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0 -+ ei ... 0

JAN := UnJn Uy where Uy is random unitary matrix, Haar-distributed. Of
course, Spec(Jy)=Spec(Jn).
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Goes back to Trefethen et als - pseudo-spectrum.
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Regularization by noise 2.8
Set~y > 1/2.

ain

Theorem (Guionnet-Wood-Z. ’14)

Set Ay = Jy + N~ Gy, empirical measure of eigenvalues LY. Then L},
converges weakly to the uniform measure on the unit circle in the
complex plane.
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What is going on?
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Characteristic polynomial:

Pn(z) = det(z] — Jy) = ZN + 6.
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What is going on?

0o 1 0 0
0o 0 1 0 0
J;EI:
0 0 1
SN )

Characteristic polynomial:

Pn(z) = det(z] — Jy) = ZN + 6.

Roots: {6/ N e2™/NN .
S5
If 5 = O then LI = bo.

S5
If 55 — 0 polynomially slowly then L,J\;VN converges to uniform on circle.
Why is this particular perturbation picked up?

General criterion - Guionnet, Wood, Z.
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e,
More general models? -

Figure: The eigenvalues of Dy + Jy + N~ Gy, with N = 4000 and various +.
Top: Dn(i,i) = —1 +2i/N. Bottom: Dy i.i.d. uniform on [-2,2]. On left, actual
matrix. On the right, Un(Dn + Jn) Uy
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Background

More general models ﬁ S

Theorem (Basak, Paquette, Z.’17, ’18)

Tn= Zﬁ‘:_k_ aiJy, (Toeplitz, finite symbol, Jy," := Jj,.) General noise model.
Then,

k
Ly — Law of Z al
i=—k_
where U is uniform on unit circle.
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Tn= Zﬁ‘:_k_ aiJy, (Toeplitz, finite symbol, Jy," := Jj,.) General noise model.
Then,

k
Ly — Law of Z al
i=—k_
where U is uniform on unit circle.

If upper triangular (i.e. k- = 0), then extends to twisted Toeplitz
Tn(i,j) = ai(j/N), i =1, ...k, a continuous:
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Background

More general models ﬁ S

Theorem (Basak, Paquette, Z.’17, ’18)

v =Y, adJ (Toeplitz, finite symbol, Jy' := JT.) General noise model.
Then,

k
Ly — Law of Z al
i=—k_
where U is uniform on unit circle.

If upper triangular (i.e. k- = 0), then extends to twisted Toeplitz
Tn(i,j) = ai(j/N), i =1, ...k, a continuous:

1 k
Ly — / Law of Z a(huU'
0 i=0

Confirms simulations and predictions (based on pseudo-spectrum) of

Trefethen et als. Also studied by Sjostrand and Vogel (2016-2020), more on
their approach later
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Background

Proof ingredients

Theorem (Replacement principle - after GWZ)

Ay - deterministic, bounded operator norm. Ay and Gy - independent
random matrices. Assume

(a) Gn and Ay are independent. || An|| < N~ whp and Gy noise matrix as
before.

(b) For Lebesgue a.e. z € B:(0, Ry), the empirical distribution of the
singular values of Ay — zly converges weakly to the law induced by
|X — z|, where X ~ u and suppu C Bc(0, Ro/2).

(c) For Lebesgue a.e. every z € B:(0, Ry),

EWA(Z) — L,(2), as N — oo, in probability. (1)

Then, for any v > % for Lebesgue a.e. every z € Be(0, Ry),

L an-va(2) = Lu(2), as N — oo, in probability. (2
by V.

Small Perturbations MSRI2021  7/27
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Proof ingredient I

Theorem

Let Ty be any N x N banded Toeplitz matrix with a symbol a. Then, there
exists a random matrix Ay with

P(llAn] = N7*) = o(1), (3)

for some ~o > 0, so that L,(ﬁ A converges weakly, in probability, to va.
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Background

Proof ingredient I

Theorem

Let Ty be any N x N banded Toeplitz matrix with a symbol a. Then, there
exists a random matrix Ay with

P(llAn] = N7*) = o(1), (3)

for some ~o > 0, so that L,(ﬁ A converges weakly, in probability, to va.

