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Universality conjecture for disordered quantum systems

A disordered quantum system can be in one of two phases:

(1) Localized (insulator, strong disorder):
Eigenvectors are localized.
Local spectral statistics are Poisson.

(2) Delocalized (metal, weak disorder):
Eigenvectors are delocalized.
Local spectral statistics follow random matrix theory (e.g. GOE).
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Conjectured phase diagram for Anderson model

Standard model of quantum disorder: Anderson model
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Figure 1.2. The predicted shape of the phase diagram of the Anderson
model (1.2) in dimensions d > 2 for site potentials given by bounded iid
random variables with a distribution similar to (1.5).

(From M. Aizenman, S. Warzel, Random Operators, AMS.)

Localized phase very well understood ([Frohlich, Spencer; 1983], [Aizenman,
Molchanov; 1993], [Molchanov; 1981], [Minami; 1996], ...)

Delocalized phase wide open (extended states conjecture).



Random matrices

o Wigner matrices with light tails are in the delocalized phase [Erdds,
Schlein, Yau, Yin; 2009-...], [Tao, Vu; 2009-...].

o Heavy-tailed Wigner matrices proposed as a simple model that exhibits a
phase transition [Cizeau, Bouchaud; 1994], [Tarquini, Biroli, Tarzia; 2016].

For 1 < a < 2, any bounded interval lies in the delocalized phase
[Bordenave, Guionnet; 2013], [Aggarwal, Lopatto, Yau; 2020].

For 0 < a < 1, delocalized phase in some neighbourhood of origin
[Bordenave, Guionnet; 2017], [Aggarwal, Lopatto, Yau; 2020].

For 0 < o < 2/3, partially localized phase far away from origin
[Bordenave, Guionnet; 2013].

o This talk: Sparse matrices.



Erd6s-Rényi graph and critical regime

Erdés-Rényi graph G(N,d/N)

Critical regime: d ~ log N, below which degrees do not concentrate.

ir

d>log N d < log N

Supercritical d > log N: homogeneous.
Subcritical d < log N: inhomogeneous (hubs, leaves, isolated vertices, . ..).

Consider the adjecency matrix A = (A4,,) € {0,1}V*V.



Phase diagram for H :=d~'/?A

d =blog N
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Behaviour of localization exponent

Eigenvalue X with eigenvector w has localization exponent v(X) € [0, 1]:
Iwiiz, = N0,
Asymptotically allowed region for v(\) (plotted for b = 1):
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Simulation of eigenvectors

Scatter plot of (eigenvalue, ||eigenvector||s). (N = 10000, b = 0.6)




Localized Phase I: Poisson eigenvalue statistics

Theorem [Alt, Ducatez, K; 2021]. Suppose that
(loglog N)* <d < (1 —o0(1))b,log N .

There exist deterministic u, o, 7,6 (which are explicit functions of d and )
such that the rescaled eigenvalue process

® = bar(ni(H)-o)
i

is asymptotically close to a Poisson point process ¥ on R on intervals [—k, 00)
containing at most K > 1 points.

Corollary. Asymptotic equality in law of k = O(K) largest points.



Intensity of W

The intensity of VU is

p(ds) := Z ul ™ g (s + 0((du) + £)) ds,
LET

where (-) is the periodic representative in [—1/2,1/2), and g(s) :=

Scaling laws
2 g2 t ' log N

= log(t Vv 2)’ ' d

Distribution of p in
critical regime ¢t < 1:
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Distribution of p in subcritical regime ¢ > 1:
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Localized Phase II: eigenvector localization

Let  be a vertex whose normalized degree a, :=|S1(x)|/d is greater than 2.
Define
N 1 .
u(z) = ——=uo(z),  Ui1(z) = —=ui(x) (i=1),
a, — 1 ay — 1

and the exponentially decaying radial vector (with r > 1)

v(z) = uilx) S“”)”

P 115

Theorem [Alt, Ducatez, K; 2021]. Let w = (w,) be an eigenvector associated
with one of the top (or bottom) K eigenvalues. Then with high probability
there exists a vertex x with a; > 2 such that [|[w — v(2)| = o(1).



