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MSRI - September 2021



Riesz interactions

I Riesz interaction, parameter s dimension d:

gs,d(x) :=
1

s
‖x‖−s in Rd.

“Long-range” if s ∈ [d− 2, d), “short-range” if s ∈ (d ,+∞).
Will focus on s ≥ d− 2.

I Special cases:
I s = d− 2 is the Coulomb kernel (cf. Sylvia’s talk):

−|x | (d = 1), − log |x | (d = 2),
1

|x |
(d = 3).

I s = 0, d = 1, 2 corresponds to − log |x | (logarithmic
interaction).

I Fundamental solution of fractional Laplacian −∆
d−s

2 gs,d ∝ δ0.
Examples: true Laplacian for s = d− 2 (Coulomb cases),
half-laplacian for one-dimensional log-gas.



Riesz system

I N point charges with pairwise interaction through Riesz kernel

I ∞ point charges with pairwise interaction through Riesz kernel

The second case requires a definition, especially in the “long-range
case” s ≤ d for which:∫ +∞

0
gs,d(r)rd−1dr = +∞.

I The effect of one particle at 0 is felt everywhere in the system.

I Interaction energy is not spatially additive (even up to a small
error).

I What is the energy of an infinite system (even per unit
volume)?



Finite Riesz system - energy

I d ≥ 1, N ≥ 1

I s ∈ (d− 2, d) (long-range) or s ∈ [d ,+∞) (short-range /
hypersingular).

I XN := (x1, . . . , xN) positions of point particles in Rd

I Riesz interaction energy:

1

2

∑
1≤i 6=j≤N

gs(xi − xj).

I VN : Rd → R external potential/field/weight, fairly smooth.

I Total energy of the system in state XN :

HV
N (XN) :=

1

2

∑
1≤i 6=j≤N

g(xi − xj) +
N∑
i=1

VN(xi ).



Riesz gas - Gibbs measure

(Finite) Riesz gaz

I β > 0 inverse temperature parameter (may depend on N)

I Canonical Gibbs measure

dPN,β(XN) :=
1

ZN,β
exp

(
−βHV

N (XN)
)
dXN

I ZN,β partition function:

ZN,β :=

∫
Rd×···×Rd

exp (−βHN(XN)) dXN .

Alternative to V : choose a density µ supported in a domain Σ and
take

∏N
i=1 µ(x)idxi as a reference measure. In physics papers: the

background density µ = the uniform measure on a large box of
volume N.



Defines a three-parameter family of stat. mech. systems (d, s, β):
called (here) the (finite-N) “Riesz gases”. These form finite point
processes on Rd (could look at manifolds...). In some cases, the
N →∞ (“thermodynamic limit”) exists = infinite/limiting point
process.

These are the points we would like to “count”.



Motivations
I Includes Coulomb, log-gases (cf. Sylvia’s talk and motivations

therein).

I Restricted Coulomb potentials e.g. particles interacting
through the “normal” |x |−1 interaction but forced to live on a
line, on a two-dimensional surface...

I Interpolates between various interesting situations e.g. in
d = 1:
I s = −1, 1d Coulomb gas g(x) = −|x |
I s = 0, 1d log-gas g(x) = − log |x |
I s = 1, 3d Coulomb gas restricted to the line...

I For fixed d, the parameter s determines the “long-range-ness”
(behavior at infinity) and the singularity = repulsion at the
origin. Coulomb cases s = d− 2 are very long-range, s = d
not so much, d� s is short-range but very singular.

I Extra temperature parameter β → stat. phys. Transitions as
β varies?

I Role of V ? Universality?
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Distinguished members

I Ginibre ensemble: d = 2, s = 0, β = 2, V quadratic. A
determinantal point process (algebraic structure for correlation
functions of the particles). Ginibre, 60’s.

I Gaussian Unitary Ensemble: d = 1, s = 0, β = 2, V quadratic.
Also determinantal.