This works for Toeplitz with banded symbol, but not for twisted Toeplitz! Main
issue - Toeplitz determinant of un-perturbed matrix requires work, e.g.
Widom’s theorem.
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Grushin’s problem an

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
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A = Ay matrix, singular values t; < b < ... < ty.
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The Grushin problem

Grushin’s problem an

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < t, < ... < ty. G = Gy perturbation,
0 = on small. Want eigenvalues of A+ 0G.
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The Grushin problem

Grushin’s problem an

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < t, < ... < ty. G = Gy perturbation,
0 = on small. Want eigenvalues of A+ 0G.

Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A*fi = tie;, Ae; = If;

Ofer Zeitouni
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Grushin’s problem an

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < t, < ... < ty. G = Gy perturbation,
0 = on small. Want eigenvalues of A+ 0G.

Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A'fy = tie;, Ae; = tif;
Fix M > 0 integer (may depend on N) - these will be eventually the small

singular values, ie all singular values of A except for smallest M are above a
strictly positive threshold «. Let {4;} be standard basis of CV.
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. ) s
Grushin’s problem an

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < t, < ... < ty. G = Gy perturbation,
0 = on small. Want eigenvalues of A+ 0G.

Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A'fy = tie;, Ae; = tif;
Fix M > 0 integer (may depend on N) - these will be eventually the small

singular values, ie all singular values of A except for smallest M are above a
strictly positive threshold «. Let {4;} be standard basis of CV.

M M
R.=> doef, R.=> fodf,
i=1 i=1

P = ( A R‘) :CNxCcM — N xCM bijection!
R, 0
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o G |
- ) e
Grushin’s problem an

p=(2 B-).cVxcM M xcM bijection
R, 0

4 . (E E
P _5_<E £

We have

with

N 1 M
E= ji: };eio ﬁ7 EE+ ::jgz €jo 67a
M-+1 1

M M
E-=) diof, E_y==) tod,
1 1

and the norm estimates

N
, IEel=1, |E-sl<a, |detPP=T]]#
M-+1

IE]l <

Q=
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Noisy Grushin problem dia &

A=A+5G, 0<5<1.
5
po— (A R).evueM v
R, 0
Applying & = P~ from the right:
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Noisy Grushin problem dia &

A =A+6G, 0<d5<1.

)
795_@ %‘):CNXCMHCNXCM
+

Applying & = P~ from the right:

Pre = e+ (19E 9GE)
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. . ]
Noisy Grushin problem dia &

A=A+5G, 0<5<1.
5
po— (A R).evueM v
R, 0
Applying & = P~ from the right:

Pre = e+ (19E 9GE)

Suppose that §||Glla~" < 1/2, then

B GE)" (EG)'E E¢ E?
£ = 5+Z (E (GE)" E_(GE)”—‘+GE+) - (Ei Ef++>’

IE?| = IE(1 +6GE)"| < 207", |ESI| < 2, |EZ|| < 2,||E2, — E_¢ < c.
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. . ]
Noisy Grushin problem dia &

A =A+6G, 0<d5<1.

o
P‘5:<g %):(CNX(CM—MCNX(CM
Jr

Applying & = P~ from the right:

P — o+ (1GE 19E)

Suppose that §||Glla~" < 1/2, then
GE)" (EG)"E, (B B
£ = —‘”Z (E (GEy E_(GE)'GE.) =~ \E* E°, )

IE?]I = I1E(1 + 5GE)_1 I<2a " IEY <2,IE2) <2,[|E2 — Ey|| € .

The Schur complement formula applied to P° and £° shows that
det P? = det A’ - det(—R.(A°)~'R_), while E{ = —(A°)~'R_E?, and hence
|=R,ES = —R, (A 'R_E’,.
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. . ]
Noisy Grushin problem dia &

A =A+6G, 0<d5<1.

5
po— (A R).evueM v
R, 0
Applying & = P~ from the right:

Pre = e+ (19E 9GE)

Suppose that §||Glla~" < 1/2, then
GE)" (EG)"E, (B0 B
£ —“Z (E (GEy E_(GE)'GE.) = \E* E°, )

IE° = IE(1 +6GE) | <207 |IEI < 2, | E2| < 2, || EL, — E4l € .
The Schur complement formula applied to P° and £° shows that

0| ) )
log | det A°| = log | det P°| + log | det E° _ |.
Small Perturbations MSRI 2021 11/27



Noisy Grushin -ct'd

S5 S5
e =P = (1’; E’?:f' )7|0g\detAé| = log | det P°| + log | det 2 _ |
- —+
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Noisy Grushin -ct'd

