Eigenvectors of Toeplitz matrices under small random perturbations

Ofer Zeitouni

Joint with Anirban Basak and Martin Vogel

$$J_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_{N}(z) = \det(zI - J_{N}) = z^{N}, \text{ roots=0.}$$

$$J_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_{N}(z) = \det(zI - J_{N}) = z^{N}, \text{ roots=0.}$$

 $J_N := U_N J_N U_N^*$ where U_N is random unitary matrix, Haar-distributed. Of course, Spec (J_N) =Spec (J_N) .

2/27

$$J_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_{N}(z) = \det(zI - J_{N}) = z^{N}, \text{ roots=0.}$$

 $\widehat{J_N} := U_N J_N U_N^*$ where U_N is random unitary matrix, Haar-distributed. Of course, $Spec(J_N)=Spec(J_N)$.

2/27

Ofer Zeitouni **Small Perturbations** MSRI 2021

$$J_{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_{N}(z) = \det(zI - J_{N}) = z^{N}, \text{ roots=0.}$$

 $\widehat{J_N} := U_N J_N U_N^*$ where U_N is random unitary matrix, Haar-distributed. Of course, $Spec(J_N)=Spec(J_N)$.

Goes back to Trefethen et als - pseudo-spectrum.

Regularization by noise & Description

Set $\gamma > 1/2$.

Regularization by noise & Marianti Regularization by noise

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Regularization by noise 2 1

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^{J_N} = \delta_0$ but for a vanishing perturbation, L_N^A has different limit. Earlier version - Davies-Hager '09

Regularization by noise 2 1 1 2 2

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^{J_N} = \delta_0$ but for a vanishing perturbation, L_N^A has different limit.

Earlier version - Davies-Hager '09

(Generalization to i.i.d. G_N : Wood '15.)

Regularization by noise 2 1

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^{J_N} = \delta_0$ but for a vanishing perturbation, L_N^A has different limit. Earlier version - Davies-Hager '09 (Generalization to i.i.d. G_N : Wood '15.)

Small Perturbations Ofer Zeitouni MSRI 2021

$$J_N^{\delta}=\left(egin{array}{cccccc} 0&1&0&\cdots&0\ 0&0&1&0\cdots&0\ \cdots&\cdots&\cdots&\cdots&\cdots\ 0&\cdots&\cdots&0&1\ \delta_N&\cdots&\cdots&\cdots&0 \end{array}
ight)$$

$$J_N^{\delta}=\left(egin{array}{cccccc} 0&1&0&\cdots&0\ 0&0&1&0\cdots&0\ \cdots&\cdots&\cdots&\cdots&\cdots\ 0&\cdots&\cdots&0&1\ \delta_N&\cdots&\cdots&\cdots&0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

$$J_N^\delta = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & 0 \cdots & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & \cdots & \cdots & 0 & 1 \ \delta_N & \cdots & \cdots & \cdots & 0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

Roots:
$$\{\delta_N^{1/N} e^{2\pi i/N}\}_{i=1}^N$$
.

$$J_N^{\delta}=\left(egin{array}{cccccc} 0&1&0&\cdots&0\ 0&0&1&0\cdots&0\ \cdots&\cdots&\cdots&\cdots&\cdots\ 0&\cdots&\cdots&0&1\ \delta_N&\cdots&\cdots&\cdots&0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

Roots:
$$\{\delta_N^{1/N}e^{2\pi i/N}\}_{i=1}^N$$
.
If $\delta_N = 0$ then $L_N^{J_N^N} = \delta_0$.

$$J_N^\delta = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & 0 \cdots & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & \cdots & \cdots & 0 & 1 \ \delta_N & \cdots & \cdots & \cdots & 0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

Roots:
$$\{\delta_N^{1/N}e^{2\pi i/N}\}_{i=1}^N$$
.
If $\delta_N = 0$ then $L_N^{J_N^{\delta_N}} = \delta_0$.

If $\delta_N \to 0$ polynomially slowly then $L_N^{J_N^{\delta_N}}$ converges to uniform on circle.

4/27

Ofer Zeitouni Small Perturbations MSRI 2021

$$J_N^{\delta}=\left(egin{array}{cccccc} 0&1&0&\cdots&0\ 0&0&1&0\cdots&0\ \cdots&\cdots&\cdots&\cdots&\cdots\ 0&\cdots&\cdots&0&1\ \delta_N&\cdots&\cdots&\cdots&0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

Roots:
$$\{\delta_N^{1/N}e^{2\pi i/N}\}_{i=1}^N$$
.
If $\delta_N = 0$ then $L_N^{J_N^{\delta_N}} = \delta_0$.

If $\delta_N \to 0$ polynomially slowly then $L_N^{J_N^{\delta_N}}$ converges to uniform on circle. Why is this particular perturbation picked up?

4/27

$$J_N^\delta = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & 0 \cdots & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & \cdots & \cdots & 0 & 1 \ \delta_N & \cdots & \cdots & \cdots & 0 \end{array}
ight)$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^{\delta}) = z^N \pm \delta_N.$$

Roots:
$$\{\delta_N^{1/N}e^{2\pi i/N}\}_{i=1}^N$$
.
If $\delta_N = 0$ then $L_N^{J_N^{\delta_N}} = \delta_0$.

If $\delta_N \to 0$ polynomially slowly then $L_N^{J_N^{\delta_N}}$ converges to uniform on circle.

Why is this particular perturbation picked up?

General criterion - Guionnet, Wood, Z.

More general models?

Figure: The eigenvalues of $D_N + J_N + N^{-\gamma}G_N$, with N = 4000 and various γ . Top: $D_N(i,i) = -1 + 2i/N$. Bottom: D_N i.i.d. uniform on [-2,2]. On left, actual matrix. On the right, $U_N(D_N + J_N)U_N^*$.

5/27

More general models

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k_-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. Then,

$$L_N \to Law \ of \sum_{i=-k_-}^k a_i U^i$$

where U is uniform on unit circle.

More general models

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k_-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. Then,

$$L_N \to Law \ of \sum_{i=-k_-}^k a_i U^i$$

where U is uniform on unit circle.

If upper triangular (i.e. $k_- = 0$), then extends to twisted Toeplitz $T_N(i,j) = a_i(j/N)$, i = 1, ..., k, a_i continuous:

$$L_N \to \int_0^1 \text{Law of } \sum_{i=0}^k a_i(t) U^i$$

6/27

Ofer Zeitouni Small Perturbations MSRI 2021

More general models

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k_-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. Then,

$$L_N \to Law \ of \sum_{i=-k_-}^k a_i U^i$$

where U is uniform on unit circle.

