Localization and delocalization in Erdős-Rényi graphs

Antti Knowles

With Johannes Alt and Raphaël Ducatez

Universality conjecture for disordered quantum systems

A disordered quantum system can be in one of two phases:

- (1) Localized (insulator, strong disorder): Eigenvectors are localized. Local spectral statistics are Poisson.
- (2) Delocalized (metal, weak disorder): Eigenvectors are delocalized. Local spectral statistics follow random matrix theory (e.g. GOE).

Conjectured phase diagram for Anderson model

Standard model of quantum disorder: Anderson model

 $-\Delta + \lambda V$ on $\Lambda \subset \mathbb{Z}^d$, $V = (V_x)_{x \in \Lambda}$ i.i.d. $\mathcal{N}(0,1)$.

model (1.2) in dimensions $d > 2$ for site potentials given by bounded iid random variables with a distribution similar to (1.5).

(From M. Aizenman, S. Warzel, Random Operators, AMS.)

Localized phase very well understood ([Fröhlich, Spencer; 1983], [Aizenman, Molchanov; 1993], [Molchanov; 1981], [Minami; 1996], . . .)

Delocalized phase wide open (extended states conjecture).

Random matrices

- Wigner matrices with light tails are in the delocalized phase [Erdős, Schlein, Yau, Yin; 2009–. . .], [Tao, Vu; 2009–. . .].
- Heavy-tailed Wigner matrices proposed as a simple model that exhibits a phase transition [Cizeau, Bouchaud; 1994], [Tarquini, Biroli, Tarzia; 2016].

For $1 < \alpha < 2$, any bounded interval lies in the delocalized phase [Bordenave, Guionnet; 2013], [Aggarwal, Lopatto, Yau; 2020].

For $0 < \alpha < 1$, delocalized phase in some neighbourhood of origin [Bordenave, Guionnet; 2017], [Aggarwal, Lopatto, Yau; 2020].

For $0 < \alpha < 2/3$, partially localized phase far away from origin [Bordenave, Guionnet; 2013].

• This talk: Sparse matrices.

Erdős-Rényi graph and critical regime

Erdős-Rényi graph $\mathbb{G}(N, d/N)$

Critical regime: $d \approx \log N$, below which degrees do not concentrate.

Supercritical $d \gg \log N$: homogeneous.

Subcritical $d \ll \log N$: inhomogeneous (hubs, leaves, isolated vertices, ...). Consider the adjecency matrix $A = (A_{xy}) \in \{0,1\}^{N \times N}$.

Phase diagram for $H := d^{-1/2}A$

Behaviour of localization exponent

Eigenvalue λ with eigenvector w has localization exponent $\gamma(\lambda) \in [0,1]$:

 $\|\mathbf{w}\|_{\infty}^2 =: N^{-\gamma(\lambda)}$.

Asymptotically allowed region for $\gamma(\lambda)$ (plotted for $b = 1$):

Simulation of eigenvectors

Scatter plot of (eigenvalue, $\|\text{eigenvector}\|_{\infty}$). ($N = 10'000, b = 0.6$)

Localized Phase I: Poisson eigenvalue statistics

Theorem [Alt, Ducatez, K; 2021]. Suppose that

$$
(\log \log N)^4 \leq d \leq (1 - o(1)) b_* \log N.
$$

There exist deterministic u, σ, τ, θ (which are explicit functions of d and N) such that the rescaled eigenvalue process

$$
\Phi:=\sum_i \delta_{d\tau(\lambda_i(H)-\sigma)}
$$

is asymptotically close to a Poisson point process Ψ on $\mathbb R$ on intervals $[-\kappa, \infty)$ containing at most $K \gg 1$ points.

Corollary. Asymptotic equality in law of $k = O(\mathcal{K})$ largest points.

Intensity of Ψ

The intensity of Ψ is

$$
\rho(\mathrm{d}s) := \sum_{\ell \in \mathbb{Z}} u^{\langle du \rangle + \ell} g(s + \theta(\langle du \rangle + \ell)) \, \mathrm{d}s \,,
$$

where $\langle \cdot \rangle$ is the periodic representative in $[-1/2, 1/2)$, and $g(s) \coloneqq \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-\frac{1}{2}s^2}$ Scaling laws

$$
u \approx \tau \approx \sigma^2 \approx \theta^2 \approx \frac{t}{\log(t \vee 2)}, \qquad t := \frac{\log N}{d}.
$$

Distribution of ρ in subcritical regime $t \gg 1$:

Resonance $\langle du \rangle = 0$:

Top eigenvalue not governed by Gumbel law.