S5 S5
e =P = (1’; E’?:f' )7|0g\detAé| = log | det P°| + log | det 2 _ |
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5
‘Iog|det7’5| — |og|det7?°|‘ = ‘8‘%/ Tr(ETiPT)dT
0

ar
P
N ET ET G 0
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< 227 "5N|Gl.
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Noisy Grushin -ct'd

S5 S5
e =P = (1’; E’?:f' )7|0g\detAé| = log | det P°| + log | det 2 _ |
- —+

5
‘Iog|det7’5| — |og|det7?°|‘ = ‘8‘%/ Tr(ETiPT)dT
0

ar
P
N ET ET G 0
(& )8 9)e

1 1
=1 . <2a7" :
N og|det P°| N og|det73|‘ < 2a7 '] G

< 227 "5N|Gl.

So,
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Noisy Grushin -ct'd

S5 S5
e =P = (1’; E’?:f' )7|0g\detAé| = log | det P°| + log | det 2 _ |

5
‘Iog|det7’5| — |og|det7?°|‘ = ‘8‘%/ Tr(ETiPT)dT
0

ar
P
N ET ET G 0
(& )8 9)e

1 1
=1 . <2a7" :
N og|det P°| N og|det73|‘ < 2a7 '] G

But || E2. || < 2a, thus,

< 227 "5N|Gl.

So,

log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.
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Noisy Grushin -ct'd

S5 S5
e =P = (1’; E’?:s+ )7|0g\detAé| = log | det P°| + log | det 2 _ |

5
‘Iog|det7’5| — |og|det7?°|‘ = ‘3‘%/ Tr(ETiPT)dT
0

ar
P
N ET ET G 0
(& )8 9)e

1 1
=1 . <2a7" :
N og|det P°| N og|det73‘ < 2a7 '] G

But || E2. || < 2a, thus,

< 227 "5N|Gl.

So,

log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.

Complementary lower bound requires just a bit more work.
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Noisy Grushin -ct'd

_ E® ES
g =P 1= <E5 vy ),Iog\detAé| = log | det P°| + log | det 2 _ |

5
‘Iog|det7’5| — |og|det7?°|‘ = ‘3‘%/ Tr(ETiPT)dT
0

ar
P
N ET ET G 0
(& )8 9)e

— — — < .
Nlog|det73 | Nlog|det73‘_2oz o||G|

But || E2. || < 2a, thus,

< 227 "5N|Gl.

So,

log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.

Complementary lower bound requires just a bit more work.
Since det P is like erasing the small singular values of A, this gives a version
of the deterministic equivalence lemma for general noise (Vogel-Z. '20)
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Quick remarks on outliers ﬁ

v+ N7 7Gy JN-i-J/%,-I—N_"’GN
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Outliers are random. What is structure of outliers?
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
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Quick remarks on outliers ﬁ

v+ N7 7Gy JN-i-J/%,-I—N_"’GN
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o v+ J3 + N7YGn: Write 2l + Iy + JZ = (M(2) — In))(A2(2) — In):
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Quick remarks on outliers ﬁ

v+ N7 7Gy JN-i-J/%,-I—N_"’GN

1
2 . 1 =075
05| / =175
Wby i
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h \\ J
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o v+ J3 + N7YGn: Write 2l + Iy + JZ = (M(2) — In))(A2(2) — In):

@ Nooutliersin {z: |)\j(2)| >1,i=1,2}
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Quick remarks on outliers ﬁ

v+ N7 7Gy JN-i-J/%,-I—N_WGN
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o v+ J3 + N7YGn: Write 2l + Iy + JZ = (M(2) — In))(A2(2) — In):

@ Nooutliersin {z: |\(2)| >1,i=1,2}

@ In{z:|\(2)| > 1 > |X2(2)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o v+ J3 + N7YGn: Write 2l + Iy + JZ = (M(2) — In))(A2(2) — In):

@ Nooutliersin {z: |\(2)| >1,i=1,2}

@ In{z:|\(2)| > 1 > |X2(2)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.

@ In{z:1>|X\(2)| > |X2(2)|}, outliers are roots of limit of terms involving
a product of two Gaussians in expansion of char. pol.
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Quick remarks on outliers ﬁ

v+ N7 7Gy JN-i-J/%/-I—N_WGN

05| . Vi p
0| )
“\‘7.‘/ E

= 1 0 1 2
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Outliers are random. What is structure of outliers?
e Jy + N7 Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o v+ J3 + N7YGn: Write 2l + Iy + JZ = (M(2) — In))(A2(2) — In):

@ Nooutliersin {z: |\(2)| >1,i=1,2}

@ In{z:|\(2)| > 1 > |X2(2)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.