If upper triangular (i.e. $k_- = 0$), then extends to twisted Toeplitz $T_N(i,j) = a_i(j/N)$, i = 1, ..., k, a_i continuous:

$$L_N \to \int_0^1 \text{Law of } \sum_{i=0}^k a_i(t) U^i$$

Confirms simulations and predictions (based on pseudo-spectrum) of Trefethen et als. Also studied by Sjöstrand and Vogel (2016-2020), more on their approach later

Proof ingredients

Theorem (Replacement principle - after GWZ)

 A_N - deterministic, bounded operator norm. Δ_N and G_N - independent random matrices. Assume

- (a) G_N and Δ_N are independent. $\|\Delta_N\| < N^{-\gamma_0}$ whp and G_N noise matrix as before.
- (b) For Lebesgue a.e. $z \in B_{\mathbb{C}}(0, R_0)$, the empirical distribution of the singular values of $A_N zI_N$ converges weakly to the law induced by |X z|, where $X \sim \mu$ and $\mathrm{supp}\mu \subset B_{\mathbb{C}}(0, R_0/2)$.
- (c) For Lebesgue a.e. every $z \in B_{\mathbb{C}}(0, R_0)$,

$$\mathcal{L}_{L_N^{A+\Delta}}(z) o \mathcal{L}_{\mu}(z), \qquad \text{as N} o \infty, \text{ in probability.}$$

Then, for any $\gamma > \frac{1}{2}$, for Lebesgue a.e. every $z \in B_{\mathbb{C}}(0, R_0)$,

$$\mathcal{L}_{L_{N}^{A+N^{-\gamma}G}}(z) o \mathcal{L}_{\mu}(z), \qquad \text{as N} o \infty, \text{ in probability.}$$
 (2)

Ofer Zeitouni Small Perturbations MSRI 2021 7/27

Proof ingredient II

Theorem

Let T_N be any $N \times N$ banded Toeplitz matrix with a symbol **a**. Then, there exists a random matrix Δ_N with

$$P(\|\Delta_N\| \ge N^{-\gamma_0}) = o(1), \tag{3}$$

for some $\gamma_0 > 0$, so that $L_N^{T+\Delta}$ converges weakly, in probability, to ν_a .

Proof ingredient II

Theorem

Let T_N be any $N \times N$ banded Toeplitz matrix with a symbol **a**. Then, there exists a random matrix Δ_N with

$$P(\|\Delta_N\| \ge N^{-\gamma_0}) = o(1), \tag{3}$$

for some $\gamma_0 > 0$, so that $L_N^{T+\Delta}$ converges weakly, in probability, to ν_a .

This works for Toeplitz with banded symbol, but not for twisted Toeplitz! Main issue - Toeplitz determinant of un-perturbed matrix requires work, e.g. Widom's theorem.

8/27

Ofer Zeitouni Small Perturbations MSRI 2021

An alternative, developed by Sjöstrand and Vogel: the Grushin problem.

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. $A = A_N$ matrix, singular values $t_1 \le t_2 \le ... \le t_N$.

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. $A = A_N$ matrix, singular values $t_1 \le t_2 \le ... \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$.

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. $A = A_N$ matrix, singular values $t_1 \le t_2 \le ... \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$. Let $\{e_i\}$ be eigenvectors of A^*A , $\{f_i\}$ of AA^* , with

$$A^* f_i = t_i e_i, \quad Ae_i = t_i f_i$$

9/27

An alternative, developed by Sjöstrand and Vogel: the Grushin problem.

 $A = A_N$ matrix, singular values $t_1 \le t_2 \le ... \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$.

Let $\{e_i\}$ be eigenvectors of A^*A , $\{f_i\}$ of AA^* , with

$$A^* f_i = t_i e_i, \quad Ae_i = t_i f_i$$

Fix M > 0 integer (may depend on N) - these will be eventually the *small* singular values, ie all singular values of A except for smallest M are above a strictly positive threshold α . Let $\{\delta_i\}$ be standard basis of \mathbb{C}^M .

9/27

Ofer Zeitouni Small Perturbations MSRI 2021

An alternative, developed by Sjöstrand and Vogel: the Grushin problem.

 $A = A_N$ matrix, singular values $t_1 \le t_2 \le ... \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$.

Let $\{e_i\}$ be eigenvectors of A^*A , $\{f_i\}$ of AA^* , with

$$A^* f_i = t_i e_i, \quad Ae_i = t_i f_i$$

Fix M > 0 integer (may depend on N) - these will be eventually the *small* singular values, ie all singular values of A except for smallest M are above a strictly positive threshold α . Let $\{\delta_i\}$ be standard basis of \mathbb{C}^M .

$$R_+ = \sum_{i=1}^M \delta_i \circ e_i^*, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^*,$$

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M \quad \text{bijection!}$$

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M \quad \text{bijection!}$$

We have

$$\mathcal{P}^{-1} = \mathcal{E} = \begin{pmatrix} E & E_+ \\ E_- & E_{-+} \end{pmatrix}$$

with

$$\begin{split} E &= \sum_{M+1}^N \frac{1}{t_i} \boldsymbol{e}_i \circ \boldsymbol{f}_i, \quad E_+ = \sum_1^M \boldsymbol{e}_i \circ \delta_i^*, \\ E_- &= \sum_1^M \delta_i \circ \boldsymbol{f}_i^*, \quad E_{-+} = -\sum_1^M t_i \delta_j \circ \delta_j^*, \end{split}$$

and the norm estimates

$$\|E\| \le \frac{1}{\alpha}, \quad \|E_{\pm}\| = 1, \quad \|E_{-+}\| \le \alpha, \quad |\det \mathcal{P}|^2 = \prod_{M=1}^N t_i^2.$$

<□ > < ₫ > < 필 > < 필 > 9 < @

Noisy Grushin problem 🎎 🚎

$$\begin{split} \boldsymbol{A}^{\delta} &= \boldsymbol{A} + \delta \boldsymbol{G}, \quad 0 \leq \delta \ll 1. \\ \mathcal{P}^{\delta} &= \begin{pmatrix} \boldsymbol{A}^{\delta} & \boldsymbol{R}_{-} \\ \boldsymbol{R}_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \end{split}$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