Top eigenvalue governed by Gumbel law.

Localized Phase II: eigenvector localization

Let x be a vertex whose normalized degree $\alpha_x := |S_1(x)|/d$ is greater than $2.$ Define

$$
u_1(x) = \frac{\sqrt{\alpha_x}}{\sqrt{\alpha_x - 1}} u_0(x), \qquad u_{i+1}(x) = \frac{1}{\sqrt{\alpha_x - 1}} u_i(x) \quad (i \ge 1),
$$

and the exponentially decaying radial vector (with $r \gg 1$)

$$
\mathbf{v}(x) := \sum_{i=0}^r u_i(x) \frac{\mathbf{1}_{S_i(x)}}{\|\mathbf{1}_{S_i(x)}\|}.
$$

Theorem [Alt, Ducatez, K; 2021]. Let $\mathbf{w} = (w_x)$ be an eigenvector associated with one of the top (or bottom) K eigenvalues. Then with high probability there exists a vertex x with $\alpha_x > 2$ such that $\|\mathbf{w} - \mathbf{v}(x)\| = o(1)$.

Overview of proof

Basic intuition: one-to-one correspondence between eigenvalues and vertices of large degree.

Main steps of proof:

- Step 1. Characterize the fluctuations of an eigenvalue associated with a vertex of large degree.
- Step 2. Establish a one-to-one relation between such eigenvalues and the eigenvalues of H near the edge.

Step 1

Consider neighbourhood of vertex in

 $\mathcal{U} := \{x : \alpha_x \geqslant 2 + o(1)\}.$

Use the tridiagonal representation of $H := d^{-1/2}A$ around x : write H in the basis $\mathbf{h}_0, \mathbf{h}_1, \mathbf{h}_2, \ldots$ obtained by orthogonalizing $\mathbf{1}_x, H\mathbf{1}_x, H^2\mathbf{1}_x, \ldots$. Apply transfer matrix (or orthogonal polynomial) analysis.

Problem: Fluctuations of transfer matrices very hard to control precisely, because \mathbf{h}_i is unwieldy.

Toy model: in a rooted regular tree, the degree depends only on the distance to the root.

Exercise: if $\mathbb{G}|_{B_r(x)}$ is a rooted regular tree, then $\mathbf{h}_i = \mathbf{1}_{S_i(x)}$ for $i \leqslant r.$

• Naive attempt: write H in basis $(1_{S_i(x)})$ instead of (h_i) , to get an almost tridiagonal matrix.

Problem: off-tridiagonal matrix is too large.

 $\bullet\,$ More refined attempt: If $\mathbb{G}|_{B_r(x)}$ is a tree, the vector $H^i\mathbf{1}_x$ can be decomposed as a sum over simple walks in $\mathbb N$ of length i.

jump left / right \iff terms decreasing / increasing distance from root

- Basis (\mathbf{h}_i) : all walks
- Basis $(\mathbf{1}_{S_i(x)})$: only steps to the right

Define basis (f_i) using walks with at most one step to the left. For instance,

$$
\mathbf{f}_3 = \mathbf{1}_{S_3(x)} + \sum_{y \in S_1(x)} (d\alpha_y - F)\mathbf{1}_y, \qquad F \in \mathbb{R}.
$$

Proposition. Let $r \gg 1$ be suitably chosen. Let M be the matrix H in the basis $(\mathbf{f}_i)_{i=0}^r$. Then

$$
||M - Z_{\mathfrak{d}}(\alpha_x, \beta_x)|| \leq d^{-1-c},
$$

where

$$
\alpha_x = \frac{|S_1(x)|}{d}, \qquad \beta_x = \frac{|S_2(x)|}{|S_1(x)|d},
$$

and

$$
Z_{\mathfrak{d}}(\alpha,\beta) := \begin{pmatrix} 0 & \sqrt{\alpha} & & & \\ \sqrt{\alpha} & 0 & \sqrt{\beta} & & \\ & \sqrt{\beta} & 0 & \sqrt{\mathfrak{d}} & \\ & & \sqrt{\mathfrak{d}} & 0 & \sqrt{\mathfrak{d}} \\ & & & & \sqrt{\mathfrak{d}} & 0 \end{pmatrix}, \qquad \mathfrak{d} := 1 + \frac{1}{d}.
$$

