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Lozenge Tilings

Triangular lattice T

Faces are triangles
Pairs of adjacent faces are tiles, also called lozenges or dimers

Three orientations for lozenges

Consider tilings of subdomains of T using these lozenges
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Tilings and Surfaces

Tiling of a hexagon

Can also be interpreted as stepped surfaces or height functions

Figure from http://math.mit.edu/~borodin/hexagon.html.

Boundary height function: Restriction of height function to ∂R
Boundary height function only depends on R (not on tiling)
Any height function with this boundary data corresponds to a tiling of R
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Tilings at MSRI
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Random Tilings

We consider uniformly random tilings of large domains
Equivalently, dimer model on large subdomains of the hexagonal lattice

Question
How do uniformly random tilings of large domains behave?

Figure from https://storage.lpetrov.cc/img/blog/hex120_uniform.png.
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Limit Shape

Law of large numbers (Cohn–Kenyon–Propp, 2000): On general large
domains, the associated height function converges to a limit shape

Limit is strongly dependent on the geometry of the domain
Can be very inhomogeneous

Densities of tile differ in different parts of the domain

Figures from Kenyon (2009), Kenyon–Okounkov (2005), and Keating–Sridhar (2018)

Conjecture (Kenyon–Okounkov, 2005)
The fluctuations around this limit shape converge to the Gaussian free field.

Proven on various special domains, but open in general
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Macroscopic Features

Depending on boundary, limit shape can admit frozen / liquid regions
Frozen regions: Facets induced by the shape of the boundary
Liquid region: Places where the surface appears rough / random
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Local Features

This talk is focused on more local features of random tilings

Zooming into different points of domain gives various limiting statistics
Goal: Understand these limiting statistics and their dependence on domain

1 Compute limiting statistics for specific domains (such as hexagons)
2 Prove these limits appear universally on general domains
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Outline

Goal: Understand these limiting statistics and their dependence on domain
Limiting statistics admit close connections to random matrix theory

1 Bulk of liquid region
Cohn–Kenyon–Propp (2000): Ergodic, translation-invariant Gibbs
measure (discrete sine kernel / incomplete Bessel kernel)
A. (2019): Appears in bulk of liquid region on general domains

2 Near tangency point
Johansson–Nordenstam, Okounkov–Reshetikhin (2006): Gaussian
Unitary Ensemble corners process
A.–Gorin (2021): Appears at tangency point on general domains

3 Near edge of facet
Johansson (2000): Airy process / line ensemble
A.–Huang (2021): Appears on a wide class of polygons

9 / 27



Bulk of the Liquid Region

Consider a uniformly random tiling of a domain R ⊂ T.

Fix a vertex v ∈ R and consider an O(1)-neighborhood of v.

This yields a random tiling on this O(1)-neighborhood
First taking domain size to∞, and then taking the size of the
neighborhood to∞ gives tiling on the full plane T

Bulk statistics question: What
is the law of this random tiling?

Contains
all correlation functions
of nearly neighborhing tiles

General prediction:
Limiting measure should
satisfy translation-invariance,
ergodicity,
and the Gibbs property
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Translation Invariant Gibbs Measures

General prediction: Any candidate µ for limiting bulk statistics should satisfy
three properties

Translation-invariance
Probability measure invariant under shifts of T

Ergodicity
If µ = pµ1 + (1− p)µ2 for p ∈ (0, 1), then µ1 = µ = µ2

Gibbs property
Conditional uniformity upon restricting to finite subdomains

Sheffield (2003): For a given proportion (s, t, 1− s− t) of tiles, exists a
unique ergodic, translation-invariant Gibbs measure µs,t on tilings of T

s
t 1− s− t

We say this measure has slope (s, t), since its height function H : T→ Z
satisfies E

[
H(X,Y)− H(0, 0)

]
= sX + tY
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Explicit Characterization of µs,t

Any tiling M is determined by the set X = X(M) of all (x, y) ∈ R2 that
are centers of vertical lozenges in M

Okounkov–Reshetikhin (2001): For any (s, t) ∈ (0, 1), we have

Pµs,t

[
m⋂

k=1

{
(xk, yk) ∈ X(M)