MSRI 2021

11/27

Ofer Zeitouni **Small Perturbations**

Noisy Grushin problem

$$\begin{split} A^{\delta} &= A + \delta G, \quad 0 \leq \delta \ll 1. \\ \mathcal{P}^{\delta} &= \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \end{split}$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$\mathcal{P}^{\delta}\mathcal{E} = I_{N+M} + \begin{pmatrix} \delta GE & \delta GE_{+} \\ 0 & 0 \end{pmatrix}$$

Ofer Zeitouni **Small Perturbations MSRI 2021** 11/27

Noisy Grushin problem 🎎 🚟

$$\begin{split} A^{\delta} &= A + \delta G, \quad 0 \leq \delta \ll 1. \\ \mathcal{P}^{\delta} &= \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \end{split}$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$\mathcal{P}^{\delta}\mathcal{E} = I_{N+M} + \begin{pmatrix} \delta GE & \delta GE_{+} \\ 0 & 0 \end{pmatrix}$$

Suppose that $\delta \|G\| \alpha^{-1} \leq 1/2$, then

$$\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} GE_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E_+^{\delta} \\ E_-^{\delta} & E_{-+}^{\delta} \end{pmatrix},$$

$$\|E^{\delta}\| = \|E(1 + \delta GE)^{-1}\| \le 2\alpha^{-1}, \|E_{+}^{\delta}\| \le 2, \|E_{-}^{\delta}\| \le 2, \|E_{-+}^{\delta} - E_{-+}\| \le \alpha.$$

Ofer Zeitouni **Small Perturbations** MSRI 2021 11/27

Noisy Grushin problem 🎎 🕮

$$\begin{split} A^{\delta} &= A + \delta G, \quad 0 \leq \delta \ll 1. \\ \mathcal{P}^{\delta} &= \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \end{split}$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$\mathcal{P}^{\delta}\mathcal{E} = I_{N+M} + \begin{pmatrix} \delta GE & \delta GE_{+} \\ 0 & 0 \end{pmatrix}$$

Suppose that $\delta \|G\| \alpha^{-1} < 1/2$, then

$$\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} GE_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_{-+} \end{pmatrix},$$

$$\|E^{\delta}\| = \|E(1 + \delta GE)^{-1}\| \le 2\alpha^{-1}, \|E_{+}^{\delta}\| \le 2, \|E_{-}^{\delta}\| \le 2, \|E_{-+}^{\delta} - E_{-+}\| \le \alpha.$$

The Schur complement formula applied to \mathcal{P}^{δ} and \mathcal{E}^{δ} shows that $\det \mathcal{P}^{\delta} = \det A^{\delta} \cdot \det(-R_{+}(A^{\delta})^{-1}R_{-}), \text{ while } E_{+}^{\delta} = -(A^{\delta})^{-1}R_{-}E_{-+}^{\delta} \text{ and hence}$ $I = R_{+}E_{+}^{\delta} = -R_{+}(A^{\delta})^{-1}R_{-}E_{-+}^{\delta}$

MSRI 2021 Ofer Zeitouni **Small Perturbations** 11/27

Noisy Grushin problem 🎎 🚟

$$\begin{split} A^{\delta} &= A + \delta G, \quad 0 \leq \delta \ll 1. \\ \mathcal{P}^{\delta} &= \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \end{split}$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$\mathcal{P}^{\delta}\mathcal{E} = I_{N+M} + \begin{pmatrix} \delta GE & \delta GE_{+} \\ 0 & 0 \end{pmatrix}$$

Suppose that $\delta \|G\| \alpha^{-1} < 1/2$, then

$$\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} GE_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_{-+} \end{pmatrix},$$

$$\|E^{\delta}\| = \|E(1 + \delta GE)^{-1}\| \le 2\alpha^{-1}, \|E_{+}^{\delta}\| \le 2, \|E_{-}^{\delta}\| \le 2, \|E_{-+}^{\delta} - E_{-+}\| \le \alpha.$$

The Schur complement formula applied to \mathcal{P}^{δ} and \mathcal{E}^{δ} shows that

$$\log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}_{-+}^{\delta}|.$$

$$\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log|\det A^{\delta}| = \log|\det \mathcal{P}^{\delta}| + \log|\det \mathcal{E}^{\delta}_{-+}|$$

$$\begin{split} \mathcal{E}^{\delta} &= (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}| \\ &\left| \log |\det \mathcal{P}^{\delta}| - \log |\det \mathcal{P}^{0}| \right| = \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\mathcal{E}^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau} \right) d\tau \right| \\ &= \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\begin{pmatrix} \mathcal{E}^{\tau} & \mathcal{E}^{\tau}_{+} \\ \mathcal{E}^{\tau}_{-} & \mathcal{E}^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G} & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|\mathcal{G}\|. \end{split}$$

$$\begin{split} \mathcal{E}^{\delta} &= (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}| \\ & \left| \log |\det \mathcal{P}^{\delta}| - \log |\det \mathcal{P}^{0}| \right| = \left| \Re \int_{0}^{\delta} \mathrm{Tr} \Big(\mathcal{E}^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau} \Big) d\tau \right| \\ &= \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\begin{pmatrix} \mathcal{E}^{\tau} & \mathcal{E}^{\tau}_{+} \\ \mathcal{E}^{\tau}_{-} & \mathcal{E}^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G} & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|\mathcal{G}\|. \\ & \mathrm{So}, \ \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|\mathcal{G}\|. \end{split}$$

$$\begin{split} \mathcal{E}^{\delta} &= (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}| \\ & \left| \log |\det \mathcal{P}^{\delta}| - \log |\det \mathcal{P}^{0}| \right| = \left| \Re \int_{0}^{\delta} \mathrm{Tr} \big(\mathcal{E}^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau} \big) d\tau \right| \\ &= \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\begin{pmatrix} \mathcal{E}^{\tau} & \mathcal{E}^{\tau}_{+} \\ \mathcal{E}^{\tau}_{-} & \mathcal{E}^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G} & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|\mathcal{G}\|. \\ & \mathrm{So}, \ \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|\mathcal{G}\|. \end{split}$$

