ are related to topological minimal models of type A_n and to flat coordinates for the corresponding Frobenius manifolds.

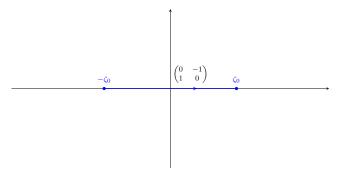
Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000000	00
Sketch of t	the proof			

Step 3: the magic of the *g*-function

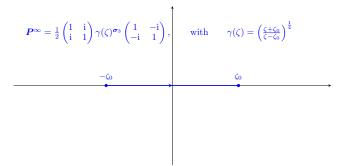


Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	000000000000000	00
Sketch of t	he proof			

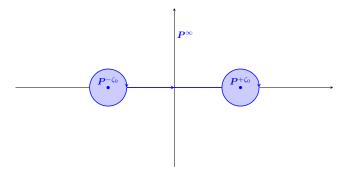
Step 3: the magic of the *g*-function



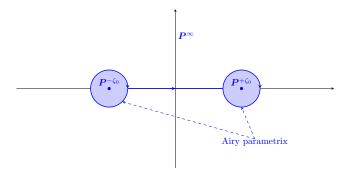
Step 4: build the model problem Ω with parametrices P^{∞} and $P^{\pm \zeta_0}$



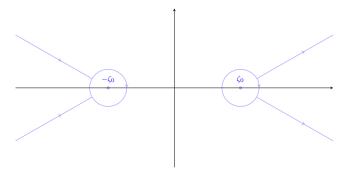
Step 4: build the model problem Ω with parametrices P^{∞} and $P^{\pm \zeta_0}$



Step 4: build the model problem Ω with parametrices P^{∞} and $P^{\pm \zeta_0}$



Step 5: taking care of the other small-norm jumps (the remainder $\mathbf{R} := S\Omega^{-1}$)



	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
	00000000000000	0000000	000000000000000	00
A note on	the remainder	problem		

We can compute the asymptotic expansion of the remainder to arbitrary order of accuracy:

$$\boldsymbol{R}(\zeta) = \boldsymbol{I} + \boldsymbol{R}^{(1)}(\zeta)|s|^{-\frac{2n+1}{2n}} + \boldsymbol{R}^{(2)}(\zeta)|s|^{-\frac{2n+1}{n}} + \mathcal{O}\left(|s|^{-\frac{6n+3}{2n}}\right),$$

for some matrices $\mathbf{R}^{(1)}(\zeta), \mathbf{R}^{(2)}(\zeta), \ldots$ which can be computed via a recursive procedure.

In particular,

$$\boldsymbol{R}^{(1)}(\zeta) = \int_{\partial \mathcal{C}_{+\zeta_0} \cup \partial \mathcal{C}_{-\zeta_0}} \frac{\boldsymbol{I} - \boldsymbol{J}_{\boldsymbol{R}}(w)}{w - \zeta} \frac{\mathrm{d}w}{2\pi \mathrm{i}} = \frac{\boldsymbol{R}_1^{(1)}}{\zeta} + \mathcal{O}\left(\frac{1}{\zeta^2}\right), \quad \text{as } \zeta \to \infty.$$

Introduction		Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000		0000000	000000000000000	00
Back to gap	probabilities			

Following backwards all the transformations $\Gamma \mapsto \Psi \mapsto S \mapsto R = S\Omega^{-1}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}s}\log F(s) = \Gamma_{1;11} = \ldots = 2\mathrm{i}|s|^{\frac{1}{2n}} R_{1,11} + 2|s|^{\frac{1}{2n}} g_1(s)$$

where g_1 is the residue of the g function at $\zeta = \infty$.

By explicitly calculating the terms involved (in the regime $s \to -\infty$), we obtain

$$\log F(s) = -c \log |s| - \sum_{\substack{j=0\\j\neq n+1}}^{2n} \frac{n^2}{(n+1-j)(2n+1-j)} \theta_j^{[2]} |s|^{\frac{2n-j+1}{n}} + \log C + o(1).$$

with $c = \frac{1}{8}$ for n = 1 and $c = \frac{1}{2}$ otherwise.

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	00
Back to gap	o probabilities			

Following backwards all the transformations $\Gamma \mapsto \Psi \mapsto S \mapsto R = S\Omega^{-1}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}s}\log F(s) = \Gamma_{1;11} = \ldots = 2\mathrm{i}|s|^{\frac{1}{2n}} R_{1,11} + 2|s|^{\frac{1}{2n}} g_1(s)$$

where g_1 is the residue of the g function at $\zeta = \infty$.

By explicitly calculating the terms involved (in the regime $s \to -\infty$), we obtain

$$\log F(s) = -c \log |s| - \sum_{\substack{j=0\\ j \neq n+1}}^{2n} \frac{n^2}{(n+1-j)(2n+1-j)} \theta_j^{[2]} |s|^{\frac{2n-j+1}{n}} + \log C + o(1).$$

with $c = \frac{1}{8}$ for n = 1 and $c = \frac{1}{2}$ otherwise.