Overview of proof

Basic intuition: one-to-one correspondence between eigenvalues and vertices of
large degree.
Main steps of proof:

Step 1. Characterize the fluctuations of an eigenvalue associated with a vertex
of large degree.

Step 2. Establish a one-to-one relation between such eigenvalues and the
eigenvalues of H near the edge.



Step 1

Consider neighbourhood of vertex in

U={z:a, >22+0(1)}.

Use the tridiagonal representation of H := d~/2A around x: write H in the
basis hg, hy, hy, ... obtained by orthogonalizing 1., H1,, H?1,,....

Apply transfer matrix (or orthogonal polynomial) analysis.

Problem: Fluctuations of transfer matrices very hard to control precisely,
because h; is unwieldy.

Toy model: in a rooted regular tree, the degree
depends only on the distance to the root.

Exercise: if G|p, (4 is a rooted regular tree, then
h; = 15,2 fori < r.



e Naive attempt: write H in basis (1g,(,)) instead of (h;), to get an almost
tridiagonal matrix.

Problem: off-tridiagonal matrix is too large.

o More refined attempt: If G|p, (4 is a tree, the vector H1, can be
decomposed as a sum over simple walks in N of length 7.

jump left / right <= terms decreasing / increasing distance from root

e Basis (h;): all walks
e Basis (1g,(z)): only steps to the right

Define basis (f;) using walks with at most one step to the left.
For instance,

f3=153(w)—|— Z (doyy — F)1,, FeR.
y€S1(z)



Proposition. Let r > 1 be suitably chosen. Let M be the matrix H in the

basis (f;)7_,. Then
IM — Zy(au, Bo)|| <d77°,

where 151(2)] Sale)]
- 1T _ 2\ T
S I e 7
and
0 va
Ja 0 B
3 0 V5 1
Zy(e, B) = Vo 0 Vh ) 03:1+g~
\/6 .

0

Remark. v/dZy(a, B) is the tridiagonalization at the root of the rooted regular
tree with degree sequence ad, Bd,d+ 1,d+1,....



Zy(auz, B) has a unique eigenvalue Ay (o, B) > 2 4 o(1), with exponentially
decaying eigenvector (u;)7_,.

Back to graph G with

r

f;
Y@= 2wy

=0

It is possible to show that
H(H—Aa(aw,ﬁx))y(m)H <d e (1)

Step 1 is concluded by analysing the fluctuations of A, (a,3,;) (of order d—1).



Step 2

Need to ensure:

(a) (y(z):x €U) are orthogonal (i.e. (B,(z) : € U) are disjoint).
(b) The high probability bounds hold simultaneously for all x € U.

(c) The remaining eigenvalues cannot “pollute” the edge of the spectrum.

All of these present significant complications. In fact, (a) and (b) are wrong



(a) (Br(z):xz €U) are disjoint only if either (i) U is small or (ii) we prune the
graph by removing edges to disconnect balls.

The pruning is potentially deadly, since in general removing even a single
edge perturbs an eigenvalue by O(1/v/d).

We have to prune in places that have a small impact on the extreme
eigenvalues: prune only in the neighbourhoods of vertices x whose o, is
far from the top degree.



(b) The estimate (1) is not true simultaneously for all € U. Solution:
three-scale rigidity argument with the partition U = Uy U Uy LI Us, where
ay > ay for v € Uy and y € Uipq.

The sets Uy, Uy, Uy are increasing in size, but the accuracy of the estimate
(1) deteriorates as i increases.

d—1/2+c d—1+c d—l—c

Spec(H)

{Ao(aa, Ba)}
e Uy
[ ] Z/Il
[ ] UQ




Block diagonal representation

Dy 0 0 E;
0 D 0 E}
0 0 Dy+& E;
E, By By X

O 'HO =

where
D; = diag(Ao(a, Bz) + O(k;) : @ € Uy)
d-1-¢ ifi=0
ki + ||Ei|| =  d=1F¢ ifi=1 <— main estimates
d=1/%e ifi=2

|E2]| = O(d_1/2+c) +— pruning
[X[|<2+0(1) < ()

(c) Estimate of || X|| relies on:
e analysis of nonbacktracking version of A

e approximate lhara-Bass identities
e local delocalization bounds from a radial Combes-Thomas argument