But
$$\|E_{-+}^{\delta}\| \leq 2\alpha$$
, thus,

$$\log |\det A^{\delta}| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1}\delta N \|G\|.$$

$$\begin{split} \mathcal{E}^{\delta} &= (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}| \\ & \left| \log |\det \mathcal{P}^{\delta}| - \log |\det \mathcal{P}^{0}| \right| = \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\mathcal{E}^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau} \right) d\tau \right| \\ &= \left| \Re \int_{0}^{\delta} \mathrm{Tr} \left(\begin{pmatrix} \mathcal{E}^{\tau} & \mathcal{E}^{\tau}_{+} \\ \mathcal{E}^{\tau}_{-} & \mathcal{E}^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G} & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|\mathcal{G}\|. \\ & \mathrm{So}, \ \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|\mathcal{G}\|. \end{split}$$

But $\|E_{-+}^{\delta}\| \leq 2\alpha$, thus,

$$\log |\det A^{\delta}| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1}\delta N \|G\|.$$

Complementary lower bound requires just a bit more work.

$$\begin{split} \mathcal{E}^{\delta} &= (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}| \\ & \left| \log |\det \mathcal{P}^{\delta}| - \log |\det \mathcal{P}^{0}| \right| = \left| \Re \int_{0}^{\delta} \operatorname{Tr} \left(\mathcal{E}^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau} \right) d\tau \right| \\ &= \left| \Re \int_{0}^{\delta} \operatorname{Tr} \left(\begin{pmatrix} \mathcal{E}^{\tau} & \mathcal{E}^{\tau}_{+} \\ \mathcal{E}^{\tau}_{-} & \mathcal{E}^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G} & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|\mathcal{G}\|. \\ & \operatorname{So}, \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|\mathcal{G}\|. \end{split}$$

But $\|E_{-+}^{\delta}\| \leq 2\alpha$, thus,

$$\log |\det A^{\delta}| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1}\delta N \|G\|.$$

Complementary lower bound requires just a bit more work.

Since $\det \mathcal{P}$ is like erasing the small singular values of A, this gives a version of the deterministic equivalence lemma for general noise (Vogel-Z, '20)

13/27

Outliers are random. What is structure of outliers?

MSRI 2021

13/27

Ofer Zeitouni Small Perturbations

Outliers are random. What is structure of outliers?

• $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.

13/27

$$J_N + N^{-\gamma} G_N \qquad J_N + J_N^2 + N^{-\gamma} G_N$$

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) J_N))(\lambda_2(z) J_N)$:

Ofer Zeitouni Small Perturbations

13/27

$$J_N + N^{-\gamma} G_N$$
 $J_N + J_N^2 + N^{-\gamma} G_N$

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) J_N))(\lambda_2(z) J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$

MSRI 2021

13/27

Ofer Zeitouni Small Perturbations

$$J_N + N^{-\gamma} G_N$$
 $J_N + J_N^2 + N^{-\gamma} G_N$

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) J_N))(\lambda_2(z) J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
 - In $\{z : |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) J_N))(\lambda_2(z) J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
 - In $\{z : |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
 - In $\{z: 1 > |\lambda_1(z)| > |\lambda_2(z)|\}$, outliers are roots of limit of terms involving a product of two Gaussians in expansion of char. pol.

$$J_N + N^{-\gamma} G_N$$
 $J_N + J_N^2 + N^{-\gamma} G_N$

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) J_N))(\lambda_2(z) J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
 - In $\{z : |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
 - In $\{z: 1 > |\lambda_1(z)| > |\lambda_2(z)|\}$, outliers are roots of limit of terms involving a product of two Gaussians in expansion of char. pol.

Generalizes to general Toeplitz. Proof uses study of determinant.

Develop the determinant of $zI - J_N - N^{-\gamma}G_N$:

$$z^{N} - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^{k} + \text{remainder.}$$

Develop the determinant of $zI - J_N - N^{-\gamma}G_N$:

$$z^{N} - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^{k} + \text{remainder}.$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small.

Develop the determinant of $zI - J_N - N^{-\gamma}G_N$:

$$z^{N} - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^{k} + \text{remainder}.$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small. Thus, determinant vanishes near zeros of the GAF

$$\sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k \stackrel{d}{=} \sum_{k=0}^{N-1} \sqrt{k+1} g_k z^k.$$

Develop the determinant of $zI - J_N - N^{-\gamma}G_N$:

$$z^{N} - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^{k} + \text{remainder}.$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small. Thus, determinant vanishes near zeros of the GAF

$$\sum_{k=0}^{N-1} \sum_{i,j: i+j=k+2} G_{i,j} z^k \stackrel{d}{=} \sum_{k=0}^{N-1} \sqrt{k+1} g_k z^k.$$

For general Toeplitz matrices, decompose the determinant to factors of this form!

What are the eigenvectors of perturbed Toeplitz matrices?

What are the eigenvectors of perturbed Toeplitz matrices?

0.05 0.01 0.01 0.02

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N, N = 1000$

What are the eigenvectors of perturbed Toeplitz matrices?

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N, N = 1000$

Phase transitions?

15/27

Ofer Zeitouni Small Perturbations MSRI 2021

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^*, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^*.$$

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^*, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^*.$$

$$\mathcal{P}^{-1} = \mathcal{E} = \begin{pmatrix} E & E_+ \\ E_- & E_{-+} \end{pmatrix},$$

$$E = \sum_{M+1}^N \frac{1}{t_i} e_i \circ t_i^*, \quad E_+ = \sum_1^M e_i \circ \delta_i^*,$$

$$E_- = \sum_1^M \delta_i \circ f_i^*, \quad E_{-+} = -\sum_1^M t_j \delta_j \circ \delta_j^*.$$

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^* \,, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^* \,.$$

$$E = \sum_{M+1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, \quad E_{+} = \sum_{1}^{M} e_{i} \circ \delta_{i}^{*},$$

$$E_{-} = \sum_{1}^{M} \delta_{i} \circ f_{i}^{*}, \quad E_{-+} = -\sum_{1}^{M} t_{j} \delta_{j} \circ \delta_{j}^{*}.$$

With $A^{\delta} = A + \delta G$, $0 \le \delta \ll 1$, the perturbed Grushin problem is

$$\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M}, \ \ \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_{+} \\ E^{\delta}_{-} & E^{\delta}_{-+} \end{pmatrix}.$$

