Eigenvectors of Toeplitz matrices under small random perturbations

Ofer Zeitouni

Joint with Anirban Basak and Martin Vogel

August 2021

Offrage 2021 MSRI 2021 1/27

 Ω

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

$$
J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_N(z) = \det(zI - J_N) = z^N, \text{ roots=0.}
$$

KID K@ DIK ED K ED DE POQO

$$
J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_N(z) = \det(zI - J_N) = z^N, \text{ roots=0}.
$$

 $J_{\mathcal{N}}:=U_{\mathcal{N}}J_{\mathcal{N}}U_{\mathcal{N}}^*$ where $U_{\mathcal{N}}$ is random unitary matrix, Haar-distributed. Of course, $Spec(\widehat{J_N}) = Spec(J_N)$.

KEINK REINER STARK I STARK KIEN

$$
J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_N(z) = \det(zI - J_N) = z^N, \text{ roots=0}.
$$

 $J_{\mathcal{N}}:=U_{\mathcal{N}}J_{\mathcal{N}}U_{\mathcal{N}}^*$ where $U_{\mathcal{N}}$ is random unitary matrix, Haar-distributed. Of course, $Spec(\widehat{J_N}) = Spec(J_N)$.

 QQQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

$$
J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, P_N(z) = \det(zI - J_N) = z^N, \text{ roots=0}.
$$

 $J_{\mathcal{N}}:=U_{\mathcal{N}}J_{\mathcal{N}}U_{\mathcal{N}}^*$ where $U_{\mathcal{N}}$ is random unitary matrix, Haar-distributed. Of course, $Spec(\widehat{J_N}) = Spec(J_N)$.

Goes back to Trefethen et als - pseudo-spectrum.

 QQQ

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ │ 重

Set $\gamma > 1/2$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 めんぴ

Regularization by noise 2: 1/24

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

 $Set A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A *converges weakly to the uniform measure on the unit circle in the complex plane.*

 QQQ

イロト イ母 トイヨ トイヨト

Regularization by noise 21 198 2

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

 $Set A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A *converges weakly to the uniform measure on the unit circle in the complex plane.*

Thus, $L_{\mathcal{N}}^{J_{\mathcal{N}}} = \delta_0$ but for a vanishing perturbation, $L_{\mathcal{N}}^{\mathcal{A}}$ has different limit. Earlier version - Davies-Hager '09

 Ω

イロメ イ何 メイヨメイヨメーヨ

Regularization by noise 2: 12 PM

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

 $Set A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A *converges weakly to the uniform measure on the unit circle in the complex plane.*

Thus, $L_{\mathcal{N}}^{J_{\mathcal{N}}} = \delta_0$ but for a vanishing perturbation, $L_{\mathcal{N}}^{\mathcal{A}}$ has different limit. Earlier version - Davies-Hager '09 (Generalization to i.i.d. *GN*: Wood '15.)

 Ω

イロメ イ何 メイヨメイヨメーヨ

Regularization by noise 2 r 15

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

 $Set A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A . Then L_N^A *converges weakly to the uniform measure on the unit circle in the complex plane.*

Thus, $L_{\mathcal{N}}^{J_{\mathcal{N}}} = \delta_0$ but for a vanishing perturbation, $L_{\mathcal{N}}^{\mathcal{A}}$ has different limit. Earlier version - Davies-Hager '09 (Generalization to i.i.d. *GN*: Wood '15.)

What is going on?

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

 2990

イロンス 倒 メスきメス きょうき

What is going on?

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

 $2Q$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경

What is going on?

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

Roots: $\{\delta_N^{1/N}\}$ $N^{1/N} e^{2\pi i/N}$ } $N_{i=1}$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 の Q Q

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

Roots:
$$
\{\delta_N^{1/N} e^{2\pi i/N}\}_{i=1}^N.
$$
If $\delta_N = 0$ then $L_N^{j_N^{\delta_N}} = \delta_0$.