@ In{z:1>|X\(2)| > |X2(2)|}, outliers are roots of limit of terms involving
a product of two Gaussians in expansion of char. pol.

Generalizes to general Toeplitz. Proof uses study of determinant.
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Example

Develop the determinant of z/ — Jy — N77Gy:

N-1
NN > Gz + remainder.
k=0 i jiitj=k+2
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Example

Develop the determinant of z/ — Jy — N77Gy:

N-1
NN > Gz + remainder.
k=0 i jiitj=k+2

For |z| < 1 — ¢, the term |z|N and the remainder are small.
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Example

Develop the determinant of z/ — Jy — N77Gy:

N-1
NN > Gz + remainder.
k=0 i jiitj=k+2

For |z| < 1 — ¢, the term |z|N and the remainder are small.
Thus, determinant vanishes near zeros of the GAF

N—-1

S IICEES WSS

k=0 i j:i+j=k+2
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Example

Develop the determinant of z/ — Jy — N77Gy:

N-1
NN > Gz + remainder.
k=0 i jiitj=k+2

For |z| < 1 — ¢, the term |z|N and the remainder are small.
Thus, determinant vanishes near zeros of the GAF

N—-1

S IICEES WSS

k=0 i j:i+j=k+2

For general Toeplitz matrices, decompose the determinant to factors of
this form!
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B
Eigenvectors & n

What are the eigenvectors of perturbed Toeplitz matrices?
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Eigenvectors & n

What are the eigenvectors of perturbed Toeplitz matrices?

a0 1000

Figure: Eigenvectors for v =2,1.5,0.9,0.75, Ty = Jy, N = 1000
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Eigenvectors & n

What are the eigenvectors of perturbed Toeplitz matrices?

a0 1000

Figure: Eigenvectors for v =2,1.5,0.9,0.75, Ty = Jy, N = 1000
Phase transitions?
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Eigenvectors (w/Anirban Basak, Martin Vogel)

Back to bijective Grushin problem, introduceed by Sjéstrand-Vogel. Fix M,

fio s} .

M=

A R M
79:(H+ 0_):CN><CM—>CN><(CM.,H+:Z(5foe?, R_ =
i=1 i
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Eigenvectors (w/Anirban Basak, Martin Vogel)

Back to bijective Grushin problem, introduceed by Sjéstrand-Vogel. Fix M,

f,-oé;k.

M=

A R M
79:( 0_):CN><CM—>CN><(CM.,H+:Z(5foe?, R_ =
i=1 i

N1 M
E= —gof", E = e od,
-1 _c_ +
Prloe- (£ &)

M M
E_ =Y &off, E.L=-3 508 .
1 1
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- - i Vogel) itn £
Eigenvectors (w/Anirban Basak, Martin Vogel)

Back to bijective Grushin problem, introduceed by Sjéstrand-Vogel. Fix M,

A R M
79:(H+ 0_):CN><CM—>CN><(CM.,H+:Z(5foe?, R_
i=1

N

1 M

E= —gjof, E;= e o4,
1 c c Mzﬁtil i + ;l i
=1 _ — —+
e G

With A = A+ 5G, 0 < 8§ < 1, the perturbed Grushin problem is

8 o . 5
775:(; ”(;) eV xcM — eV Y, el = (POl K (E
-+
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Back to bijective Grushin problem, introduceed by Sjéstrand-Vogel. Fix M,

A R N M N M M &
79:(H+ 0—);c xc" —c¥xc ,H+:25foe,, R_:;f,-oéi,
1= =
N1 M
E:Zt—eioff‘, Ei =) g4,
4 . _(E Es M+1 1
Ploe— (s )

M M
E_ :;5,04*, E_y ==Y 508
1
With A = A+ 5G, 0 < 8§ < 1, the perturbed Grushin problem is

8 o . 5 5
P‘;:(,’: F’g) eV xcM eV x oM, g8 = (PO ¥ (E E+>4
+

As soon as | + §QE is invertible, P9 is invertible, and

ES, =E_, — E_(I+8QE)~"8QE,, ES = E; — E(I+ 6QE)~"5QE, .

Ofer Zeitouni Small Perturbations

MSRI 2021

16/27



- - i Voge) Al
Eigenvectors (w/Anirban Basak, Martin Vogel) :

Back to bijective Grushin problem, introduceed by Sjéstrand-Vogel. Fix M,

fio s} .