16/27

Ofer Zeitouni Small Perturbations MSRI 2021

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^* \,, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^* \,.$$

$$\mathcal{P}^{-1} = \mathcal{E} = \begin{pmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{pmatrix},$$

$$E = \sum_{M=1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, \quad E_{+} = \sum_{1}^{M} e_{i} \circ \delta_{i}^{*},$$

$$E_{-} = \sum_{1}^{M} \delta_{i} \circ f_{i}^{*}, \quad E_{-+} = -\sum_{1}^{M} t_{i} \delta_{j} \circ \delta_{j}^{*}.$$

With $A^{\delta} = A + \delta G$, $0 < \delta \ll 1$, the perturbed Grushin problem is

$$\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M}, \ \ \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_{+} \\ E^{\delta}_{-} & E^{\delta}_{-+} \end{pmatrix}.$$

As soon as $I + \delta QE$ is invertible, \mathcal{P}^{δ} is invertible, and

$$E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, \ E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$$

16/27

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$\mathcal{P} = \begin{pmatrix} A & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^* \,, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^* \,.$$

$$\mathcal{P}^{-1} = \mathcal{E} = \begin{pmatrix} E & E_{+} \\ E_{-} & E_{-+} \end{pmatrix},$$

$$E = \sum_{M+1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, \quad E_{+} = \sum_{1}^{M} e_{i} \circ \delta_{i}^{*},$$

$$E_{-} = \sum_{1}^{M} \delta_{i} \circ f_{i}^{*}, \quad E_{-+} = -\sum_{1}^{M} t_{i} \delta_{j} \circ \delta_{j}^{*}.$$

With $A^{\delta} = A + \delta G$, $0 < \delta \ll 1$, the perturbed Grushin problem is

$$\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M}, \ \ \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_{+} \\ E^{\delta}_{-} & E^{\delta}_{-+} \end{pmatrix}.$$

As soon as $I + \delta QE$ is invertible, \mathcal{P}^{δ} is invertible, and

$$E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, \ E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$$

 E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+

$$\begin{array}{l} E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+}, E=\sum_{i=M+1}^{N}\frac{1}{l_{i}}e_{i}\circ f_{i}^{*}, E_{+}=\sum_{i=1}^{M}e_{i}\circ \delta_{i}^{*}, E_{+}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}. \\ E_{+}^{\delta}\text{ is a bijection from the kernel of }E_{-+}^{\delta}\text{ to the kernel of }A^{\delta}, \text{ with inverse given by the unperturbed operator }R_{+}. \end{array}$$

$$\begin{split} & E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ & E_{+}^{\delta} \text{ is a bijection from the kernel of } E_{-+}^{\delta} \text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \\ & \text{We take } A_{N} = J_{N} - z I_{N} \text{ and } Q \text{ Gaussian iid, } \delta = N^{-\gamma}, \text{ where } z \text{ is eigenvalue of } J_{N} + \delta Q. \end{split}$$

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, &\text{ with inverse given by the unperturbed operator } B_{+}. \\ \text{Also, } M = 1 &\text{ for } \gamma > 1 &\text{ and } M = N^{2(1-\gamma)} &\text{ for } \gamma < 1. &\text{ Consider } \gamma > 1 &\text{ first} \end{split}$$

17/27

Ofer Zeitouni Small Perturbations MSRI 2021

```
E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{i_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.
E_{\perp}^{\delta} is a bijection from the kernel of E_{\perp}^{\delta} to the kernel of A^{\delta}, with inverse given by the unperturbed operator R_{\perp}.
```

We take $A_N = J_N - zI_N$ and Q Gaussian iid, $\delta = N^{-\gamma}$, where z is eigenvalue of $J_N + \delta Q$.

Important fact:
$$|z| = 1 - c_{\gamma}(\log N)/N$$
, with $c_{\gamma} = \gamma - 1$; set $v = [1, z, z^2]$ $z^{N-1}[T/\sqrt{(N/\log N)}]$ of norm $Q(1)$ (pseudomode)

 $v = [1, z, z^2, ..., z^{N-1}]^T / \sqrt{(N/\log N)}$, of norm O(1) (pseudomode).

17/27

Ofer Zeitouni **Small Perturbations MSRI 2021**

```
E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{l=M+1}^{N} \frac{1}{l_{l}} e_{l} \circ f_{l}^{*}, E_{+} = \sum_{l=1}^{M} e_{l} \circ \delta_{l}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. E_{+}^{\delta} is a bijection from the kernel of E_{-+}^{\delta} to the kernel of A^{\delta}, with inverse given by the unperturbed operator R_{+}. We take A_{N} = J_{N} - zI_{N} and Q Gaussian iid, \delta = N^{-\gamma}, where z is eigenvalue of J_{N} + \delta Q. Important fact: |z| = 1 - c_{\gamma}(\log N)/N, with c_{\gamma} = \gamma - 1; set V = [1, z, z^{2}, \dots, z^{N-1}]^{T}/\sqrt{(N/\log N)}, of norm Q(1) (pseudomode).
```

 $||A_N v||_2 = o(1/N)$, so $t_1 \ll 1/N$ while $t_i \sim i/N$ for i > 2.

 $\begin{array}{l} E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+}, E=\sum_{i=M+1}^{N}\frac{1}{t_{i}}e_{i}\circ f_{i}^{*}, E_{+}=\sum_{i=1}^{M}e_{i}\circ \delta_{i}^{*}, E_{+}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}.\\ E_{+}^{\delta}\text{ is a bijection from the kernel of }E_{-+}^{\delta}\text{ to the kernel of }A^{\delta}, \text{ with inverse given by the unperturbed operator }R_{+}.\\ Easiest case: \gamma>3/2, M=1. \text{ Then }\|\delta QE\|_{\infty}\sim N^{-(\gamma-3/2)}\ll 1, \text{ so kernel of }E_{-}^{\delta}\text{ is essentially 1, so kernel of }A^{\delta}\text{ is essentially pseudomode.} \end{array}$

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \\ \gamma &\in (1,3/2]. \text{ Here } \|\delta Q E\|_{\infty} &\text{ is not small, but whp } I + \delta Q E &\text{ is invertible, inverse norm bounded by polynomial in } N. \end{split}$$

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_i} e_i \circ f_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_{-}^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator B_{+} . $\gamma \in (1, 3/2]$. Here $\|\delta Q E\|_{\infty}$ is not small, but whp $I + \delta Q E$ is invertible, inverse norm bounded by polynomial in N. Expand:

$$E_{-+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+} = E_{+} - \delta E Q E_{+} - \delta^{2} (EQ)^{2} E_{+} - \dots$$

But $\delta^p ||(EQ)^p E_+||_{\infty} = o(1)$, so same conclusion as for $\gamma > 3/2$.

$$E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta QE)^{-1}\delta QE_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}}e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta QE)^{-1}\delta QE_{+}.$$
 E_{+}^{δ} is a bijection from the kernel of E_{-}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator B_{+} .