}]
= det

[
Kξ(xi, yi; xj, yj)

]
1≤i,j≤m

, where

Kξ(x1, y1; x2, y2) =
1

2πi

∫ ξ

ξ
(1− z)y1−y2 zx2−x1−1dz; ξ = eπis sin(πt)

sin(π − πs− πt)

This description as a determinantal point process, known as the incomplete
Bessel process, is useful for computing local correlation functions

Discrete analog of the sine process from random Hermitian matrix local statistics
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Bulk Statistics Results

Fix a simply connected subset R ⊂ R2 with piecewise smooth boundary
Fix a large integer N and a tileable domain R = RN ⊂ T with N−1RN ≈ R

Fix a point v ∈ R in the liquid region and a vertex v = vN ∈ RN with N−1vN ≈ v.
Let M = MN denote a uniformly random lozenge tiling of RN

Theorem (A., 2019)
As N tends to∞, the local statistics of M around v are given by µs,t, where
(s, t) is the gradient of the tiling limit shape at v.

Predicted by Cohn–Kenyon–Propp (2000)
Dependence of limiting bulk statistics on domain is isolated through (s, t)
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Near Tangency Points

Fix point where arctic boundary is tangent to a (say, horizontal) side of domain
Consider an O(N1/2)× O(1) neighborhood of this point

Vertical (green) tiles form an interlacing array in this neighborhood
Denote the positions of these tiles on level k by xk

1 < xk
2 < · · · < xk

k

Tangency statistics question: What is the joint law of the {xk
i }i,k?
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GUE Corners Process

Johansson–Nordenstam (2006): On hexagon of side length N, there exist

constants µ = 1
2 , σ =

√
8
3 so that

{
σN−1/2

(
xk

i − µN
)}

i,k
→ {ξk

i }i,k

Here, {ξk
i } is the Gaussian Unitary Ensemble (GUE) corners process

X = [Xij]: Infinite array of independent standard complex Gaussians
Set M = [Mij] =

1
2(X + X∗): Infinite Hermitian random matrix

Mk: The k × k matrix given by top-left k × k corner of M

Set ξk
1 ≤ ξk

2 ≤ · · · ≤ ξk
k to be the eigenvalues of Mk

The {ξk
i } interlace (as the {xk

i } do)
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Tangency Statistics Results

Fix R ⊂ R2 with three adjacent segments
inclined 120 degrees with respect to each other
Let R = RN = N ·R be a tileable domain
Let MN be a uniformly random tiling of RN

Denote x-coordinates of the vertical tiles around the middle (horizontal) segment by {xk
i }

Theorem (A.–Gorin, 2021)

There exist µ = µ(R), σ = σ(R) so that
{
σN−1/2(xk

i − µN)
}

i,k
→ {ξk

i }i,k.

Predicted by Johansson–Nordenstam (2006)

Corners process forces these three adjacent segments inclined at 120 degrees
Can fail to arise if one of the segments has microscopic dents
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Near Facet Edge

Fix a smooth point on the arctic boundary that is not a tangency location
Consider an O(N1/3)× O(N2/3) neighborhood of this point

N2/3: Parallel (tangent) to arctic boundary
N1/3: Orthogonal to arctic boundary

The red and orange tiles form a family of paths (discrete left-right walks)
Denote them by X1,X2, . . ., where Xi =

(
Xi(t)

)
Extreme path X1 is the interface between frozen and liquid regions

Edge statistics question: What is the joint scaling limit of these paths?
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Airy Statistics

Baik–Kriecherbauer–McLaughlin–Miller (2007), Petrov (2012): On hexagon of side N,

aN−1/3(Xi(btN2/3)− ctN2/3)→ (
Ai(t) + t2),

Here, Ai(t) =
(
A1(t),A2(t), . . .