Remark. $\sqrt{d}Z_{\mathfrak{d}}(\alpha,\beta)$ is the tridiagonalization at the root of the rooted regular tree with degree sequence αd , βd , $d+1$, $d+1$, ...

 $Z_{\mathfrak{d}}(\alpha_x, \beta_x)$ has a unique eigenvalue $\Lambda_{\mathfrak{d}}(\alpha_x, \beta_x) > 2 + o(1)$, with exponentially decaying eigenvector $(u_i)_{i=0}^r$.

Back to graph G with

$$
\mathbf{y}(x) := \sum_{i=0}^r u_i \frac{\mathbf{f}_i}{\|\mathbf{f}_i\|}.
$$

It is possible to show that

$$
\left\| \left(H - \Lambda_{\mathfrak{d}}(\alpha_x, \beta_x) \right) \mathbf{y}(x) \right\| \leq d^{-1-c} \,. \tag{1}
$$

Step 1 is concluded by analysing the fluctuations of $\Lambda_{\mathfrak{d}}(\alpha_{x},\beta_{x})$ (of order $d^{-1}).$

Step 2

Need to ensure:

- (a) $(\mathbf{y}(x) : x \in \mathcal{U})$ are orthogonal (i.e. $(B_r(x) : x \in \mathcal{U})$ are disjoint).
- (b) The high probability bounds hold simultaneously for all $x \in \mathcal{U}$.
- (c) The remaining eigenvalues cannot "pollute" the edge of the spectrum.

All of these present significant complications. In fact, (a) and (b) are wrong.

(a) $(B_r(x) : x \in \mathcal{U})$ are disjoint only if either (i) $\mathcal U$ is small or (ii) we prune the graph by removing edges to disconnect balls.

The pruning is potentially deadly, since in general removing even a single edge perturbs an eigenvalue by $O(1/\sqrt{d}).$

We have to prune in places that have a small impact on the extreme eigenvalues: prune only in the neighbourhoods of vertices x whose α_x is far from the top degree.

(b) The estimate [\(1\)](#page-16-0) is not true simultaneously for all $x \in \mathcal{U}$. Solution: three-scale rigidity argument with the partition $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \mathcal{U}_2$, where $\alpha_x > \alpha_y$ for $x \in \mathcal{U}_i$ and $y \in \mathcal{U}_{i+1}$.

The sets U_0, U_1, U_2 are increasing in size, but the accuracy of the estimate (1) deteriorates as i increases.

Block diagonal representation

$$
O^{-1}HO = \begin{pmatrix} \mathcal{D}_0 & 0 & 0 & E_0^* \\ 0 & \mathcal{D}_1 & 0 & E_1^* \\ 0 & 0 & \mathcal{D}_2 + \mathcal{E}_2 & E_2^* \\ E_0 & E_1 & E_2 & X \end{pmatrix}
$$

where

$$
\mathcal{D}_{i} = \text{diag}(\Lambda_{\mathfrak{d}}(\alpha_{x}, \beta_{x}) + O(\kappa_{i}) : x \in \mathcal{U}_{i})
$$
\n
$$
\kappa_{i} + ||E_{i}|| = \begin{cases}\nd^{-1-c} & \text{if } i = 0 \\
d^{-1+c} & \text{if } i = 1 \\
d^{-1/2+c} & \text{if } i = 2\n\end{cases} \leftarrow \text{main estimates}
$$
\n
$$
||\mathcal{E}_{2}|| = O(d^{-1/2+c}) \leftarrow \text{pruning}
$$
\n
$$
||X|| \leq 2 + o(1) \leftarrow (c)
$$

(c) Estimate of $||X||$ relies on:

- analysis of nonbacktracking version of A
- approximate Ihara-Bass identities
- local delocalization bounds from a radial Combes-Thomas argument