M=

A R M
79:( 0‘):CN><CM—>(CN><(CM.,H+:Zéfoef, R_ =
i=1 i

N

1 M B
E:Z;eioff‘, Ei =) g4,
1

1_._ (E Ef WA
Prloe- (£ &)

M M
E_ =Y &off, E.L=-3 508 .
1 1

With A = A+ 5G, 0 < 8§ < 1, the perturbed Grushin problem is

Ry O E¢ E°

8 o . 5 5
P‘;:(A H*):CNXCM—>CN><(CM, g =)' Y (E E+>4
= =

As soon as | + §QE is invertible, P9 is invertible, and

ES, =E_, — E_(I+8QE)~"8QE,, ES = E; — E(I+ 6QE)~"5QE, .

E"S is a bijection from the kernel of ES . to the kernel of A% with inverse given by the unperturbed operator A .
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Eigenvectors

ES

0 =E_,—E_(I+6QE)"'sQE, , E=3N,, | ,lie,- off Ex =M e 067, EX = E; — E(I+8QE)15QE,.

Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator A .

Small Perturbations MSRI2021 1727



Eigenvectors

E’, =E_, —E_(I+6QE)~"6QE E=%N ., ;—ie,- off Er =M e 06r, ES = E; — E(I+8QE)15QE,.
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R..

We take Ay = Jy — zly and Q Gaussian iid, § = N=7, where z is eigenvalue
of Jy +4Q.
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Eigenvectors

E’, =E_, —E_(I+6QE) "6QE  E=%N . Leof Ex =M, g o067 ES = E, — E(I+ 5QE)~"6QE,.
1
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R .

Also, M =1forv>1and M = N2(1=7) for v < 1. Consider v > 1first
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Eigenvectors

ES, =E_, —E_(I+6QE)~"6QE , E=%N ., tlie,- of Ex =M e 06} El = E. — E(I+ 6QE)~5QE,.

Eji is a bijection from the kernel of EiJr to the kernel of A%, with inverse given by the unperturbed operator R .

We take Ay = Jy — zly and Q Gaussian iid, 6 = N=7, where z is eigenvalue
of Jy +6Q.

Important fact: |z] =1 — ¢, (log N)/N, with ¢, = v — 1; set
v=[1,z,2%,...,2N""1"/\/(N/log N), of norm O(1) (pseudomode).
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Eigenvectors

ES, =E_, —E_(I+6QE)~"6QE . E=%N ., ,lie,- of Er =M e 06/ E = E. — E(I+ 5QE)~'5QE,.
Eji is a bijection from the kernel of EiJr to the kernel of A%, with inverse given by the unperturbed operator R..

We take Ay = Jy — zly and Q Gaussian iid, 6 = N7, where z is eigenvalue
of Jy +6Q.

Important fact: |z] =1 — ¢, (log N)/N, with ¢, = v — 1; set

v=[1,22%...,zN""7/ /(N/log N), of norm O(1) (pseudomode).
|Anv]|2 = o(1/N), so t < 1/N while t; ~ i/N for i > 2.
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Eigenvectors

E’, =E_, —E_(I+6QE)~"6QE E=%N ., ;—ie,- off Er =M e 06r, ES = E; — E(I+8QE)15QE,.

Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R..

Easiest case: v > 3/2, M = 1. Then |0 QE||o. ~ N~(=3/2) « 1, so kernel of
Ei+ is essentially 1, so kernel of A? is essentially pseudomode.
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Eigenvectors

E’, =E_, —E_(I+6QE)~"6QE  E=%N . teof Ex =M, g o067 ES = E, — E(I+ 5QE)~'6QE.
i
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R .

v € (1,3/2]. Here ||0QE||« is not small, but whp / + §QE is invertible, inverse
norm bounded by polynomial in N.
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Eigenvectors

E’, =E_, —E_(I+6QE)~"6QE , E=%N ., ;—ie,- off Ex =M e 06y, ES = E; — E(I+8QE)15QE,.
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator Ry .
v € (1,3/2]. Here ||0QE||« is not small, but whp / + §QE is invertible, inverse
norm bounded by polynomial in N. Expand:

ES, =E, —E(I+0QE) "6QE, = E, — 6EQE, — 8*(EQ)’E, — ...

But 6P||(EQ)PEL || = 0(1), so same conclusion as for v > 3/2.