I GOE & GSE: d = 1, s = 0, β = 1, 4. Still an algebraic
structure for correlation functions, amenable to (some)
computations.

I 1d log-gas d = 1, s = 0, β > 0. Not exactly solvable in
general, but a matrix model Dumitriu-Edelman. Also circular
β-ensembles.

For all those members, the infinite volume limit exists: Ginibre
process, Sine-2, Sine-1, Sine-4, Sine-β...

I The 1d Coulomb gas d = 1, s = −1, β > 0 was studied by
Kunz, Baxter. Admits a particularly nice structure.
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Some friends

I Zeroes of Gaussian Analytic Functions (GAF). (ak)k≥0 iid
standard complex Gaussian r.v.

f (z) =
+∞∑
k=0

ak√
k!

zk .

Almost surely an entire function → random infinite collection
of points in C. Invariant under isometries. Some kind of
algebraic structure for correlation functions, but mostly
analytic techniques.
A good friend of the Ginibre point process!

I Lattices, lattices + shift, lattices + random iid perturbations
(+ shift). Potential friends of Riesz gases as β → +∞
(energy minimization).

I Poisson process: a reference & and friend of Riesz gases as
β → 0.



More friends?

I Zeroes of Kac polynomials: a finite point process in R2. The
zeroes gather around the unit circle. Could be compared (to
some extent) to 1d log-gases, to circular ensembles.

I Various random analytic functions in various domains.

I Hierarchical models (à la Dyson).

I Discrete particle systems (discrete β-ensembles).

I Your favorite point process?



Counting points in boxes

X the random point configuration: N points in a domain ΛN or
infinitely many points in Rd.
Take Λ ⊂ ΛN or Λ ⊂ Rd. Number of points #X ∩ Λ random.

1. N points in ΛN . Assume volume |ΛN | = N. Is it true that:

E [#X ∩ Λ] = |Λ| ??

→ not even clear (at all).

2. Infinite system in Rd, if stationary then constant intensity
(assume = 1), and we have:

E [#X ∩ Λ] = |Λ| for every finite box Λ.

Relevant quantities: #X ∩ Λ− |Λ| (discrepancy)
#X ∩ Λ− E [#X ∩ Λ] (charge fluctuation).



Hyperuniformity

Typical size of discrepancies / charge fluctuations?

I For a Poisson point process (intensity 1) Var(#X ∩ Λ) = |Λ|.
Same (almost) for N iid points uniformly in a box of volume

N. Typical charge fluctuation = |Λ|
1
2 .

Point processes can do worse, as well, or better... We say
“Hyperuniform” ⇐⇒ better than Poisson.

I Torquato-Stillinger, Lebowitz X is hyperuniform when:

Var(#X ∩ Λ)

|Λ|
→ 0 as |Λ| → ∞.

Variance in B(0,R) � Rd, typical discrepancy � Rd/2.

I Best possible (random) case: “Type I” hyperuniform, variance
in ball B(0,R) ' Rd−1.

I Hyperuniformity ↔ control of typical discrepancy. Related
notion: equidistribution (maximal discrepancy).
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(Number-)rigidity

Fix Λ ⊂ Rd bounded. Knowing X ∩ Λc , can I determine:

I #X ∩ Λ? Yes → number-rigid. (not relevant for fixed N.)

I The center of mass in Λ? Yes → 2-rigid (“center of
mass”-rigid).

I Higher moments of X in Λ (think Λ ⊂ R or C)? →
higher-rigidity.

I X ∩ Λ completely ?! Yes → fully rigid.

S. Ghosh, Peres, Lebowitz
Remark: there are non-deterministic examples of high/full rigidity!
(Ghosh-Krishnapur, Kiro-Nishry).



The JLM law
Assume we know E[#X ∩ Λ] = |Λ| (e.g. infinite,
translation-invariant system). Consider charge fluctuations
#X ∩ Λ− |Λ|. Ask:

P [#X ∩ Λ− |Λ| ≥ Q] '?