)
is the Airy line ensemble

Family A = (A1,A2, . . .) of continuous, random, non-intersecting curves
A1(t) > A2(t) > · · · (Corwin–Hammond, 2011)

Prevalent in Kardar–Parisi–Zhang universality class
Top curve is the Airy2 process (Prähofer–Spohn, 2001)

Determinantal point process with extended Airy kernel

Appears as edge limit of Dyson Brownian motion
Limit process of largest eigenvalues of large Hermitian matrix whose entries are
complex Brownian motions / extremal paths in non-intersecting Brownian motions

Figure by Dauvergne–Nica–Virág (2019)

18 / 27



Edge Statistics Results

Fix polygon P ⊂ R2 (sides parallel to axes of T) satisfying certain technical conditions∗

Fix regular point v ∈ P on the arctic boundary

Define the domain P = PN = N ·P ⊂ T
Let v = vN ≈ N · v ∈ P be a vertex

Let M = MN denote a uniformly random tiling of P

Consider family of discrete walks around v in M.

Theorem (A.–Huang, 2021)

Under (N1/3,N2/3) normalization, this family of walks converges to the Airy
line ensemble.

∗Conditions on the arctic boundary: No tacnodes, no cuspidal
turning points, and no two distinct cusps on the same exact
horizontal level (share the same y-coordinate)

Polygons with generic side lengths likely satisfy this condition
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On the Proofs

Kasteleyn (1961): Random tilings are determinantal point processes
Correlation functions are minors of an inverse Kasteleyn matrix

Issue: Analyzing this matrix on arbitrary domains remains a challenge
Known how to analyze it on specific families of “solvable” domains,
including the following

Kenyon (1997), Cohn–Kenyon–Propp (2000): Torus
Okounkov–Reshetikhin (2001, 2005): q-Weighted (skew) plane partitions
Baik–Kreicherbauer–McLaughlin–Miller (2007), Gorin (2007): Hexagons
Petrov (2012): Trapezoids
Gorin–Petrov (2016): Nonintersecting random walks (infinite trapezoids)

Previous limiting results often addressed one (family of) domain at a time

To prove universality results, we instead locally couple the tiling on a general
domain to a tiling on a solvable domain
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On the Proofs

Realizing this coupling qualitatively proceeds in three components
1 Analytic: Prove an a priori estimate on the tiling of a general domain

Example: Concentration estimate for the height function
2 Algebraic: Locate a specific family of solvable domains for which

universal limiting statistics can be proven
Various examples are known (same are listed on the previous slide)

3 Probabilistic: Use the a priori estimate to locally couple the tiling on
original domain to that on solvable one

Example: In some local neighborhood, sandwich the original tiling
between two nearly equal tilings on solvable domains

Implementation for the different limiting statistics proceeds very differently
Tangency points

Estimate: o(N1/2) Concentration; Solvable domain: Trapezoids

Edge of facet
Estimate: O(Nδ) Concentration; Solvable domain: Hexagons

Bulk of liquid region
Estimate: Local law of large numbers; Solvable domain: Infinite trapezoid
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Concentration Estimate for Edge Statistics

Simply connected polygon P ⊂ R2 satisfying technical conditions
Limiting height functionH : P→ R
Liquid region L ⊂ P: Region whereH is not frozen

L =
{

u ∈ P :
(
∂xH(u), ∂yH(u)

)
/∈
{
(0, 0), (1, 0), (0, 1)

}}
Tileable domain P = N ·P ⊂ T

Random tiling M of P with associated height function H
Augment liquid region by Nδ−2/3 to form L+ =

{
u ∈ P : dist

(
u,L
)
≤ Nδ−2/3

}
⊂ P

Theorem (A.–Huang, 2021)

The following two statements hold with probability at least 1− N−1000.

For every u ∈ L+, we have
∣∣H(Nu)− NH(u)

∣∣ < Nδ

For every u ∈ P \ L+, we have H(Nu) = NH(u)
22 / 27



Proof Outline of Concentration Estimate

Theorem (A.–Huang, 2021)
The following two statements hold with probability at least 1− N−1000.

