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Introduction and motivation

Graphs

A graph is represented by a set of vertices V and a set of (single)
edges E ⊂ V × V (unordered, no loops). It can be

bipartite: ∃ V1 ∩ V2 = ∅, V1 ∪ V2 = V such that E ⊆ V1 × V2,

regular: each vertex v ∈ V has the same number d of incident edges
(d =degree) .
bipartite biregular: ∀v ∈ V1, degree(v) = d1; ∀v ∈ V2, degree(v) = d2.
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Introduction and motivation

Random Graphs

Models for networks (electrical, social, biological)

Sparsity (stat. phys.: percolation, real-world networks) and
expansion characteristics (fast mixing)
Data science / Machine Learning (matrix completion, coding,
community detection, recommender systems, pattern recognition,
bioinformatics)
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Introduction and motivation

Hypergraphs

A hypergraph has (single) hyperedges, e ⊂ V.

Examples include co-authorship, social networks, protein
interactions.
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Introduction and motivation

Hypergraphs

A hypergraph has (single) hyperedges, e ⊂ V (generally k ≥ 2). It
can be

uniform: ∃k such that all hyperedges e ∈ Vk (unordered, no loops);
k = 2 recovers graphs.
regular: each vertex in v belongs to the same number d of
hyperedges. Notation: (d, k)−uniform hypergraph.
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Any hypergraph has a natural adjacency matrix; any uniform
hypegraph has a natural adjacency tensor. More later.
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Introduction and motivation

Random regular (hyper)graphs

Regular/bipartite biregular (a.k.a. quasi-regular)

if d, d1, d2 are fixed, multiple models (uniform, permutation,
configuration) which are contiguous: any event happening whp (or
a.a.s.) in one of them happens in all.
if degrees grow, examine mostly uniform model (other ones exist
but contiguity not known).

Hypergraphs:
Regular: uniform distribution among all possible
(d, k)−hypergraphs.
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Introduction and motivation

Applications

Myriad applications, from biology, epidemiology, statistical
physics, to coding theory, from electrical networks to community
detection and other machine learning problems.

Many of these (e.g., community detection) are "hot" research
topics in hypergraphs as well.
In particular, the spectra of random graphs/hypergraphs is
connected to expansion, and as such can (also) be used in the study
of satisfiability, recommender systems, pattern recognition, matrix
completion, etc. AND recently, neural networks.
Best way to understand expanders is via the spectral gap.
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Spectra of regular graphs and hypergraphs

Spectra of (Random, Regular) Graphs

Adjacency matrix of a graph: A = (aij), aij = δi∼j, for all vertices i, j.
Symmetric if graph is undirected.

If edges are not independent (regular, bipartite biregular) entries
are weakly dependent. Interesting, slightly harder, but more rigid
and other benefits (connectivity).
For both regular and biregular bipartite, global shape of spectra
well-understood since the ’80s and ’90s (Kesten-McKay,
Godsil-Mohar); outliers are more recent.

Ioana Dumitriu (UCSD) Spectral gap in regular graphs September 24, 2021 9 / 30



Spectra of regular graphs and hypergraphs

Spectra of (Random, Regular) Graphs

Adjacency matrix of a graph: A = (aij), aij = δi∼j, for all vertices i, j.
Symmetric if graph is undirected.
If edges are not independent (regular, bipartite biregular) entries
are weakly dependent. Interesting, slightly harder, but more rigid
and other benefits (connectivity).

For both regular and biregular bipartite, global shape of spectra
well-understood since the ’80s and ’90s (Kesten-McKay,
Godsil-Mohar); outliers are more recent.

Ioana Dumitriu (UCSD) Spectral gap in regular graphs September 24, 2021 9 / 30



Spectra of regular graphs and hypergraphs

Spectra of (Random, Regular) Graphs

Adjacency matrix of a graph: A = (aij), aij = δi∼j, for all vertices i, j.
Symmetric if graph is undirected.
If edges are not independent (regular, bipartite biregular) entries
are weakly dependent. Interesting, slightly harder, but more rigid
and other benefits (connectivity).
For both regular and biregular bipartite, global shape of spectra
well-understood since the ’80s and ’90s (Kesten-McKay,
Godsil-Mohar); outliers are more recent.