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	0000000000000	00
Back to q	$\left((-1)^{n+1}s\right)$			

Similarly, we have

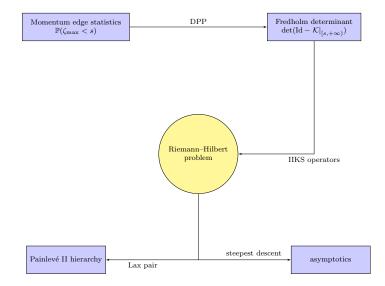
$$q((-1)^{n+1}s) = \ldots = \zeta_0(s)|s|^{\frac{1}{2n}} + 2i|s|^{\frac{1}{2n}}R_{1,12}.$$

Explicitly,

$$q((-1)^{n+1}s) = \sum_{i=0}^{2n} \theta_i |s|^{\frac{1}{2n} - \frac{i}{n}} + \frac{c}{2\theta_0} |s|^{-2 - \frac{1}{2n}} + \mathcal{O}\left(|s|^{-2 - \frac{1}{n}}\right), \quad \text{as } s \to -\infty.$$

Introduction	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \to -\infty$	Epilogue
0000000000	0000000000000	0000000	00000000000000	●0

Conclusion



	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	000000000000000000000000000000000000000	00

Higher-order Airy kernels and their Fredholm determinant are ubiquitous...

- universality:
 - (Betea–Bouttier–Walsh, '20) Fredholm Determinant of higher-order Airy is connected to Schur measures (random partitions) where the edge fluctuation is of the order $\frac{1}{2n+1}$;
 - (Kimura–Zahabi, '20-'21) further work on random partition and generating functions in gauge theory.
- recent developments:
 - (Tarricone, '20) matrix-valued version of the higher-order Airy function and non-commutative PII hierarchy;
 - (Krajenbrink, '20; Bothner-Cafasso-Tarricone, '21) higher-order *finite* temperature Airy kernel and integro-differential Painlevé-II hierarchy.
- open problems:
 - what about the integration constant C?
 - interpretation of generalized kernel $(\tau_j \text{'s} \neq 0)$ as non-interacting fermions?
 - connection of higher-order (finite-temperature) Airy determinant with RMT?

Introduction	TW identity	Asymptotics as $s \to +\infty$ 0000000	Asymptotics as $s \to -\infty$	Epilogue

Higher-order Airy kernels and their Fredholm determinant are ubiquitous...

- universality:
 - (Betea–Bouttier–Walsh, '20) Fredholm Determinant of higher-order Airy is connected to Schur measures (random partitions) where the edge fluctuation is of the order $\frac{1}{2n+1}$;
 - (Kimura–Zahabi, '20-'21) further work on random partition and generating functions in gauge theory.
- recent developments:
 - (Tarricone, '20) matrix-valued version of the higher-order Airy function and non-commutative PII hierarchy;
 - (Krajenbrink, '20; Bothner–Cafasso–Tarricone, '21) higher-order *finite* temperature Airy kernel and integro-differential Painlevé-II hierarchy.
- open problems:
 - what about the integration constant C?
 - interpretation of generalized kernel $(\tau_j \text{'s} \neq 0)$ as non-interacting fermions?
 - connection of higher-order (finite-temperature) Airy determinant with RMT?

	TW identity	Asymptotics as $s \to +\infty$	Asymptotics as $s \rightarrow -\infty$	Epilogue
0000000000	0000000000000	000000	000000000000000000000000000000000000000	00

Higher-order Airy kernels and their Fredholm determinant are ubiquitous...

- universality:
 - (Betea–Bouttier–Walsh, '20) Fredholm Determinant of higher-order Airy is connected to Schur measures (random partitions) where the edge fluctuation is of the order $\frac{1}{2n+1}$;
 - (Kimura–Zahabi, '20-'21) further work on random partition and generating functions in gauge theory.
- recent developments:
 - (Tarricone, '20) matrix-valued version of the higher-order Airy function and non-commutative PII hierarchy;
 - (Krajenbrink, '20; Bothner–Cafasso–Tarricone, '21) higher-order *finite* temperature Airy kernel and integro-differential Painlevé-II hierarchy.
- open problems:
 - $\bullet\,$ what about the integration constant C?
 - interpretation of generalized kernel $(\tau_j \text{'s} \neq 0)$ as non-interacting fermions?
 - connection of higher-order (finite-temperature) Airy determinant with RMT?

	TW identity			Epilogue
0000000000	0000000000000	000000	0000000000000	00

Higher-order Airy kernels and their Fredholm determinant are ubiquitous...

- universality:
 - (Betea–Bouttier–Walsh, '20) Fredholm Determinant of higher-order Airy is connected to Schur measures (random partitions) where the edge fluctuation is of the order $\frac{1}{2n+1}$;
 - (Kimura–Zahabi, '20-'21) further work on random partition and generating functions in gauge theory.
- recent developments:
 - (Tarricone, '20) matrix-valued version of the higher-order Airy function and non-commutative PII hierarchy;
 - (Krajenbrink, '20; Bothner–Cafasso–Tarricone, '21) higher-order *finite* temperature Airy kernel and integro-differential Painlevé-II hierarchy.
- open problems:
 - what about the integration constant C?
 - interpretation of generalized kernel $(\tau_j \text{'s} \neq 0)$ as non-interacting fermions?
 - connection of higher-order (finite-temperature) Airy determinant with RMT?

Thank you!