 $2Q$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

Roots: $\{\delta_N^{1/N}\}$ $N^{1/N} e^{2\pi i/N}$, $N_{i=1}$. If $\delta_N = 0$ then $L_N^{\int_N^{\delta_N}} = \delta_0$. If $\delta_N \to 0$ polynomially slowly then $L_N^{\int_{0}^{3N}}$ converges to uniform on circle.

KEL KALK LELKEL EL VOOR

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

Roots: $\{\delta_N^{1/N}\}$ $N^{1/N} e^{2\pi i/N}$, $N_{i=1}$. If $\delta_N = 0$ then $L_N^{\int_N^{\delta_N}} = \delta_0$. If $\delta_N \to 0$ polynomially slowly then $L_N^{\int_{N}^{3N}}$ converges to uniform on circle. Why is this particular perturbation picked up?

 QQQ

イロト イ母 トイヨ トイヨ トーヨ

$$
J_N^{\delta} = \left(\begin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ \delta_N & \cdots & \cdots & \cdots & 0 \end{array} \right)
$$

Characteristic polynomial:

$$
P_N(z)=\det(zI-J_N^{\delta})=z^N\pm \delta_N.
$$

Roots: $\{\delta_N^{1/N}\}$ $N^{1/N} e^{2\pi i/N}$, $N_{i=1}$. If $\delta_N = 0$ then $L_N^{\int_N^{\delta_N}} = \delta_0$. If $\delta_N \to 0$ polynomially slowly then $L_N^{\int_{N}^{3N}}$ converges to uniform on circle. Why is this particular perturbation picked up? General criterion - Guionnet, Wood, Z. $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

 QQQ

More general models?

Figure: The eigenvalues of $D_N + J_N + N^{-\gamma}G_N$, with $N = 4000$ and various γ . Top: $D_N(i, i) = -1 + 2i/N$. Bottom: D_N i.i.d. uniform on [−2, 2]. On left, actual matrix. On the right, $U_N(D_N+J_N)U_N^*$.

 Ω

イロト イ母 トイヨ トイヨト

More general models

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. *Then,*

$$
L_N \to Law\ of\ \sum_{i=-k_-}^k a_i U^i
$$

where U is uniform on unit circle.

 OQ

KONKRAKEN E

More general models

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. *Then,*

$$
L_N \to Law\ of\ \sum_{i=-k_-}^k a_i U^i
$$

where U is uniform on unit circle.

If upper triangular (i.e. *k*[−] = 0), then extends to twisted Toeplitz $T_N(i, j) = a_i(j/N), i = 1, \ldots, k, a_i$ continuous:

$$
L_N \to \int_0^1
$$
 Law of $\sum_{i=0}^k a_i(t)U^i$

 OQ

イロメ イ母メ イヨメ イヨメーヨ

More general models³

Theorem (Basak, Paquette, Z. '17, '18)

 $T_N = \sum_{i=-k-}^k a_i J_N^i$ (Toeplitz, finite symbol, $J_N^{-1} := J_N^T$.) General noise model. *Then,*

$$
L_N \to Law\ of\ \sum_{i=-k_-}^k a_i U^i
$$

where U is uniform on unit circle.

If upper triangular (i.e. *k*[−] = 0), then extends to twisted Toeplitz $T_N(i, j) = a_i(j/N), i = 1, \ldots, k, a_i$ continuous:

$$
L_N \to \int_0^1
$$
 Law of $\sum_{i=0}^k a_i(t)U^i$

Confirms simulations and predictions (based on pseudo-spectrum) of Trefethen et als. Also studied by Sjöstrand and Vogel (2016-2020), more on their approach later $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \rightarrow A \Rightarrow B \rightarrow A \Rightarrow B$ Ω

Proof ingredients

Theorem (Replacement principle - after GWZ)

A^N - deterministic, bounded operator norm. ∆*^N and G^N - independent random matrices. Assume*