Ioana Dumitriu (UCSD) Spectral gap in regular graphs September 24, 2021 9 / 30



Spectra of regular graphs and hypergraphs

Shape of the spectra

For d-regular graphs with d finite, largest eigenvalue is d with
all-ones eigenvector

As n→∞, the asymptotic spectrum shape is given by
Kesten-McKay distribution with density supported on
[−2
√

d− 1, 2
√

d− 1]:

fd(x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
.

As d→∞, fd converges to the semicircle density (Wigner).
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Spectra of regular graphs and hypergraphs

From Kesten-McKay to Semicircle

Courtesy of Yufei Zhao.
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Spectra of regular graphs and hypergraphs

Spectral Gap in Regular Graphs: d fixed

The preceding picture is that of the bulk, λ1 = d. What about
outliers?

Alon-Boppana (’86) lower bound for λ2 ≥ 2
√

d− 1− o(1)
(deterministically)
Upper bound + fluctuation, random sign model by Sodin (’09).
Upper bound (Alon conjecture) proved by Friedman (’03, ’08) and
rediscovered by Bordenave (’15) for uniformly random regular
graphs

λ2 ≤ 2
√

d− 1 + o(1) .

Almost all regular graphs are almost Ramanujan.
Huang, Yau (’21) : fluctuations at the edge are polynomially small,
eigenvalue rigidity, eigenvector delocalization.
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Spectra of regular graphs and hypergraphs

Spectral Gap in Regular graphs: growing d

Long-time known that λ2 = O(
√

d), large constant, in various
regimes:

Kahn-Szemeredi (late ’80s), Broder et al (’99); Cook, Johnson,
Goldstein ’18 (d = O(n2/3)); Tikhomirov, Youssef ’19
(nε ≤ d ≤ n/2)
Conjectured to be λ2 = (2 + o(1))

√
d whp

Settled with correct constant for nε ≤ d ≤ n2/3, Bauerschmidt,
Huang, Knowles, Yau (’20). (Also: for d large enough, majority of
regular graphs are Ramanujan.)
Remaining to be settled: d slowly growing, d� n2/3.
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Spectra of regular graphs and hypergraphs

Spectral Gap in Bipartite Biregular Graphs

Bipartite graphs have symmetric spectrum (λ, −λ both evals)

Their adjacency matrices are of the form

A =

[
0 X

XT 0

]
,

Which means that eigenvalues are ± square roots of eigenvalues
for XXT (Wishart).
A BBG graph (m,n, d1, d2) has its largest (Perron-Frobenius)
eigenvalues |λ1,2| =

√
d1d2, with fixed eigenvectors.
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Spectra of regular graphs and hypergraphs

Spectral Gap in Bipartite Biregular Graphs

Godsil and Mohar (’88) calculated empirical spectral distribution
for uniformly random BBGs (m/n = d2/d1 ∈ [0, 1]), m,n→∞),
edge is at

√
d1 − 1 +

√
d2 − 1;

d1, d2 →∞ yield analogue of Marčenko-Pastur
Deterministic Alon-Boppana given by Feng-Li (’96), Li-Sole (’96)

|λ3,4| ≥
√

d1 − 1 +
√

d2 − 1− o(1) ,

[BDH’21]: for fixed d1, d2, |λ3,4| =
√

d1 − 1 +
√

d2 − 1 + o(1) as
m,n→∞.
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Spectra of regular graphs and hypergraphs

Spectral Gap in Bipartite Biregular Graphs

For growing d1 ≥ d2 = O(n2/3), Zhu (’20) showed |λ3,4| = O(
√

d1).

Ideal for growing degrees (conjectured):
|λ3,4| = (1 + o(1))(

√
d1 − 1 +

√
d2 − 1).