Small Perturbations MSRIZ2021 1727



Eigenvectors

E’, =E_, —E_(I+6QE)~"6QE , E=%N ., ;—ie,- off, Er =M e 06r, ES = E; — E(I+8QE)15QE,.
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R, .

Also, M =1forv>1and M = N2(1=7) for v < 1. Consider v > 1first

~ < 1. Norm estimate with M = 1 fails, so need larger M. Eigenvector is then

(random) combination of singular vectors of A — zI.
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Eigenvectors

E’, =E_, —E_(I+6QE) "6QE  E=%N . Leof Ex =M, g o067 ES = E, — E(I+ 5QE)~"6QE,.
1
Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R .

Also, M =1forv>1and M = N2(1=7) for ~ < 1. Consider v > 1 first

~ < 1. Norm estimate with M = 1 fails, so need larger M. Eigenvector is then
(random) combination of singular vectors of A — zI. Get a stochastic process,
correlation length N/M = N27—1,
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Eigenvectors

ES, =E_, —E_(I+6QE) "6QE . E=YN . teof Ex =M eo065 ES = E, — E(1+ 5QE)6QE,.
1

Ejf is a bijection from the kernel of Ei+ to the kernel of A‘S, with inverse given by the unperturbed operator R .

We take Ay = Jy — zly and Q Gaussian iid, § = N=7, where z is eigenvalue
of Jy + 6Q. Also, M =1 for vy > 1 and M = N2('=7) for v < 1. consider» > 1 first
Important fact: |z] =1 — ¢, (log N)/N, with ¢, = v — 1; set
v=[1,z,2%...,2N""17//(N/log N), of norm O(1) (pseudomode).

lAnV]2 = o(1/N), so ty < 1/N while t; ~ i/N for i > 2.

Easiest case: v > 3/2, M = 1. Then ||[0QE|| ~ N~(7=3/2) <« 1, so kernel of
E°, is essentially 1, so kernel of A is essentially pseudomode.

v € (1,3/2]. Here ||§QE||s is not small, but whp / + 6 QE is invertible, inverse
norm bounded by polynomial in N. Expand:

E, =E. —E(I+6QE)'6QE, = E, — JEQE, — *(EQ)’E; — ...

But 6°||(EQ)PE. || = 0(1), so same conclusion as for v > 3/2.

~ < 1. Norm estimate with M = 1 fails, so need larger M. Eigenvector is then
(random) combination of singular vectors of A — zI. Get a stochastic process,
correlation length N/M = N>7—1,
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Eigenvectors

Eigenvectors

Figure: Eigenvectors for v =2,1.5,0.9,0.75, Ty = Jy, N = 1000
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Eigenvectors

Eigenvectors

Figure: Eigenvectors for v =2,1.5,0.9,0.75, Ty = Jy, N = 1000

Major cheat: norm estimates stated were for deterministic z, not the
random eigenvalue!
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Eigenvectors

Eigenvectors

Figure: Eigenvectors for v =2,1.5,0.9,0.75, Ty = Jy, N = 1000

Major cheat: norm estimates stated were for deterministic z, not the

random eigenvalue!
Solution uses a net of deterministic z’s, and a good probabilistic

estimate on norm.
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Eigenvectors
We slightly shift notation:

d a-1 ... a-n
aq ao a_1

Pv=|
N ay

I+

an aop

b

P,?,ﬁ = Pn+ N77Qu,

(i) The entries of Q are jointly independent and have zero mean.
(i) For any h € N there exists an absolute constant €, < oo such that

max E[| Q"] < €
ij=

(We also impose an anti-concentration assumption on the entries of Q.)
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Eigenvectors

Assume for symplicity that the gcd of {|j| : j # 0,a; # 0} is 1.
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Eigenvectors

Assume for symplicity that the gcd of {|j| : j # 0,a; # 0} is 1. Let g be
the symbol associated with {a;}, let B¢ be the collection of self
intersection points of g(S'), and let B, be the set of branch points,

i.e. points z where the Laurent polynomial q(-) — z has double roots.
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Eigenvectors

Assume for symplicity that the gcd of {|j| : j # 0,a; # 0} is 1. Let g be
the symbol associated with {a;}, let B¢ be the collection of self
intersection points of g(S'), and let B, be the set of branch points,

i.e. points z where the Laurent polynomial q(-) — z has double roots.
Set Bp := By U Bz and Gp . := p(S') \ Bp. When either N_ # N, or
la_n_| # |an, |, the set By U B, is a finite set, and we assume this in
what follows.
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Eigenvectors

Assume for symplicity that the gcd of {|j| : j # 0,a; # 0} is 1. Let g be
the symbol associated with {a;}, let B¢ be the collection of self
intersection points of g(S'), and let B, be the set of branch points,

i.e. points z where the Laurent polynomial q(-) — z has double roots.
Set Bp := By U Bz and Gp . := p(S') \ Bp. When either N_ # N, or
la_n_| # |an, |, the set By U B, is a finite set, and we assume this in
what follows.