- $\mathcal{A}(a)$ *G_N* and Δ_N are independent. $\|\Delta_N\| < N^{-\gamma_0}$ whp and G_N noise matrix as *before.*
- (b) *For Lebesgue a.e.* $z \in B_{\mathbb{C}}(0, R_0)$, the empirical distribution of the *singular values of A^N* − *zI^N converges weakly to the law induced by* $|X - z|$, where $X \sim \mu$ and supp $\mu \subset B_{\mathbb{C}}(0, R_0/2)$.
- (c) *For Lebesgue a.e. every* $z \in B_{\mathbb{C}}(0, R_0)$ *,*

$$
\mathcal{L}_{L_N^{A+\Delta}}(z) \to \mathcal{L}_{\mu}(z), \quad \text{as } N \to \infty, \text{ in probability.} \tag{1}
$$

Then, for any $\gamma > \frac{1}{2}$ *, for Lebesgue a.e. every* $z \in B_{\mathbb{C}}(0, R_0)$ *,*

 $\mathcal{L}_{L^{A+N-\gamma}_N G}$ $as\ N\to\infty,\ in\ probability.$ [\(](#page-101-0)2)

Proof ingredient II

Theorem

Let T_N *be any* $N \times N$ *banded Toeplitz matrix with a symbol* **a***. Then, there exists a random matrix* ∆*^N with*

$$
P(\|\Delta_N\|\geq N^{-\gamma_0})=o(1),\qquad \qquad (3)
$$

for some $\gamma_0 > 0$, so that $L_N^{T+\Delta}$ converges weakly, in probability, to $\nu_{\bf a}$.

 QQQ

イロト イ母 トイヨ トイヨト

Proof ingredient II

Theorem

Let T_N *be any* $N \times N$ *banded Toeplitz matrix with a symbol* **a***. Then, there exists a random matrix* ∆*^N with*

$$
P(||\Delta_N|| \geq N^{-\gamma_0}) = o(1), \qquad (3)
$$

for some $\gamma_0 > 0$, so that $L_N^{T+\Delta}$ converges weakly, in probability, to $\nu_{\bf a}$.

This works for Toeplitz with banded symbol, but not for twisted Toeplitz! Main issue - Toeplitz determinant of un-perturbed matrix requires work, e.g. Widom's theorem.

イロト イ母 トイヨ トイヨト

An alternative, developed by Sjöstrand and Vogel: the Grushin problem.

 $2Q$

KONKRAKEN E

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. *A* = *A*^{*N*} matrix, singular values $t_1 \le t_2 \le \ldots \le t_N$.

 R

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ ○ 경

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. $A = A_N$ matrix, singular values $t_1 \le t_2 \le \ldots \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$.

 Ω

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. *A* = A_N matrix, singular values $t_1 \le t_2 \le \ldots \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$. Let {*ei*} be eigenvectors of *A* [∗]*A*, {*fi*} of *AA*[∗] , with

$$
A^*f_i=t_ie_i, \quad Ae_i=t_if_i
$$

 Ω

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. *A* = A_N matrix, singular values $t_1 \le t_2 \le \ldots \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$. Let {*ei*} be eigenvectors of *A* [∗]*A*, {*fi*} of *AA*[∗] , with

$$
A^*f_i=t_ie_i, \quad Ae_i=t_if_i
$$

Fix *M* > 0 integer (may depend on *N*) - these will be eventually the *small* singular values, ie all singular values of *A* except for smallest *M* are above a strictly positive threshold α . Let $\{\delta_i\}$ be standard basis of $\mathbb{C}^{\sf M}.$

 QQQ

イロメ イ母メ イヨメ イヨメーヨ

An alternative, developed by Sjöstrand and Vogel: the Grushin problem. *A* = A_N matrix, singular values $t_1 \le t_2 \le \ldots \le t_N$. $G = G_N$ perturbation, $\delta = \delta_N$ small. Want eigenvalues of $A + \delta G$. Let {*ei*} be eigenvectors of *A* [∗]*A*, {*fi*} of *AA*[∗] , with

$$
A^*f_i=t_ie_i, \quad Ae_i=t_if_i
$$

Fix *M* > 0 integer (may depend on *N*) - these will be eventually the *small* singular values, ie all singular values of *A* except for smallest *M* are above a strictly positive threshold α . Let $\{\delta_i\}$ be standard basis of $\mathbb{C}^{\sf M}.$

$$
R_{+} = \sum_{i=1}^{M} \delta_{i} \circ e_{i}^{*}, \quad R_{-} = \sum_{i=1}^{M} f_{i} \circ \delta_{i}^{*},
$$

$$
\mathcal{P} = \begin{pmatrix} A & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M} \quad \text{bijection!}
$$