Guruswami, Manokhar, Mosheiff (’21+) proved it for a random
sign model.
Problem is still quite open.
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Spectra of regular graphs and hypergraphs

Spectral gap in Regular Uniform Hypergraphs

For any hypergraph, can define the adjacency matrix

Aij = # edges containing i, j .

For k-uniform hypergraphs, can define a tensor containing more
information.
Both tensor and adjacency matrix connected to expansion, but
matrix is easier to analyze (D., Zhu ’20)
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Spectra of regular graphs and hypergraphs

Spectral gap in Regular Uniform Hypergraphs

Consider the uniform distribution on d-regular, k-uniform
hypergraphs with n vertices, A adjacency matrix.

λ1(A) = d(k− 1), as A~e = d(k− 1)~e for ~e = (1, . . . , 1)T.
What about λ2?
Feng-Li ’96: λ2(A) ≥ k− 2 + 2

√
(d− 1)(k− 1)− o(1),

deterministically as n→∞.
k = 2 this is Alon-Boppana; Ramanujan graphs satisfy
|λ| ≤ 2

√
d− 1 for all λ 6= d;

Li-Solé ’96: Ramanujan hypergraphs: for all λ 6= d(k− 1),
|λ− (k− 2)| ≤ 2

√
(d− 1)(k− 1) .

Algebraic constructions: Martinez-Stark-Terras (’01), Li (’04),
Sarveniazi (’07)
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Spectra of regular graphs and hypergraphs

Spectral gap in Regular Uniform Hypergraphs

[D., Zhu ’20] Let d, k fixed. For any λ 6= d(k− 1),

|λ(A)− (k− 2)| = 2
√
(d− 1)(k− 1) + o(1)

whp as n→∞.

Matching bound to Feng-Li (’96), generalization of Alon
conjecture proved by Friedman (’08) and Bordenave (’15)
Connects to expansion, mixing lemma, non-backtracking spectral
norm, etc.
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A glimpse into spectral gap methods

(Some) RM methods for largest eigenvalue

Bounding largest eigenvalues general idea:

If A positive definite find upper bound on λ1 = ||A|| by |Tr(Ãm)|1/m

(Gelfand lemma) as m grows large

Generally this has to be done with a lot more care than moment
method proofs (which have m finite) but it can be done (see, e.g.,
Sinai and Soshnikov ’98, Soshnikov ’00)
For regular graphs, largest eigenvalue is deterministic λ1 = d,
eigenvector is all-ones; we want |λ2|
Can try to work with Ã = A− d

n J.
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n J.

Ioana Dumitriu (UCSD) Spectral gap in regular graphs September 24, 2021 20 / 30



A glimpse into spectral gap methods

(Some) RM methods for largest eigenvalue

Bounding largest eigenvalues general idea:

If A positive definite find upper bound on λ1 = ||A|| by |Tr(Ãm)|1/m
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A glimpse into spectral gap methods

Illustration on regular graphs

Bounding second eigenvalues general idea:

In case λ1 = d, λ2 = O(
√

d), would like to be able to prove

E
[
λ2k

2

]
≤ E

[
Tr(Ã2k)

]
≤ ndk .

Need k = ω(log n) to get anything meaningful...

... sadly this will simply be false. P[Kd ⊂ G] = O(n−c) for some c,
and thus E

[
Tr(Ã2k)

]
≥ n−cd2k > ndk .

Also, in this case, λ2 = d.

Same is true for the bipartite biregular case. We need to change the
matrix.
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A glimpse into spectral gap methods

Nonbacktracking matrix / Hashimoto operator

Spectral gap can be investigated with the non-backtracking
Hashimoto operator

Uses its connection to Ihara-Bass formula
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A glimpse into spectral gap methods

Non-backtracking (Hashimoto) matrix for RBBGs

Idea: Examine instead the “non-backtracking” (aka Hashimoto)
matrix B (of size 2|E| × 2|E|) whose rows/columns indexed by
ordered edges, and Bef = 1 iff σ(e) = f and σ(f ) 6= e.
Non-symmetric.