Also, $M = 1$ for $\gamma > 1$ and $M = N^{2(1-\gamma)}$ for $\gamma < 1$. Consider $\gamma > 1$ first

 γ < 1. Norm estimate with M=1 fails, so need larger M. Eigenvector is then (random) combination of singular vectors of A-zI.


```
E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+}, E=\sum_{l=M+1}^{N}\frac{1}{l_{l}}e_{l}\circ f_{l}^{*}, E_{+}=\sum_{l=1}^{M}e_{l}\circ \delta_{l}^{*}, E_{h}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}. E_{+}^{\delta} is a bijection from the kernel of E_{-+}^{\delta} to the kernel of A^{\delta}, with inverse given by the unperturbed operator R_{+}. Also, M=1 for \gamma>1 and M=N^{2(1-\gamma)} for \gamma<1. Consider \gamma>1 first \gamma<1. Norm estimate with M=1 fails, so need larger M. Eigenvector is then (random) combination of singular vectors of A-zI. Get a stochastic process, correlation length N/M=N^{2\gamma-1}.
```



```
E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+}, E=\sum_{l=M+1}^{N}\frac{1}{l_{l}}e_{l}\circ f_{l}^{*}, E_{+}=\sum_{l=1}^{M}e_{l}\circ \delta_{l}^{*}, E_{h}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}. E_{+}^{\delta} is a bijection from the kernel of E_{-+}^{\delta} to the kernel of A^{\delta}, with inverse given by the unperturbed operator R_{+}. Also, M=1 for \gamma>1 and M=N^{2(1-\gamma)} for \gamma<1. Consider \gamma>1 first \gamma<1. Norm estimate with M=1 fails, so need larger M. Eigenvector is then (random) combination of singular vectors of A-zI. Get a stochastic process, correlation length N/M=N^{2\gamma-1}.
```


Ofer Zeitouni Small Perturbations MSRI 2021 17/27

 $\begin{array}{l} E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+}, E=\sum_{i=M+1}^{N}\frac{1}{i_{i}}e_{i}\circ f_{i}^{*}, E_{+}=\sum_{i=1}^{M}e_{i}\circ \delta_{i}^{*}, E_{+}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}.\\ E_{+}^{\delta}\text{ is a bijection from the kernel of }E_{-+}^{\delta}\text{ to the kernel of }A^{\delta}, \text{ with inverse given by the unperturbed operator }R_{+}.\\ We take $A_{N}=J_{N}-zI_{N}$ and Q Gaussian iid, $\delta=N^{-\gamma}$, where z is eigenvalue of $J_{N}+\delta Q$. Also, $M=1$ for $\gamma>1$ and $M=N^{2(1-\gamma)}$ for $\gamma<1$. Consider $\gamma>1$ first Important fact: $|z|=1-c_{\gamma}(\log N)/N$, with $c_{\gamma}=\gamma-1$; set $v=[1,z,z^{2},\ldots,z^{N-1}]^{T}/\sqrt{(N/\log N)}$, of norm $O(1)$ (pseudomode). $\|A_{N}v\|_{2}=o(1/N)$, so $t_{1}\ll 1/N$ while $t_{i}\sim i/N$ for $i\geq 2$. Easiest case: $\gamma>3/2$, $M=1$. Then $\|\delta QE\|_{\infty}\sim N^{-(\gamma-3/2)}\ll 1$, so kernel of E_{-+}^{δ} is essentially 1$, so kernel of A^{δ} is essentially pseudomode. $\gamma\in(1,3/2]$. Here $\|\delta QE\|_{\infty}$ is not small, but whp $I+\delta QE$ is invertible, inverse norm bounded by polynomial in N. Expand:$

$$E_{-+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+} = E_{+} - \delta E Q E_{+} - \delta^{2} (EQ)^{2} E_{+} - \dots$$

But $\delta^p \| (EQ)^p E_+ \|_{\infty} = o(1)$, so same conclusion as for $\gamma > 3/2$.

 γ < 1. Norm estimate with M=1 fails, so need larger M. Eigenvector is then (random) combination of singular vectors of A-zI. Get a stochastic process, correlation length $N/M=N^{2\gamma-1}$.

◆ロ → ← 同 → ← 目 → ← 目 → り Q ○

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N, N = 1000$

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N, N = 1000$

Major cheat: norm estimates stated were for deterministic z, not the random eigenvalue!

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N, N = 1000$

Major cheat: norm estimates stated were for deterministic z, not the random eigenvalue!

Solution uses a net of deterministic *z*'s, and a good probabilistic estimate on norm.

18/27

Ofer Zeitouni Small Perturbations MSRI 2021

We slightly shift notation:

$$P_N = egin{pmatrix} a_0 & a_{-1} & \dots & a_{-N_-} & \dots \ a_1 & a_0 & a_{-1} & \dots & \dots \ dots & \ddots & \ddots & \ddots & dots \ a_{N_+} & \dots & \dots & \dots & \dots \ dots & \ddots & \ddots & \ddots & dots \ \dots & \dots & a_{N_+} & \dots & a_0 \end{pmatrix}.$$
 $P_{N,\gamma}^Q = P_N + N^{-\gamma} Q_N,$

- (i) The entries of Q are jointly independent and have zero mean.
- (ii) For any $h \in \mathbb{N}$ there exists an absolute constant $\mathfrak{C}_h < \infty$ such that

$$\max_{i,j=1}^{N} E[|Q_{i,j}|^{2h}] \leq \mathfrak{C}_h.$$

(We also impose an anti-concentration assumption on the entries of Q.)

Assume for symplicity that the gcd of $\{|j|: j \neq 0, a_j \neq 0\}$ is 1.

Assume for symplicity that the gcd of $\{|j|: j \neq 0, a_j \neq 0\}$ is 1. Let q be the symbol associated with $\{a_j\}$, let \mathcal{B}_1 be the collection of self intersection points of $q(S^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points z where the Laurent polynomial $q(\cdot) - z$ has double roots.