For a point z € C, let d(z) be the winding number of p(-) around z. Let

Q(e,C,N) :={zcC:C "logN/N < dist(z,Gp.) < Clog N/N,d(z) # 0}

Let No(e.cmn. = [{AN € Q(e, C, N)}| denote the number of
eigenvalues of PJ_ that lie in Q(e, C, N).
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Location of eigenvalues
Theorem (BVZ21)

Fix ;n > 0 and~ > 1. Then there exist0 < ¢, C < oo (depending on ~, i
and p only) so that

P(Nag.cnpny < (1= #)N) =n-so 0.

7.0

7/750

Ofer Zeitouni
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and p only) so that
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Eigenvectors

Theorem (BVZ21, v > 1)

1. The following occurs with probability approaching one as N — oo. For
each z € Q(e, C, N) which is an eigenvalue of PC{ .- letv = v(Z) denote the
corresponding (right) eigenvector, normalized so that ||v||> = 1. Then there
exists a vector w, linear combination of the d smallest eigenvectors of |d|
eigenvectors of (Py — zI)*(Pn — 2l), with ||w||> = 1 such that

llv—wll2 = o(1) and a constant ¢, > 0, so that for any ¢ € [N],

Wl ey < e eN/Nje,  ifd >0,
Wl 2t n—ggy) < e=¢'8N/N /e, ifd < 0.
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Eigenvectors

Theorem (BVZ21, v > 1)

Fix zg = zy(N) € Q(e, C, N) deterministic, Cy, Co large, andn > 0 small.
Then, there exist constants ¢, = ¢1(n, Co, 60) and ¢y = co(7) € (0, 1), with
co—1as~y—1andcy — 0as~y — oo, so that, with probability at least
1—mn, forevery 2 = \N € D(z,, Colog N/N), any0 < £ < ¢ < EON/ log N
satisfying ¢’ — ¢ > N® and all large N,

W12 .07y = C1(¢" = £)log N/N, ifd >0,
W\ e gy = C1 (¢ =€) log N/N, if d < 0.

Further, forany 0 < ¢’ < Co,

HV||§2([1,C'N/ |ogN]) 2 C/C1 /2, lf d > 0,
HV||§2([N_C/N/ log N,N]) > C/C1 /2, if d < 0.
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Eigenvectors

-
A

&

<2,

Figure: N = 4000, v = 1.2, symbol ¢ + ¢2. The bottom row is not covered by
the theorem, because the chosen eigenvalue is at vanishing distance from B;.
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Eigenvectors

&

-
.

Figure: N = 4000, v = 1.2, symbol ¢ + ¢2. The bottom row is not covered by
the theorem, because the chosen eigenvalue is at vanishing distance from B;.

Localization at scale N/ log N. The w’s can in turn be approximated by
pseudomodes v, with ||(Pn — Z1)¢|| —N—sc0 O.
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Speculations on v < 1

E’, =E_, —E_(I+6QE) "6QE E=%N . teof Ex =M, g o067 ES = E; — E(I+ 5QE)~ "6 QE,.
1

Ef_ is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator A .
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Speculations on v < 1
E’, =E_, —E_(I+36QE)~"6QE , E=%N ., ;—ie,- off Er =M 6067, ES = E; — E(I+8QE)15QE,.
Ejz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator A .

The following speculations work in the case Ay = Jy, general case work in
progress.
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Speculations on v < 1

ES, =E_, —E_(I+6QE)7"6QE. . E=%N ., ,ll_e,- of Er =M, 606/ E = E. — E(I+ 5QE)~15QE,.

Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R..

@ The ith singular value of zI — T is bounded below by i/N. The norm of
SQE is bounded above by N=7*1/2+1 /M, while that of §QE, is bounded
above by N-YM'/2,
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Speculations on v < 1

E’, =E_, —E_(I+6QE) "6QE E=%N . teof Ex =M, g o067 ES = E; — E(I+ 5QE)~ "6 QE,.
1

Ef_ is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator A .