 QQQ

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

$$
\mathcal{P} = \begin{pmatrix} A & B_- \\ B_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M \quad \text{bijection!}
$$

We have

$$
\mathcal{P}^{-1}=\mathcal{E}=\begin{pmatrix}E&E_+\\E_-&E_{-+}\end{pmatrix}
$$

with

$$
E = \sum_{M+1}^{N} \frac{1}{t_i} e_i \circ f_i, \quad E_+ = \sum_{1}^{M} e_i \circ \delta_i^*,
$$

$$
E_- = \sum_{1}^{M} \delta_i \circ f_i^*, \quad E_{-+} = -\sum_{1}^{M} t_i \delta_i \circ \delta_i^*,
$$

and the norm estimates

$$
||E|| \leq \frac{1}{\alpha}, \quad ||E_{\pm}|| = 1, \quad ||E_{-+}|| \leq \alpha, \quad |\det \mathcal{P}|^2 = \prod_{M+1}^{N} t_i^2.
$$

 QQ

Noisy Grushin problem **Note**

$$
A^{\delta} = A + \delta G, \quad 0 \leq \delta \ll 1.
$$

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & B \\ B_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M
$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

Noisy Grushin problem **Note**

$$
A^{\delta} = A + \delta G, \quad 0 \leq \delta \ll 1.
$$

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & B \\ B_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M
$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$
\mathcal{P}^{\delta}\mathcal{E} = I_{N+M} + \begin{pmatrix} \delta G E & \delta G E_+ \\ 0 & 0 \end{pmatrix}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 の Q Q

Noisy Grushin problem **Note**

$$
A^{\delta} = A + \delta G, \quad 0 \leq \delta \ll 1.
$$

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M}
$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$
\mathcal{P}^{\delta}\mathcal{E}=I_{N+M}+\begin{pmatrix}\delta G E & \delta G E_{+} \\ 0 & 0 \end{pmatrix}
$$

Suppose that δ $\|G\| \alpha^{-1} \leq 1/2$, then

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} G E_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_- \end{pmatrix},
$$

$$
||E^{\delta}|| = ||E(1 + \delta GE)^{-1}|| \leq 2\alpha^{-1}, ||E^{\delta}_+|| \leq 2, ||E^{\delta}_-|| \leq 2, ||E^{\delta}_{-+} - E_{-+}|| \leq \alpha.
$$

KEINK REINER STARK I STARK KIEN

Noisy Grushin problem

$$
A^{\delta} = A + \delta G, \quad 0 \leq \delta \ll 1.
$$

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M
$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$
\mathcal{P}^{\delta}\mathcal{E}=I_{N+M}+\begin{pmatrix}\delta G E & \delta G E_{+} \\ 0 & 0 \end{pmatrix}
$$

Suppose that δ $\|G\| \alpha^{-1} \leq$ 1/2, then

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} G E_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_- \end{pmatrix},
$$

 $||E^{\delta}|| = ||E(1 + \delta GE)^{-1}|| \leq 2\alpha^{-1}, ||E^{\delta}_+|| \leq 2, ||E^{\delta}_-|| \leq 2, ||E^{\delta}_{-+} - E_{-+}|| \leq \alpha.$ The Schur complement formula applied to \mathcal{P}^{δ} and \mathcal{E}^{δ} shows that $\det \mathcal{P}^{\delta} = \det \mathcal{A}^{\delta} \cdot \det(-R_{+}(\mathcal{A}^{\delta})^{-1}R_{-}),$ while $E^{\delta}_{+} = -(\mathcal{A}^{\delta})^{-1}R_{-}E^{\delta}_{-+}$ and hence $I = R_+ E_+^{\delta} = -R_+ (A^{\delta})^{-1} R_- E_{-+}^{\delta}.$ **KEINK REIN A BIN BIN A Q A** Noisy Grushin problem

$$
A^{\delta} = A + \delta G, \quad 0 \leq \delta \ll 1.
$$

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_{-} \\ R_{+} & 0 \end{pmatrix} : \mathbb{C}^{N} \times \mathbb{C}^{M} \longrightarrow \mathbb{C}^{N} \times \mathbb{C}^{M}
$$