20/27

Assume for symplicity that the gcd of $\{|j|: j \neq 0, a_i \neq 0\}$ is 1. Let q be the symbol associated with $\{a_i\}$, let \mathcal{B}_1 be the collection of self intersection points of $q(S^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points z where the Laurent polynomial $q(\cdot) - z$ has double roots. Set $\mathcal{B}_p := \mathcal{B}_1 \cup \mathcal{B}_2$ and $\mathcal{G}_{p,\varepsilon} := p(S^1) \setminus \mathcal{B}_p^{\varepsilon}$. When either $N_- \neq N_+$ or $|a_{-N_{-}}| \neq |a_{N_{+}}|$, the set $\mathcal{B}_1 \cup \mathcal{B}_2$ is a finite set, and we assume this in what follows.

Assume for symplicity that the gcd of $\{|j|: j \neq 0, a_j \neq 0\}$ is 1. Let q be the symbol associated with $\{a_j\}$, let \mathcal{B}_1 be the collection of self intersection points of $q(\mathcal{S}^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points z where the Laurent polynomial $q(\cdot)-z$ has double roots. Set $\mathcal{B}_p:=\mathcal{B}_1\cup\mathcal{B}_2$ and $\mathcal{G}_{p,\varepsilon}:=p(\mathcal{S}^1)\setminus\mathcal{B}_p^\varepsilon$. When either $N_-\neq N_+$ or $|a_{-N_-}|\neq |a_{N_+}|$, the set $\mathcal{B}_1\cup\mathcal{B}_2$ is a finite set, and we assume this in what follows.

For a point $z \in \mathbb{C}$, let d(z) be the winding number of $p(\cdot)$ around z. Let

$$\Omega(\varepsilon, C, N) := \{ z \in \mathbb{C} : C^{-1} \log N / N < \operatorname{dist}(z, \mathcal{G}_{p, \varepsilon}) < C \log N / N, d(z) \neq 0 \}$$

Let $\mathcal{N}_{\Omega(\varepsilon,C,N),N,\gamma}:=|\{\lambda_i^N\in\Omega(\varepsilon,C,N)\}|$ denote the number of eigenvalues of $P_{N,\gamma}^Q$ that lie in $\Omega(\varepsilon,C,N)$.

 Ofer Zeitouni
 Small Perturbations
 MSRI 2021
 20/27

Location of eigenvalues

Theorem (BVZ21)

Fix $\mu >$ 0 and $\gamma >$ 1. Then there exist 0 < ε , $C < \infty$ (depending on γ, μ and p only) so that

$$P(\mathcal{N}_{\Omega(\varepsilon,C,N),N,\gamma} < (1-\mu)N) \rightarrow_{N\to\infty} 0.$$

Location of eigenvalues

Theorem (BVZ21)

Fix $\mu >$ 0 and $\gamma >$ 1. Then there exist 0 < ε , $C < \infty$ (depending on γ, μ and p only) so that

$$P(\mathcal{N}_{\Omega(\varepsilon,C,N),N,\gamma} < (1-\mu)N) \rightarrow_{N\to\infty} 0.$$

Theorem (BVZ21, $\gamma > 1$)

1. The following occurs with probability approaching one as $N \to \infty$. For each $\hat{z} \in \Omega(\varepsilon, C, N)$ which is an eigenvalue of $P_{N, \gamma}^{Q}$, let $v = v(\hat{z})$ denote the corresponding (right) eigenvector, normalized so that $||v||_2 = 1$. Then there exists a vector w, linear combination of the d smallest eigenvectors of |d| eigenvectors of $(P_N - \hat{z}I)^*(P_N - \hat{z}I)$, with $||w||_2 = 1$ such that $\|v-w\|_2 = o(1)$ and a constant $c_{\gamma} > 0$, so that for any $\ell \in [N]$,

$$\begin{aligned} \|\mathbf{w}\|_{\ell^2([\ell,N])} &\leq \varepsilon^{-c\ell \log N/N}/c, & \text{if } d > 0, \\ \|\mathbf{w}\|_{\ell^2([1,N-\ell])} &\leq \varepsilon^{-c\ell \log N/N}/c, & \text{if } d < 0. \end{aligned}$$

Theorem (BVZ21, $\gamma > 1$)

Fix $z_0=z_0(N)\in\Omega(\varepsilon,C,N)$ deterministic, C_0 , C_0 large, and $\eta>0$ small. Then, there exist constants $c_1=c_1(\eta,C_0,\widetilde{C}_0)$ and $c_0=c_0(\gamma)\in(0,1)$, with $c_0\to 1$ as $\gamma\to 1$ and $c_0\to 0$ as $\gamma\to\infty$, so that, with probability at least $1-\eta$, for every $\hat{z}=\lambda_i^N\in D(z_0,C_0\log N/N)$, any $0<\ell\le\ell'\le\widetilde{C}_0N/\log N$ satisfying $\ell'-\ell>N^{c_0}$ and all large N,

$$\begin{split} \|w\|_{\ell^2([\ell,\ell'])}^2 &\geq c_1(\ell'-\ell)\log N/N, & \text{if } d>0, \\ \|w\|_{\ell^2([N-\ell',N-\ell])}^2 &\geq c_1(\ell'-\ell)\log N/N, & \text{if } d<0. \end{split}$$

Further, for any $0 < c' \le \widetilde{C}_0$,

$$\begin{split} \|v\|_{\ell^2([1,c'N/\log N])}^2 &\geq c'c_1/2, & \text{if } d>0, \\ \|v\|_{\ell^2([N-c'N/\log N,N])}^2 &\geq c'c_1/2, & \text{if } d<0. \end{split}$$

Ofer Zeitouni Small Perturbations MSRI 2021 23/27

Figure: N = 4000, $\gamma = 1.2$, symbol $\zeta + \zeta^2$. The bottom row is not covered by the theorem, because the chosen eigenvalue is at vanishing distance from \mathcal{B}_1 .

Ofer Zeitouni Small Perturbations MSRI 2021 24/27

Figure: N = 4000, $\gamma = 1.2$, symbol $\zeta + \zeta^2$. The bottom row is not covered by the theorem, because the chosen eigenvalue is at vanishing distance from \mathcal{B}_1 .

Localization at scale $N/\log N$. The w's can in turn be approximated by $pseudomodes\ \psi$, with $\|(P_N-\widehat{z}I)\psi\| \to_{N\to\infty} 0$.

