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Universality conjecture for disordered quantum systems

A disordered quantum system can be in one of two phases:

(1) Localized (insulator, strong disorder):
Eigenvectors are localized.
Local spectral statistics are Poisson.

(2) Delocalized (metal, weak disorder):
Eigenvectors are delocalized.
Local spectral statistics follow random matrix theory (e.g. GOE).
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Conjectured phase diagram for Anderson model

Standard model of quantum disorder: Anderson model

−∆ + λV on Λ ⊂ Zd , V = (Vx)x∈Λ i.i.d. N (0, 1) .

(From M. Aizenman, S. Warzel, Random Operators, AMS.)

Localized phase very well understood ([Fröhlich, Spencer; 1983], [Aizenman,
Molchanov; 1993], [Molchanov; 1981], [Minami; 1996], . . . )

Delocalized phase wide open (extended states conjecture).



Random matrices

• Wigner matrices with light tails are in the delocalized phase [Erdős,
Schlein, Yau, Yin; 2009–. . . ], [Tao, Vu; 2009–. . . ].

• Heavy-tailed Wigner matrices proposed as a simple model that exhibits a
phase transition [Cizeau, Bouchaud; 1994], [Tarquini, Biroli, Tarzia; 2016].

For 1 < α < 2, any bounded interval lies in the delocalized phase
[Bordenave, Guionnet; 2013], [Aggarwal, Lopatto, Yau; 2020].

For 0 < α < 1, delocalized phase in some neighbourhood of origin
[Bordenave, Guionnet; 2017], [Aggarwal, Lopatto, Yau; 2020].

For 0 < α < 2/3, partially localized phase far away from origin
[Bordenave, Guionnet; 2013].

• This talk: Sparse matrices.



Erdős-Rényi graph and critical regime

Erdős-Rényi graph G(N, d/N)

Critical regime: d ≈ logN , below which degrees do not concentrate.

d� logNd� logN

Supercritical d� logN : homogeneous.

Subcritical d� logN : inhomogeneous (hubs, leaves, isolated vertices, . . . ).

Consider the adjecency matrix A = (Axy) ∈ {0, 1}N×N .



Phase diagram for H ..= d−1/2A
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Behaviour of localization exponent

Eigenvalue λ with eigenvector w has localization exponent γ(λ) ∈ [0, 1]:

‖w‖2∞ =.. N−γ(λ) .

Asymptotically allowed region for γ(λ) (plotted for b = 1):
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Simulation of eigenvectors

Scatter plot of (eigenvalue, ‖eigenvector‖∞). (N = 10′000, b = 0.6)



Localized Phase I: Poisson eigenvalue statistics

Theorem [Alt, Ducatez, K; 2021]. Suppose that

(log logN)4 6 d 6 (1− o(1)) b∗ logN .

There exist deterministic u, σ, τ, θ (which are explicit functions of d and N)
such that the rescaled eigenvalue process

Φ ..=
∑
i

δdτ(λi(H)−σ)

is asymptotically close to a Poisson point process Ψ on R on intervals [−κ,∞)
containing at most K � 1 points.

Corollary. Asymptotic equality in law of k = O(K) largest points.



Intensity of Ψ

The intensity of Ψ is

ρ(ds) ..=
∑
`∈Z

u〈du〉+` g
(
s+ θ(〈du〉+ `)

)
ds ,

where 〈·〉 is the periodic representative in [−1/2, 1/2), and g(s) ..= 1√
2π

e−
1
2 s

2

.

Scaling laws

u � τ � σ2 � θ2 � t

log(t ∨ 2)
, t ..=

logN

d
.

Distribution of ρ in
critical regime t � 1:

Top eigenvalue not
governed by Gumbel
law.
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Distribution of ρ in subcritical regime t� 1:

Resonance 〈du〉 = 0:

Top eigenvalue not gov-
erned by Gumbel law.
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Off-resonance |〈du〉| > c:

Top eigenvalue governed
by Gumbel law.
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Localized Phase II: eigenvector localization

Let x be a vertex whose normalized degree αx ..= |S1(x)|/d is greater than 2.
Define

u1(x) =

√
αx√

αx − 1
u0(x) , ui+1(x) =

1√
αx − 1

ui(x) (i > 1) ,

and the exponentially decaying radial vector (with r � 1)

v(x) ..=
r∑
i=0

ui(x)
1Si(x)

‖1Si(x)‖
.

Theorem [Alt, Ducatez, K; 2021]. Let w = (wx) be an eigenvector associated
with one of the top (or bottom) K eigenvalues. Then with high probability
there exists a vertex x with αx > 2 such that ‖w − v(x)‖ = o(1).