Deviation estimates for large excess/defects of particles?
Depending on how large Q is (regimes of deviations), the price to
pay might differ.
The Jancovici-Lebowitz-Manificat law (for d = 2).

P
[
#X ∩ B(0,R)− πR2 ≥ Rα

]
' exp

(
−Rϕ(α)

)
,

with

ϕ(α) =


2α− 1 α ∈ ( 1

2 , 1)

3α− 2 α ∈ (1, 2)

2α α > 2.

Other prediction for d = 3. This is (much) stronger than “type I
hyperuniform”.



Ginibre

Recall: Ginibre = Coulomb gas d = 2, s = 0 at β = 2. For the
infinite system:

I E[#X ∩ Λ] = |Λ|
I Var[#X ∩ B(0,R)] ' R1. Type I hyperuniform.

I Satisfies the prediction of JLM.

I Number-rigid.

For β 6= 2, we don’t know. Hyperuniformity true for hierarchical
model (Chatterjee).



Sine-2 and Sine-β

Recall: GUE = log gas d = 1, s = 0 at β = 2. For the infinite
system:

I E[#X ∩ Λ] = |Λ|
I Var[#X ∩ B(0,R)] ' logR. Type II hyperuniform

Costin-Lebowitz.

I Number-rigid. Bufetov, Bufetov-Nikitin-Qiu

I Deviation estimates ??

In fact for all β, it holds Kritchevski-Valkó-Virág, Killip,
Najnudel-Virág

Var[#X ∩ B(0,R)] ' logR

β
.

Sine-β is number rigid ∀β Chhaibi-Najnudel,
Dereudre-Hardy-L.-Mäıda.



Other examples

I 1d Coulomb gas. d = 1, s = −1, β > 0
Rephrasing older results, the 1d Coulomb gas appears to be
type I hyperuniform (bounded variance) and number-rigid (?).
More rigid?

I Zeroes of the GAF are type I hyperuniform, rigid, 2-rigid and
satisfy the prediction of JLM.

I Lattices (β →∞? yes in 1d). True lattices are obviously fully
rigid and no variance. Shifted lattices are type I HU (Kendall)
and fully rigid. A lattice + random iid perturbation + shift
remains type I HU... but not always number-rigid (Gacs-Szaz,
Holroyd-Soo, Peres-Sly).

I Poisson (β → 0). Nothing at all.

Remark: Sine-β goes to Poisson as β + 0 (while retaining some
rigidity) and to a shifted Z as β → +∞ while fluctuating a bit
more.
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General Riesz systems?

I For short-range systems: not HU, not rigid. Not Poisson
either. What are the remaining traces of rigidity?

I Focus on long-range s ∈ [d− 2, d). A few known facts and
some guesswork:
I s = d− 2 (Coulomb) type I HU and number-rigid?? True for

d = 1, for d = 2&β = 2. HU is part of JLM predicition for
d = 2, 3. Number-rigidity might not be true for d = 3.

I The regime s ∈ (d− 2, d− 1) remains largely unexplored.
I s > d− 1, still HU? Type II? True for d = 1.
I s ∈ (d− 1, d) lose number-rigidity Dereudre-Vasseur. Charge

fluctuations grow, e.g. d = 1, Var[X ∩ I ] ' |I |s (Boursier).
I s = d lose HU.
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Remark: we know that for d = 1, s = −1 (Coulomb) is more rigid
than s = 0 (log-gas), despite being less repulsive.
Possible motto: long-range, rather than repulsion, is responsible for
“cancellation of charge fluctuations”.



Role of temperature
I Those were β-independent statements. Unclear whether there

are β-dependent properties (e.g. 3d Coulomb gases are rigid
at low temperatures, not at higher ones?? in the spirit of
Peres-Sly).
There has been some interest in very low/high temperature
regimes. Take β = β(N).