Applying $\mathcal{E} = \mathcal{P}^{-1}$ from the right:

$$
\mathcal{P}^{\delta}\mathcal{E}=I_{N+M}+\begin{pmatrix}\delta G E & \delta G E_{+} \\ 0 & 0 \end{pmatrix}
$$

Suppose that δ $\|G\| \alpha^{-1} \leq 1/2$, then

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \mathcal{E} + \sum_{n=1}^{\infty} (-\delta)^n \begin{pmatrix} E(GE)^n & (EG)^n E_+ \\ E_-(GE)^n & E_-(GE)^{n-1} G E_+ \end{pmatrix} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_- \end{pmatrix},
$$

 $||E^{\delta}|| = ||E(1 + \delta GE)^{-1}|| \leq 2\alpha^{-1}, ||E^{\delta}_+|| \leq 2, ||E^{\delta}_-|| \leq 2, ||E^{\delta}_{-+} - E_{-+}|| \leq \alpha.$

The Schur complement formula applied to \mathcal{P}^{δ} and \mathcal{E}^{δ} shows that

$$
\log |\det A^\delta| = \log |\det \mathcal{P}^\delta| + \log |\det E^{\delta}_{-+}|.
$$

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} E^{\delta} & E^{\delta}_{+} \\ E^{\delta}_{-} & E^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det E^{\delta}_{-+}|
$$

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}|
$$

$$
\begin{aligned} & \left|\log|\det \mathcal{P}^\delta| - \log|\det \mathcal{P}^0|\right| = \left|\Re \int_0^\delta \mathrm{Tr} (E^\tau \frac{d}{d\tau} \mathcal{P}^\tau) d\tau \right| \\ & = \left|\Re \int_0^\delta \mathrm{Tr}\left(\begin{pmatrix} E^\tau & E_+^\tau \\ E_-^\tau & E_{-+}^\tau \end{pmatrix} \cdot \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|G\|. \end{aligned}
$$

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}|
$$

$$
\begin{aligned}\n|\log|\det \mathcal{P}^{\delta}| - \log|\det \mathcal{P}^0| &= \left| \Re \int_0^{\delta} \text{Tr} (E^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau}) d\tau \right| \\
&= \left| \Re \int_0^{\delta} \text{Tr} \left(\begin{pmatrix} E^{\tau} & E^{\tau}_+ \\ E^{\tau}_- & E^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|G\|.\n\end{aligned}
$$
\n
$$
\text{So, } \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|G\|.
$$

Ofer Zeitouni [Small Perturbations](#page-0-0) MSRI 2021 12/27

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}|
$$

$$
\begin{aligned}\n|\log|\det \mathcal{P}^{\delta}| - \log|\det \mathcal{P}^{0}| &= \left| \Re \int_{0}^{\delta} \text{Tr} (E^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau}) d\tau \right| \\
&= \left| \Re \int_{0}^{\delta} \text{Tr} \left(\begin{pmatrix} E^{\tau} & E^{\tau}_{+} \\ E^{\tau}_{-} & E^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|G\|.\n\end{aligned}
$$
\n
$$
\text{So, } \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|G\|.
$$

But $\Vert E_{-+}^{\delta} \Vert \leq 2\alpha$, thus,

 $|\log |\det A^\delta| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1} \delta N \|G\|.$