Overview of proof

Basic intuition: one-to-one correspondence between eigenvalues and vertices of
large degree.

Main steps of proof:

Step 1. Characterize the fluctuations of an eigenvalue associated with a vertex
of large degree.

Step 2. Establish a one-to-one relation between such eigenvalues and the
eigenvalues of H near the edge.



Step 1

Consider neighbourhood of vertex in

U ..= {x .. αx > 2 + o(1)} .

Use the tridiagonal representation of H ..= d−1/2A around x: write H in the
basis h0,h1,h2, . . . obtained by orthogonalizing 1x, H1x, H

21x, . . . .

Apply transfer matrix (or orthogonal polynomial) analysis.

Problem: Fluctuations of transfer matrices very hard to control precisely,
because hi is unwieldy.

Toy model: in a rooted regular tree, the degree
depends only on the distance to the root.

Exercise: if G|Br(x) is a rooted regular tree, then
hi = 1Si(x) for i 6 r.



• Naive attempt: write H in basis (1Si(x)) instead of (hi), to get an almost
tridiagonal matrix.

Problem: off-tridiagonal matrix is too large.

• More refined attempt: If G|Br(x) is a tree, the vector Hi1x can be
decomposed as a sum over simple walks in N of length i.

jump left / right ⇐⇒ terms decreasing / increasing distance from root

• Basis (hi): all walks

• Basis (1Si(x)): only steps to the right

Define basis (f i) using walks with at most one step to the left.
For instance,

f3 = 1S3(x) +
∑

y∈S1(x)

(dαy − F )1y , F ∈ R .



Proposition. Let r � 1 be suitably chosen. Let M be the matrix H in the
basis (f i)

r
i=0. Then

‖M − Zd(αx, βx)‖ 6 d−1−c ,

where

αx =
|S1(x)|
d

, βx =
|S2(x)|
|S1(x)|d

,

and

Zd(α, β) ..=



0
√
α√

α 0
√
β√

β 0
√
d√

d 0
√
d

√
d 0

. . .
. . .

. . .


, d ..= 1 +

1

d
.

Remark.
√
dZd(α, β) is the tridiagonalization at the root of the rooted regular

tree with degree sequence αd, βd, d+ 1, d+ 1, . . . .



Zd(αx, βx) has a unique eigenvalue Λd(αx, βx) > 2 + o(1), with exponentially
decaying eigenvector (ui)

r
i=0.

Back to graph G with

y(x) ..=
r∑
i=0

ui
f i
‖f i‖

.

It is possible to show that∥∥(H − Λd(αx, βx)
)
y(x)

∥∥ 6 d−1−c . (1)

Step 1 is concluded by analysing the fluctuations of Λd(αx, βx) (of order d−1).



Step 2

Need to ensure:

(a) (y(x) .. x ∈ U) are orthogonal (i.e. (Br(x) .. x ∈ U) are disjoint).

(b) The high probability bounds hold simultaneously for all x ∈ U .

(c) The remaining eigenvalues cannot “pollute” the edge of the spectrum.

All of these present significant complications. In fact, (a) and (b) are wrong.



(a) (Br(x) .. x ∈ U) are disjoint only if either (i) U is small or (ii) we prune the
graph by removing edges to disconnect balls.

The pruning is potentially deadly, since in general removing even a single
edge perturbs an eigenvalue by O(1/

√
d).

We have to prune in places that have a small impact on the extreme
eigenvalues: prune only in the neighbourhoods of vertices x whose αx is
far from the top degree.



(b) The estimate (1) is not true simultaneously for all x ∈ U . Solution:
three-scale rigidity argument with the partition U = U0 t U1 t U2, where
αx > αy for x ∈ Ui and y ∈ Ui+1.

The sets U0,U1,U2 are increasing in size, but the accuracy of the estimate
(1) deteriorates as i increases.

2 σ

Spec(H)

{Λd(αx, βx)}

d−1−cd−1+cd−1/2+c

d−1+2c

d−1/4+c

U0
U1
U2



Block diagonal representation

O−1HO =


D0 0 0 E∗0
0 D1 0 E∗1
0 0 D2 + E2 E∗2
E0 E1 E2 X


where

Di = diag(Λd(αx, βx) +O(κi)
.. x ∈ Ui)

κi + ‖Ei‖ =


d−1−c if i = 0

d−1+c if i = 1

d−1/2+c if i = 2

←− main estimates

‖E2‖ = O(d−1/2+c) ←− pruning

‖X‖ 6 2 + o(1) ←− (c)

(c) Estimate of ‖X‖ relies on:
• analysis of nonbacktracking version of A
• approximate Ihara-Bass identities
• local delocalization bounds from a radial Combes-Thomas argument


