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Lozenge Tilings

@ Triangular lattice T
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@ Faces are triangles
@ Pairs of adjacent faces are tiles, also called lozenges or dimers

o Three orientations for lozenges

@ Consider tilings of subdomains of T using these lozenges
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Tilings and Surfaces

o Tiling of a hexagon

@ Can also be interpreted as stepped surfaces or height functions
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Figure from http://math.mit.edu/~borodin/hexagon.html

o Boundary height function: Restriction of height function to OR
e Boundary height function only depends on R (not on tiling)
o Any height function with this boundary data corresponds to a tiling of R
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http://math.mit.edu/~borodin/hexagon.html
http://math.mit.edu/~borodin/hexagon.html

Tilings at MSRI
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Random Tilings

We consider uniformly random tilings of large domains
o Equivalently, dimer model on large subdomains of the hexagonal lattice

How do uniformly random tilings of large domains behave? I

Figure from https://storage.lpetrov.cc/img/blog/hex120_uniform.png.


https://storage.lpetrov.cc/img/blog/hex120_uniform.png

Limit Shape

Law of large numbers (Cohn—Kenyon—Propp, 2000): On general large
domains, the associated height function converges to a limit shape
@ Limit is strongly dependent on the geometry of the domain
o Can be very inhomogeneous
o Densities of tile differ in different parts of the domain

Figures from Kenyon (2009), Kenyon—-Okounkov (2005), and Keating—Sridhar (2018)

Conjecture (Kenyon—Okounkov, 2005)

The fluctuations around this limit shape converge to the Gaussian free field.

@ Proven on various special domains, but open in general
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Macroscopic Features

Depending on boundary, limit shape can admit frozen / liquid regions
o Frozen regions: Facets induced by the shape of the boundary
o Liquid region: Places where the surface appears rough / random

Arctic boundary

Liquid (random) region £

Frozen (faceted) region
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Local Features

This talk is focused on more local features of random tilings

Bulk of liquid region

Edge of facet

Near tangency point

@ Zooming into different points of domain gives various limiting statistics
Goal: Understand these limiting statistics and their dependence on domain
@ Compute limiting statistics for specific domains (such as hexagons)
@ Prove these limits appear universally on general domains



Goal: Understand these limiting statistics and their dependence on domain

@ Limiting statistics admit close connections to random matrix theory

@ Bulk of liquid region

e Cohn—Kenyon—Propp (2000): Ergodic, translation-invariant Gibbs
measure (discrete sine kernel / incomplete Bessel kernel)
e A.(2019): Appears in bulk of liquid region on general domains
© Near tangency point
e Johansson—Nordenstam, Okounkov—Reshetikhin (2006): Gaussian
Unitary Ensemble corners process
e A.—Gorin (2021): Appears at tangency point on general domains
© Near edge of facet

e Johansson (2000): Airy process / line ensemble
o A.—Huang (2021): Appears on a wide class of polygons



Bulk of the Liquid Region

@ Consider a uniformly random tiling of a domain R C T.
e Fix a vertex v € R and consider an O(1)-neighborhood of v.

@ This yields a random tiling on this O(1)-neighborhood
o First taking domain size to oo, and then taking the size of the
neighborhood to oo gives tiling on the full plane T
Bulk statistics question: What kot i region
is the law of this random tiling?

o Contains
all correlation functions
of nearly neighborhing tiles

o General prediction:
Limiting measure should
satisfy translation-invariance,
ergodicity,
and the Gibbs property
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Translation Invariant Gibbs Measures

General prediction: Any candidate 4 for limiting bulk statistics should satisfy
three properties

@ Translation-invariance
@ Probability measure invariant under shifts of T
@ Ergodicity
o If u=pu + (1 —p)uz forp € (0,1), then puy = p = po
@ Gibbs property
o Conditional uniformity upon restricting to finite subdomains
Sheffield (2003): For a given proportion (s, ,1 — s — ¢) of tiles, exists a
unique ergodic, translation-invariant Gibbs measure i, on tilings of T
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@ We say this measure has slope (s, ), since its height function H : T — Z
satisfies E[H(X,Y) — H(0,0)] = sX + 1Y
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Explicit Characterization of g,

e Any tiling M is determined by the set XX = X(M) of all (x,y) € R? that
are centers of vertical lozenges in M