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_{i}} e_{i} \circ t_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

$$\textstyle E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$$

 E_{+}^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_{+} .

The following speculations work in the case $A_N = J_N$, general case work in progress.

Ofer Zeitouni Small Perturbations

$$\begin{split} E^{\delta}_{-+} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E^{\delta}_{+} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E^{\delta}_{+} &\text{ is a bijection from the kernel of } E^{\delta}_{-+} &\text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

• The *i*th singular value of zI-T is bounded below by i/N. The norm of δQE is bounded above by $N^{-\gamma+1/2+1}/M$, while that of δQE_+ is bounded above by $N^{-\gamma}M^{1/2}$.

Ofer Zeitouni Small Perturbations MSRI 2021 25/27

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_i} e_i \circ f_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

• By resolvent expansion, the norm of $(\delta QE)^2$ is small. We chose M so that $||E_-\delta QE_+|| < M/N$, i.e. $\sqrt{M}N^{-\gamma} < M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_- \delta Q E_+$$

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ l_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, &\text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

• By resolvent expansion, the norm of $(\delta QE)^2$ is small. We chose M so that $||E_-\delta QE_+|| < M/N$, i.e. $\sqrt{M}N^{-\gamma} < M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_- \delta Q E_+$$

• $E_-\delta QE_+$ is a noise matrix of dimension M and entries $N^{-\gamma}$, and singular values of order $N^{-\gamma}\sqrt{M}=N^{1-2\gamma}\sim M/N$. If the 0 eigenvector of K is delocalized, with essentially uncorrelated entries, then the kernel of \mathcal{P}^δ is a combination (with uncorrelated weights) of the M bottom singular vectors of $T-z_NI$, which in the case $T_N=J$ are just the eigenfunctions of the Laplacian, ie sinusoids modulated by $(-1)^x$. Thus correlation window s_1N/M (up to log terms)

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_{i}} e_{i} \circ l_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} \text{ is a bijection from the kernel of } E_{-+}^{\delta} \text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

• By resolvent expansion, the norm of $(\delta QE)^2$ is small. We chose M so that $||E_-\delta QE_+|| < M/N$, i.e. $\sqrt{M}N^{-\gamma} < M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_-^{δ} is given by the kernel of

$$K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_- \delta Q E_+$$

• If the eigenfunction is $f(x) = M^{-1/2} \sum_{i=1}^{M} w_i e_i(x)$, the ansatz that $Ew_i w_i = \delta_{i=1}$ gives that

$$Ef(x)f(y) \sim \frac{(-1)^{x+y}}{2M} \sum_{i=1}^{M} \left(\sin((x-y)i/N) + \sin((x+y)i/N) \right)$$

which indeed decorrelates at scale N/M.

Ofer Zeitouni Small Perturbations MSRI 2021 25/27

$$\begin{split} E_{-+}^{\delta} &= E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{l_i} e_i \circ f_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}. \\ E_{+}^{\delta} &\text{ is a bijection from the kernel of } E_{-+}^{\delta} &\text{ to the kernel of } A^{\delta}, \text{ with inverse given by the unperturbed operator } R_{+}. \end{split}$$

• By resolvent expansion, the norm of $(\delta QE)^2$ is small. We chose M so that $||E_-\delta QE_+|| < M/N$, i.e. $\sqrt{M}N^{-\gamma} < M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_{-} \delta Q E_{+}$$

In general, this requires QUE type results for matrices like K - a bit outside results of Benigni, Bourgade, Yau, . . .

Ofer Zeitouni Small Perturbations MSRI 2021 25/27

• Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol:

Expect mixture as in upper triangular case.

26/27

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol:

Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.

MSRI 2021

26/27

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol:

Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.

There are partial results of Martin Vogel.

• Toeplitz with infinite symbol - depends on rate of decay - Grushin problem based results of Sjöstrand-Vogel for fast decay.

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol:

Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.

- There are partial results of Martin Vogel.
- Toeplitz with infinite symbol depends on rate of decay Grushin problem based results of Sjöstrand-Vogel for fast decay.
- What about actual numerical algorithms/errors, as in case of random conjugation?

References

- Guionnet, A., Wood, P. and Zeitouni, O., Convergence of the spectral measure of non normal matrices, Proc. AMS 142 (2014), 667–679.
- Feldheim, O., Paquette, E. and Zeitouni, O., Regularization of non-normal matrices by Gaussian noise, IMRN (2015), 8724–8751.
- J. Sjöstrand and M. Vogel. Large bi-diagonal matrices and random perturbations. Journal of spectral theory 6 (2016), 977–1020.
- Basak, A., Paquette, E. and Zeitouni, O. Regularization of non-normal matrices by Gaussian noise the banded Toeplitz and twisted Toeplitz cases. Forum of Math., Sigma 7 (2019), paper e3.
- Basak, A., Vogel, M. and Zeitouni, O. Localization of eigenvectors of non-Hermitian banded noisy Toeplitz matrices. arXiv:2103.17148.
- J. Sjöstrand and M. Vogel. Toeplitz band matrices with small random perturbations. Indagationes Mathematicae, 32(1), 275–322 (2021).
- J. Sjöstrand and M. Vogel. General Toeplitz matrices subject to Gaussian perturbations. Annales Henri Poincaré, 22, 49–81 (2021).
- Basak, A., Paquette, E. and Zeitouni, O., Spectrum of random perturbations of Toeplitz matrices with finite symbols.
 Transactions AMS 373 (2020), 4999–5023.
- Basak, A. and Zeitouni, O., Outliers of random perturbations of Toeplitz matrices with finite symbols. PTRF 178, 771–826 (2020).
- Vogel, M., Almost sure Weyl law for quantized tori. arXiv:1912.08876. CMP 378(2), 1539–1585 (2020).
- Vogel, M. and Zeitouni, O., Deterministic equivalence for noisy perturbations. Proc. AMS 149 (2021), 3905-3911.

And the classics:

- Reichel, L. and Trefethen, L.N., Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162 (1992), 153–185.
- Trefethen, L. N. and Embree, M., Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Princeton University Press, 2005.
- Trefethen, L. N. and Chapman, S.J., Wave packet pseudomodes of twisted Toeplitz matrices, CPAM 57 (2004), 1233–1264.
- Davies, R. B. and Hager, M., Perturbations of Jordan matrices, J. Approx. Theory 156 (2009), 82–94.