One may choose the ordering of edges to write B =

[
0 M
N 0

]
.

Largest eigenvalues λ1,2|E| = ±
√
(d1 − 1)(d2 − 1), with

eigenvector 1α := (1|E|,±α1|E|) where α =

√
d1−1√
d2−1

.
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A glimpse into spectral gap methods

Non-backtracking (Hashimoto) matrix

Can relate the eigenvalues of B to those of the adjacency matrix A
via the Ihara-Bass formula

det(B− λI) = (λ2 − 1)|E|−n det((D− I)− λA + λ2I) ,

with |E| = number of edges, D the diagonal matrix of degrees.
(There are also recent reformulations that allow us to work with
non-regular graphs.)

Spectral gap for B yields spectral gap for A (for BBG, also noticed
by Kempton (’16)). Hard part: show spectral gap for B.
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A glimpse into spectral gap methods

NB matrix, classical and modern

Ideas have been around for a while, see e.g. Angel, Friedman,
Hoory (’07).

Sometimes a self-avoiding matrix has been used (close notion).
Since ’15, not only used for regular graphs but also for
non-homogeneous Erdős-Rényi (Benaych-Georges, Bordenave,
Knowles, ’17, Alt, Ducatez, Knowles ’19, ’21), directed graphs
(Coste ’17), etc.
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A glimpse into spectral gap methods

Spectrum of B vs. spectrum of A, BBG case

det(B− λI) = (λ2 − 1)|E|−n det((D− I)− λA + λ2I) ,

Every eigenvalue of B that is not ±1 is determined by an
eigenvalue of A (each of the latter determine 2 evals for B)
0 eigenvalues of A translate into eigenvalues of B that are
±i
√

d2 − 1, ±i
√

d1 − 1 (d1 ≥ d2; the latter occur only if X in A is not
full-rank)
Evals in asymptotical support (“bulk”) of A determine evals on
circle of radius 4

√
(d1 − 1)(d2 − 1) for B

Evals between 0 and support of A map into imaginary evals of
modulus bigger than 4

√
(d1 − 1)(d2 − 1)

Evals bigger than right edge of support for A map to real evals of
B bigger than 4

√
(d1 − 1)(d2 − 1).
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A glimpse into spectral gap methods

Spectrum of B vs. spectrum of A.

Can show |λ3(B)| ≤ 4
√

(d1 − 1)(d2 − 1) + o(1); it follows that
λ3,4(A) ≤

√
d1 − 1 +

√
d2 − 1 + o(1) BUT also

Evals of A stick to support edges (if m/n→ γ > 1, whp there are
no spurious evals in (0,

√
d1 − 1−

√
d2 − 1− o(1))

In particular, the rectangular (random!) 0− 1 matrix X with every
column summing to d1 and every row summing to d2 is whp
full-rank if d1 6= d2.
Harder to say what happens when d1, d2 →∞.
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A glimpse into spectral gap methods

Spectral gap for hypergraphs

A bijection between
S1={ bipartite biregular graphs without certain subgraphs} and
S2={(d, k)-regular hypergraphs}.

1 2 3

4 5 6

7 8 9

e1

e2

e3

e4 e5 e6

1

2

3

4

5

6

7

8

9

e1

e2

e3

e4

e5

e6

e1

e2

v1

v2

v3

Use McKay (’81): forbidden subgraphs are rare.
Any event F holds whp for random bipartite biregular graphs
⇔ F holds whp for the uniform measure over S1
⇔ corresponding F′ holds whp for random regular hypergraphs.
Apply the results for RBBGs from D.-Johnson (’14) and
Brito-D.-Harris (’20).
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Conclusions

Open problems and conclusions

Various regimes with questions left about spectra of regular
graphs and hypergraphs

Most of what one can do for RBBGs can be translated to regular
hypergraphs
Understanding the nonbacktracking operator is a must
Keen interest in applications
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