Okounkov—Reshetikhin (2001): For any (s,7) € (0, 1), we have

Pu | () {xem) € X(M)}] = det [Ke(xi, v, %)) < <,,» Where

. i t
Ke(x1,y13%2,2) = /(1—1)” gl g=m™ sin()

sin(m — 7s — 7r)

@ This description as a determinantal point process, known as the incomplete
Bessel process, is useful for computing local correlation functions

sin’(7s)
P{<><>} SR

@ Discrete analog of the sine process from random Hermitian'matrix local statistics
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Bulk Statistics Results

Discrete Continuous
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@ Fix a simply connected subset /& C R? with piecewise smooth boundary
@ Fix a large integer N and a tileable domain R = Ry C T with N™'Ry =~ R
@ Fix a point v € AR in the liquid region and a vertex v = vy € Ry with N~ 'vy ~ v.

@ Let M = My denote a uniformly random lozenge tiling of Ry

Theorem (A., 2019)

As N tends to oo, the local statistics of M around v are given by [is;, where
(s, 1) is the gradient of the tiling limit shape at v.

@ Predicted by Cohn—Kenyon—Propp (2000)
@ Dependence of limiting bulk statistics on domain is isolated through (s, ¢)



Near Tangency Points

@ Fix point where arctic boundary is tangent to a (say, horizontal) side of domain
@ Consider an O(N'/?) x O(1) neighborhood of this point
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Vertical (green) tiles form an interlacing array in this neighborhood
@ Denote the positions of these tiles on level k by x’lC < x’é <0< xi
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Tangency statistics question: What is the joint law of the {xé‘}i’k?
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GUE Corners Process

@ Johansson—Nordenstam (2006): On hexagon of side length N, there exist
constants /1 = 3,0 = \/g so that {UN_1/2 (xf — MN)}'k — {&Yix
1,

Here, {¢F} is the Gaussian Unitary Ensemble (GUE) corners process
e X = [X;]: Infinite array of independent standard complex Gaussians
o SetM = [M;] = (X + X*): Infinite Hermitian random matrix
@ MF: The k x k matrix given by top-left k x k corner of M

My | Mg | Mis | Mg

M1 May | Moz | May

Msz1  Msy Msz | M3y
My Mgz Myz My

@ Set 5{‘ < 5’2‘ <. <L §]k‘ to be the eigenvalues of M*
The {¢F} interlace (as the {x}} do)
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Tangency Statistics Results

@ Fix M C R? with three adjacent segments
inclined 120 degrees with respect to each other

@ Let R = Ry = N - i be a tileable domain

@ Let My be a uniformly random tiling of Ry

@ Denote x-coordinates of the vertical tiles around the middle (horizontal) segment by {xt}

R

Theorem (A.—Gorin, 2021)

There exist 1 = u(R), o = o(2R) so that {JN_I/Z(xf - ,LLN)}ik — {€Y .

)

@ Predicted by Johansson—Nordenstam (2006)
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Tangency Statistics Results

@ Fix M C R? with three adjacent segments
inclined 120 degrees with respect to each other

@ Let R = Ry = N - i be a tileable domain

@ Let My be a uniformly random tiling of Ry

@ Denote x-coordinates of the vertical tiles around the middle (horizontal) segment by {xt}

R

Theorem (A.—Gorin, 2021)

There exist 1 = u(R), o = o(2R) so that {JN_I/Z(xf - ,LLN)}ik — {€Y .

)

@ Predicted by Johansson—Nordenstam (2006)

Corners process forces these three adjacent segments inclined at 120 degrees
@ Can fail to arise if one of the segments has microscopic dents

No GUE corners process




Near Facet Edge

@ Fix a smooth point on the arctic boundary that is not a tangency location
o Consider an O(N'/3) x O(N?/3) neighborhood of this point

o N?/3: Parallel (tangent) to arctic boundary

o N'/3: Orthogonal to arctic boundary

Edge of facet

X X2 X3 X,

@ The red and orange tiles form a family of paths (discrete left-right walks)
o Denote them by X1, X,, ..., where X; = (X;(1))
o Extreme path X; is the interface between frozen and liquid regions

Edge statistics question: What is the joint scaling limit of these paths?
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Airy Statistics

Baik—Kriecherbauer-McLaughlin—Miller (2007), Petrov (2012): On hexagon of side N,
aN '3 (X;(6tN*/3) — aN*/3) — (Ai() + 1),
Here, A;(1) = (A (t), Ax(1), ... ) is the Airy line ensemble
@ Family A = (A, A, .. .) of continuous, random, non-intersecting curves