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} \mathcal{E}^{\delta} & \mathcal{E}^{\delta}_{+} \\ \mathcal{E}^{\delta}_{-} & \mathcal{E}^{\delta}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det \mathcal{E}^{\delta}_{-+}|
$$

$$
\begin{aligned}\n|\log|\det \mathcal{P}^{\delta}| - \log|\det \mathcal{P}^0| &= \left| \Re \int_0^{\delta} \text{Tr} (E^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau}) d\tau \right| \\
&= \left| \Re \int_0^{\delta} \text{Tr} \left(\begin{pmatrix} E^{\tau} & E^{\tau}_{+} \\ E^{\tau}_{-} & E^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|G\|.\n\end{aligned}
$$
\n
$$
\text{So, } \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|G\|.
$$

But $\Vert E_{-+}^{\delta} \Vert \leq 2\alpha$, thus,

 $|\log |\det A^\delta| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1} \delta N \|G\|.$

Complementary lower bound requires just a bit more work.

 R

イロト イ母 トイヨ トイヨ トーヨー

$$
\mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} = \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta^+}_{-+} \end{pmatrix}, \log |\det A^{\delta}| = \log |\det \mathcal{P}^{\delta}| + \log |\det E^{\delta}_{-+}|
$$

$$
\begin{aligned}\n|\log|\det \mathcal{P}^{\delta}| - \log|\det \mathcal{P}^0| &= \left| \Re \int_0^{\delta} \text{Tr} (E^{\tau} \frac{d}{d\tau} \mathcal{P}^{\tau}) d\tau \right| \\
&= \left| \Re \int_0^{\delta} \text{Tr} \left(\begin{pmatrix} E^{\tau} & E^{\tau}_+ \\ E^{\tau}_- & E^{\tau}_{-+} \end{pmatrix} \cdot \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \right) d\tau \right| \leq 2\alpha^{-1} \delta N \|G\|.\n\end{aligned}
$$
\n
$$
\text{So, } \left| \frac{1}{N} \log |\det \mathcal{P}^{\delta}| - \frac{1}{N} \log |\det \mathcal{P}| \right| \leq 2\alpha^{-1} \delta \|G\|.
$$

But $\Vert E_{-+}^{\delta} \Vert \leq 2\alpha$, thus,

 $|\log |\det A^\delta| \leq \log |\det \mathcal{P}| + M |\log 2\alpha| + 2\alpha^{-1} \delta N \|G\|.$

Complementary lower bound requires just a bit more work. Since det P is like erasing the small singular values of A , this gives a version of the deterministic equivalence lemma for general [no](#page-40-0)[is](#page-42-0)[e](#page-35-0) [\(](#page-36-0)[V](#page-41-0)[o](#page-42-0)[g](#page-23-0)[e](#page-24-0)[l](#page-41-0)[-Z](#page-42-0)[.](#page-23-0) ['](#page-24-0)[2](#page-41-0)[0](#page-42-0)[\)](#page-0-0) Ω

Quick remarks on outliers¹⁰

$$
J_N + N^{-\gamma} G_N
$$

$$
J_N + J_N^2 + N^{-\gamma} G_N
$$

Ofer Zeitouni [Small Perturbations](#page-0-0) MSRI 2021 13/27

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

Quick remarks on outliers³⁵

$$
J_N + N^{-\gamma} G_N
$$

\n
$$
J_N + J_N^2 + N^{-\gamma} G_N
$$
\n
$$
J_N + J_N^2 + N^{-\gamma} G_N
$$

Outliers are random. What is structure of outliers?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 の Q Q

Quick remarks on outliers

Outliers are random. What is structure of outliers?

• *J^N* + *N* [−]^γ*G^N* : outliers are zeros of a limiting Gaussian field, all inside disc.