@ By resolvent expansion, the norm of (§QE)? is small. We chose M so
that |E_SQE, || < M/N,i.e. VMN~— < M/N,i.e. M = N?('=7). Now,
the kernel of Ei+ is given by the kernel of

t 0 O
_ 0 t2 0 000
K=1, 60| E_SQE,
0 tm
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Speculations on v < 1

ES, =E_, —E_(I+60QE)"60E, E= N M+1t‘e,of Er=YM 6067 ES = E. — E(I+6QE)~5QE,.

E5 is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R..

@ By resolvent expansion, the norm of (§QE)? is small. We chose M so
that |E_6QE, || < M/N,i.e. VMN~— < M/N,i.e. M = N?('=7). Now,
the kernel of E‘sJr is given by the kernel of

t - 0 0
(o & o -
K=lo = 4 o| E0CE
0 oo Iy

@ E_(QE, is a noise matrix of dimension M and entries N=7, and singular
values of order N~7v/M = N'=27 ~ M/N. If the 0 eigenvector of K is
delocalized, with essentially uncorrelated entries, then the kernel of P?
is a combination (with uncorrelated weights) of the M bottom singular
vectors of T — zy/, which in the case Ty = J are just the eigenfunctions
of the Laplacian, ie sinusoids modulated by (—1)*. Thus correlation

N tn Inn tarme)
Small Perturbations MSRI 2021 25/27
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Speculations on v < 1

ES, =E_, —E_(I+6QE)7"6QE. . E=%N ., ,ll_e,- of Er =M, 606/ E = E. — E(I+ 5QE)~15QE,.

Efz is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator R..

@ By resolvent expansion, the norm of (§QE)? is small. We chose M so
that |E_6QE, || < M/N,i.e. VMN~— < M/N,i.e. M = N?('=7). Now,
the kernel of Ef+ is given by the kernel of

t 0 O
(o & o -

K=lo = 4 o| E0CE
0 oo Iy

@ If the eigenfunction is f(x) = M~1/23" M w,e;(x), the ansatz that
Ew;w; = 6;—; gives that

(=1 & . _ .
Ef()F(y) ~ ~—— D (sin((x = y)i/N) +sin((x + y)i/N))
i=1

which indeed decorrelates at scale N/M.
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Speculations on v < 1

E’, =E_, —E_(I+6QE) "6QE E=%N . teof Ex =M, g o067 ES = E; — E(I+ 5QE)~ "6 QE,.
1

Ef_ is a bijection from the kernel of Ei+ to the kernel of A%, with inverse given by the unperturbed operator A .

@ By resolvent expansion, the norm of (§QE)? is small. We chose M so
that |E_SQE, || < M/N,i.e. VMN~— < M/N,i.e. M = N?('=7). Now,
the kernel of Ei+ is given by the kernel of

t 0 0
(o & o -

K=1, i o |~ E-90E:
0 t

In general, this requires QUE type results for matrices like K - a bit outside
results of Benigni, Bourgade, Yau, ...
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Concluding remarks

e Eigenvector side: Complete regime v € (1/2, 1), requires results on
pseudomodes and on QUE, weaker formulation (averaged).
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e Eigenvector side: Complete regime v € (1/2, 1), requires results on
pseudomodes and on QUE, weaker formulation (averaged).

e Spectrum side: General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.
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Concluding remarks

e Eigenvector side: Complete regime v € (1/2, 1), requires results on
pseudomodes and on QUE, weaker formulation (averaged).

e Spectrum side: General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.
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Concluding remarks

e Eigenvector side: Complete regime v € (1/2, 1), requires results on
pseudomodes and on QUE, weaker formulation (averaged).

e Spectrum side: General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.

There are partial results of Martin Vogel.

e Toeplitz with infinite symbol - depends on rate of decay - Grushin
problem based results of Sjéstrand-Vogel for fast decay.
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Concluding remarks

e Eigenvector side: Complete regime v € (1/2, 1), requires results on
pseudomodes and on QUE, weaker formulation (averaged).

e Spectrum side: General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.

There are partial results of Martin Vogel.

e Toeplitz with infinite symbol - depends on rate of decay - Grushin
problem based results of Sjéstrand-Vogel for fast decay.

e What about actual numerical algorithms/errors, as in case of random
conjugation?
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