Ai(t) > Ax(t) > - -+ (Corwin-Hammond, 2011)

o Prevalent in Kardar—Parisi—Zhang universality class
@ Top curve is the Airy; process (Prihofer—Spohn, 2001)

@ Determinantal point process with extended Airy kernel

@ Appears as edge limit of Dyson Brownian motion

o Limit process of largest eigenvalues of large Hermitian matrix whose entries are
complex Brownian motions / extremal paths in non-intersecting Brownian motions

W i
‘I'*'\"U '\u\

Figure by Dauvergne-Nica—Virag (2019)
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Edge Statistics Results

Fix polygon 8 C R? (sides parallel to axes of T) satisfying certain technical conditions*

Define the domainP =Py =N-PL C T

("]
@ Fix regular point v € I3 on the arctic boundary
°
@ Letv=vy~N-v € Pbea vertex

@ Let M = My denote a uniformly random tiling of P

Consider family of discrete walks around v in M.

Theorem (A.—-Huang, 2021)

Under (N 13 N%/ 3) normalization, this family of walks converges to the Airy
line ensemble.

19/27



Edge Statistics Results

Fix polygon 8 C R? (sides parallel to axes of T) satisfying certain technical conditions*

Define the domainP =Py =N-PL C T

("]
@ Fix regular point v € I3 on the arctic boundary
°
@ Letv=vy~N-v € Pbea vertex

@ Let M = My denote a uniformly random tiling of P

Consider family of discrete walks around v in M.

Theorem (A.—-Huang, 2021)

Under (N 13 N%/ 3) normalization, this family of walks converges to the Airy
line ensemble.

@ *Conditions on the arctic boundary: No tacnodes, no cuspidal
turning points, and no two distinct cusps on the same exact
horizontal level (share the same y-coordinate)

@ Polygons with generic side lengths likely satisfy this condition

19/27



On the Proofs

o Kasteleyn (1961): Random tilings are determinantal point processes
e Correlation functions are minors of an inverse Kasteleyn matrix

Issue: Analyzing this matrix on arbitrary domains remains a challenge

@ Known how to analyze it on specific families of “solvable” domains,
including the following

Kenyon (1997), Cohn—Kenyon—Propp (2000): Torus

Okounkov—Reshetikhin (2001, 2005): g-Weighted (skew) plane partitions

Baik—Kreicherbauer—McLaughlin—Miller (2007), Gorin (2007): Hexagons

Petrov (2012): Trapezoids

Gorin—Petrov (2016): Nonintersecting random walks (infinite trapezoids)

@ Previous limiting results often addressed one (family of) domain at a time

To prove universality results, we instead locally couple the tiling on a general
domain to a tiling on a solvable domain



On the Proofs

Realizing this coupling qualitatively proceeds in three components
@ Analytic: Prove an a priori estimate on the tiling of a general domain
o Example: Concentration estimate for the height function
© Algebraic: Locate a specific family of solvable domains for which
universal limiting statistics can be proven
e Various examples are known (same are listed on the previous slide)

© Probabilistic: Use the a priori estimate to locally couple the tiling on
original domain to that on solvable one

o Example: In some local neighborhood, sandwich the original tiling
between two nearly equal tilings on solvable domains
Implementation for the different limiting statistics proceeds very differently
@ Tangency points

o Estimate: o(N'/?) Concentration; Solvable domain: Trapezoids
@ Edge of facet
o Estimate: O(N‘s) Concentration; Solvable domain: Hexagons

@ Bulk of liquid region

o Estimate: Local law of large numbers;  Solvable domain; Infinite trapezoid



Concentration Estimate for Edge Statistics

@ Simply connected polygon B C R? satisfying technical conditions
o Limiting height function H : 8 — R
o Liquid region £ C J3: Region where H is not frozen
o e={uecP: (AHwW,0HwW) ¢ {(0,0),(1,0),(0,1)} }
@ Tileable domain P =N - C T
e Random tiling M of P with associated height function H
@ Augment liquid region by N°~2/3 to form g+ = {u € P dist(u, £) < N‘5—2/3} P

Theorem (A.—Huang, 2021)