For every u ∈ L+, we have
∣∣H(Nu)− NH(u)

∣∣ < Nδ

For every u ∈ P \ L+, we have H(Nu) = NH(u)

Proof outline
1 Huang (2021): Holds on domains whose arctic boundary has at most one cusp

Approximate tiling by family of discrete free random walks, with drift,
conditioned to never intersect

Drifts can become singular if arctic boundary has more than one cusp
Analyze non-intersecting walk ensemble through discrete loop equations

2 A.–Huang (2021): Holds on more general polygons
Introduce Markov chain on set of tilings of P that mixes in polynomial time

Decompose polygon into subdomains with at most one cusp
Repeatedly uniformly resample the tiling on each subdomain

Show the concentration estimate is preserved under these dynamics
Introduce barrier functions, produced from explicit perturbations of limit shape, that
bound dynamics above and below
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Edge Statistics

Let M be a random tiling of P, and denote its extreme paths by X1(t),X2(t), . . .
Fix a nonsingular point v = (0, 0) ∈ A on the arctic curve of A of P
Locally around v, the curve A is parabolic

Exist l, q such that x = ly + qy2 + O
(
|y|3
)

for (x, y) ∈ A

Fix a small δ > 0; set K = N2δ; and let T = N2/3+20δ

Concentration estimate: With high probability, XK is close to a parabola
Exists c ∈ R so that

∣∣XK(s)− cK2/3 − ls− qs2
∣∣ = O(N1/3−δ) for s ∈ [−T,T]

For each i ∈ [1,K] and t ∈ {−T,T}, we have
∣∣Xi(t)− XK(t)

∣∣ ≤ N1/3+3δ

t = −T

t = 0

t = T
XK(T)

XK(−T)

X1(T)

X1(−T)
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Comparison to Hexagons

Couple X = (X1,X2, . . . ,XK) with the extreme paths X′ = (X′1,X
′
2, . . . ,X

′
K)

associated with a hexagon P′, so that they differ by o(N1/3)

Bound X between the extreme paths X,X′′ associated with two hexagons P′,P′′

Edge statistics X′,X′′ of the hexagonal domains P′,P′′ converge to Airy line ensemble
Baik–Kriecherbauer–McLaughlin–Miller (2007): One-point Tracy–Widom limit
Petrov (2012), Duse–Metcalfe (2017): Extended Airy kernel correlation function limit
Dauvergne–Nica–Virág (2019): Airy line ensemble

Parameters of the hexagons will be close, implying X′ and X′′ are close

Implies X converges to Airy line ensemble

t = −T

t = 0

t = TX′′

X′′

X

X

X′

X′
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Comparison to Hexagons
Recall x = ly + qy2 + O

(
|y|3
)

for (x, y) ∈ A

Fix q′ = q− N−10δ and q′′ = q+ N−10δ , so that q′ < q < q′′ and q′ ≈ q′′

Find two hexagons P′ and P′′ with arctic boundaries A′ and A′′ respectively,
and two points v′ = (0, 0) ∈ A′ and v′′ = (0, 0) ∈ A′′ so the following holds

For (x′, y′) ∈ A′, we have x′ = ly′ + q′y′2 + O
(
|y′|3

)
For (x′′, y′′) ∈ A′′, we have x′′ = ly′′ + q′′y′′2 + O

(
|y′′|3

)
Set P′ = N ·P′ and P′′ = N ·P′′; let associated extreme paths be X′ and X′′

Concentration estimate also applies to P′ and P′′
Gives X′′i (t) < Xi(t) < X′′i (t) if t ∈ {−T, T} and XK(s) < XK(s) < XK(s) if s ∈ [−T, T]

Can couple between (X′′,X,X′) so that X′′i (s) ≤ Xi(s) ≤ X′i (s) for s ∈ [−T,T]

t = −T

t = 0

t = T
X′′

X′′

X

X

X′

X′
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Summary

Random lozenge tilings are very sensitive to boundary conditions
Local behaviors are different depending on where one looks in domain

Bulk of liquid region: Ergodic, translation invariant Gibbs measure
(incomplete Bessel process)
Tangency location: GUE corners process
Edge of facet: Airy process / line ensemble

Previous results showed these statistics held on specific domains
Recent results: Established universality pheneomena

These limiting statistics universally appear for random tilings on fairly
general domains

Proofs are based on a combination of algebra / analysis / probability
Analytic: Obtain coarse estimates for tiling on general domains
Algebraic: Obtain refined asymptotics for tiling on specific domains
Probabilistic: Couple tiling on general domain to one on specific domain
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