I If β(N)→ +∞ (low temp.) we see energy minimizers (a
lattice)? Might break translation invariance, so charge
fluctuations might not be centered. The regime β(N) = logN

might already be interesting in 1d (since Var(X ∩ I ) ∝ log |I |
β ),

and in 2d (Ameur, equidistribution).

I If β(N)→ 0 (high temp.) We see Poisson in the limit,
however the system might stay rigid for a while. A “rigidity
scale” appears, it depends on β and on the property of
interest. There is local disorder, but some order lingers at
large mesoscales. Armstrong-Serfaty, Lambert,
Hardy-Lambert, Akemann-Byun.



Tools - I

“The electric energy controls the fluctuations”

For some dual norm ‖ · ‖? one gets:

‖
N∑
i=1

δxi − 1ΛN(x)dx‖? � HV
N (XN)

+ all sorts of controls on the energy HV
N (large deviation principle,

local laws...) =⇒ control on the “fluctuation measure”∑N
i=1 δxi − 1ΛN(x)dx .

Problem: the dual norm may require more regularity than
indicator functions possess. Need to mollify and lose precision.
In certain cases, 1Λ is an acceptable test function, e.g. for
d = 1, s ∈ (0, 1) (Boursier). In general, need d−s

2 derivatives in L2.



Tools - II

This approach gives preliminary bounds (L. - Serfaty)

Var [#X ∩ B(0,R)] = O(Rd+s).

For d = 1, s = 0 gives R instead of logR. For d = 2, s = 0 only
says “not worse than Poisson”. Exponent probably off by 1.

Finer arguments

CLT-like arguments (cf. Sylvia’s talk) for fluctuation of linear
statistics. Test function → change of potential → local change of
density → comparison of partition functions... Gives fine controls
on fluctuations, but requires even higher regularity (hence even
worse mollification issues when treating an indicator function).

Might grant access to e.g. intermediate regime of the JLM
prediction but not the finest level.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.

2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.

2.3 Show that the charge fluctuations are (almost) centered on
each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



A working-able strategy

NSV proof of the JLM law for the GAF

Proof of the small/fine regime of the JLM predicition for zeroes of
the GAF. System in d = 2, infinitely many points,
translation-invariant. Question:

P
(
X ∩ B(0,R)− πR2 ≥ Rα

)
, α ∈ (

1

2
, 1).

1. Locate the excess near the boundary of the disk.

2. Cut the boundary into R pieces of size 1. A fraction 1
M of

them is “well-separated” and carries an excess of points at
least Rα

M .

2.1 Show that the pieces are (almost) independent.
2.2 Show that the charge fluctuations are bounded on each one.
2.3 Show that the charge fluctuations are (almost) centered on

each one.

3. Apply Bernstein’s inequality. Tail probability: exp
(
−R2α−1

M

)
.



Comments

I For the first step (locate the excess near the boundary of the
disk.), NSV use analytic techniques. JLM have an
electrostatic justification. We can use the “fine” estimates for
fluctuations of smooth functions.

I For step 2.1: well-separated pieces are almost independent?
True for GAF (Gaussian functions with almost orthogonal
Gaussian coefficients...), true for Riesz systems (after
conditioning on the number of points in each piece).

I In fact, what is lacking is step 2.3: no reason for the charge
fluctuations to be centered...

I In a remarkable way, one finds almost independence in a
system of points/particles which are far from iid. And indeed,
iid particles would never be any close to hyperuniformity and
JLM prediction...



Some questions & challenges

1. “University class” of JLM law? (e.g. in 2d what exactly is
common to GAF and Ginibre?).

2. Study hyperuniformity/rigidity for Riesz gases beyond
“integrable” cases (Ginibre, 1d log-gas, 1d Coulomb gas).

3. Universality w.r.t. interaction? Phase portrait as s, d varies
among the Riesz family, does it extend if g is only assumed to
decay as ‖x‖−s, with a different repulsion at the origin (e.g.
Lennard-Jones potentials)? What exactly is the interplay of
repulsion and long-range?
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Thank you for your attention!