The following two statements hold with probability at least 1 — N~10%,
@ Foreveryu € £1, we have {H(Nu) - N?—[(u)| <N?
o Foreveryu € B\ £, we have H(Nu) = NH(u)
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Proof Outline of Concentration Estimate

Theorem (A.—Huang, 2021)

The following two statements hold with probability at least 1 — N~'900,
® Foreveryu € £F, we have |H(Nu) — NH(u)| < N°
@ Foreveryu € P\ £, we have H(Nu) = NH(u)

Proof outline

@ Huang (2021): Holds on domains whose arctic boundary has at most one cusp
o Approximate tiling by family of discrete free random walks, with drift,
conditioned to never intersect
@ Drifts can become singular if arctic boundary has more than one cusp
o Analyze non-intersecting walk ensemble through discrete loop equations
© A —Huang (2021): Holds on more general polygons
o Introduce Markov chain on set of tilings of 93 that mixes in polynomial time

@ Decompose polygon into subdomains with at most one cusp
@ Repeatedly uniformly resample the tiling on each subdomain
o Show the concentration estimate is preserved under these dynamics

@ Introduce barrier functions, produced from explicit perturbations of limit shape, that
bound dynamics above and below



Edge Statistics

@ Let M be a random tiling of P, and denote its extreme paths by X; (¢), Xz(?), . . .
@ Fix a nonsingular point v = (0,0) € 2l on the arctic curve of 2 of 3
@ Locally around v, the curve 2 is parabolic
e Exist[, q such thatx = [y + qy* + O(|y|*) for (x,y) € A
@ Fix asmall § > 0; set K = N29; and let T = N2/3+205
Concentration estimate: With high probability, Xk is close to a parabola
@ Exists ¢ € R so that [Xg(s) — cK*/3 — s — gs*| = O(N'/37%) for s € [T, T]
@ Foreachi € [1,K]andt € {—T, T}, we have |X;(t) — Xk(r)| < N'/3+39

X\(T) Xk(T)

t=T




Comparison to Hexagons

Couple X = (X1,X,, ..., Xk) with the extreme paths X’ = (X}, X},...,Xk)
associated with a hexagon P/, so that they differ by o(N'/?)

@ Bound X between the extreme paths X, X" associated with two hexagons P, P"’

@ Edge statistics X', X" of the hexagonal domains P’, P converge to Airy line ensemble
@ Baik—Kriecherbauer—McLaughlin—Miller (2007): One-point Tracy—Widom limit
@ Petrov (2012), Duse-Metcalfe (2017): Extended Airy kernel correlation function limit
@ Dauvergne-Nica—Virdg (2019): Airy line ensemble

@ Parameters of the hexagons will be close, implying X’ and X"’ are close

@ Implies X converges to Airy line ensemble

X" X b'd




Comparison to Hexagons

Recall x = Iy + qy* + O(|y|*) for (x,y) € A
@ Fixqg =q—N""andq” =q+N"'% sothatq’ < q<q”andq ~q”
@ Find two hexagons 3’ and 3" with arctic boundaries 21" and 21" respectively,
and two points v’ = (0,0) € 2’ and v” = (0,0) € A" so the following holds
e For (x',y') € A, wehavex' = Iy’ + g’y + O(]y'[")
o For (x",y") € A, wehavex” =1y +q"y"* + O(]y"[)
@ Set P =N - and P” = N - B”; let associated extreme paths be X’ and X"/
@ Concentration estimate also applies to P’ and P”
@ Gives X!'(¢) < Xi(t) < X!'(r)ift € {—T,T} and Xx (s) < Xg(s) < Xg(s) ifs € [T, 7]
@ Can couple between (X", X, X’) so that X/’ (s) < X;(s) < X](s) fors € [-T,T)

X' X X
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@ Random lozenge tilings are very sensitive to boundary conditions
e Local behaviors are different depending on where one looks in domain

o Bulk of liquid region: Ergodic, translation invariant Gibbs measure
(incomplete Bessel process)

o Tangency location: GUE corners process

o Edge of facet: Airy process / line ensemble

o Previous results showed these statistics held on specific domains
@ Recent results: Established universality pheneomena
o These limiting statistics universally appear for random tilings on fairly
general domains
@ Proofs are based on a combination of algebra / analysis / probability

e Analytic: Obtain coarse estimates for tiling on general domains
o Algebraic: Obtain refined asymptotics for tiling on specific domains
e Probabilistic: Couple tiling on general domain to one on specific domain
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