 Ω

KONKRAKEN E

Quick remarks on outliers

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- \bullet *J*_{*N*} + *J*_{*2*}² + *N*^{-→}*G*_{*N*}: Write *zI* + *J*_{*N*} + *J*_{*Z*}² = (λ₁(*z*) − *J*_{*N*}))(λ₂(*z*) − *J*_{*N*}):

 OQ

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- \bullet *J*_{*N*} + *J*_{*2*}² + *N*^{-→}*G*_{*N*}: Write *zI* + *J*_{*N*} + *J*_{*Z*}² = (λ₁(*z*) − *J*_{*N*}))(λ₂(*z*) − *J*_{*N*}):
	- No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$

 OQ

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- \bullet *J*_{*N*} + *J*_{*2*}² + *N*^{-→}*G*_{*N*}: Write *zI* + *J*_{*N*} + *J*_{*Z*}² = (λ₁(*z*) − *J*_{*N*}))(λ₂(*z*) − *J*_{*N*}):
	- No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
	- In $\{z: |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.

 OQ

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- \bullet *J*_{*N*} + *J*_{*2*}² + *N*^{-→}*G*_{*N*}: Write *zI* + *J*_{*N*} + *J*_{*Z*}² = (λ₁(*z*) − *J*_{*N*}))(λ₂(*z*) − *J*_{*N*}):
	- No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
	- In $\{z: |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
	- In $\{z : 1 > |\lambda_1(z)| > |\lambda_2(z)|\}$, outliers are roots of limit of terms involving a product of two Gaussians in expansion of char. pol.

 Ω

イロト イ母 トイヨ トイヨ トーヨー

Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- \bullet *J*_{*N*} + *J*_{*2*}² + *N*^{-→}*G*_{*N*}: Write *zI* + *J*_{*N*} + *J*_{*Z*}² = (λ₁(*z*) − *J*_{*N*}))(λ₂(*z*) − *J*_{*N*}):
	- No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
	- In $\{z: |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
	- \bullet In {*z* : 1 > $|\lambda_1(z)|$ > $|\lambda_2(z)|$ }, outliers are roots of limit of terms involving a product of two Gaussians in expansion of char. pol.

Generalizes to general Toeplitz. Proof uses study [of d](#page-48-0)[et](#page-50-0)[e](#page-41-0)[r](#page-42-0)[m](#page-49-0)[i](#page-50-0)[n](#page-41-0)[a](#page-42-0)[n](#page-53-0)[t.](#page-54-0)

Ofer Zeitouni [Small Perturbations](#page-0-0) Small Perturbations MSRI 2021 13/27

 OQ

Example

Develop the determinant of *zI* − *J^N* − *N* [−]γ*GN*:

$$
z^N - N^{-\gamma}\sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k + \text{remainder}.
$$

Example

Develop the determinant of *zI* − *J^N* − *N* [−]γ*GN*:

$$
z^N - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k + \text{remainder}.
$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

Example

Develop the determinant of *zI* − *J^N* − *N* [−]γ*GN*:

$$
z^N - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k + \text{remainder}.
$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small. Thus, determinant vanishes near zeros of the GAF

$$
\sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k \stackrel{d}{=} \sum_{k=0}^{N-1} \sqrt{k+1} g_k z^k.
$$

KEINK REINER STARK I STARK KIEN

Example

Develop the determinant of *zI* − *J^N* − *N* [−]γ*GN*:

$$
z^N - N^{-\gamma} \sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k + \text{remainder}.
$$

For $|z| < 1 - \delta$, the term $|z|^N$ and the remainder are small. Thus, determinant vanishes near zeros of the GAF

$$
\sum_{k=0}^{N-1} \sum_{i,j:i+j=k+2} G_{i,j} z^k \stackrel{d}{=} \sum_{k=0}^{N-1} \sqrt{k+1} g_k z^k.
$$

For general Toeplitz matrices, decompose the determinant to factors of this form!

KEIN KARA KEIN EE KORA

What are the eigenvectors of perturbed Toeplitz matrices?

 R

KONKRAKEN E

What are the eigenvectors of perturbed Toeplitz matrices?

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N$, $N = 1000$

 Ω

4 ロト 4 何 ト 4 ヨ ト

What are the eigenvectors of perturbed Toeplitz matrices?

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N$, $N = 1000$

Phase transitions?

 Ω

4 ロト 4 何 ト 4 ヨ ト

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$
\mathcal{P}=\begin{pmatrix}A & B_-\\ R_+ & 0\end{pmatrix}:\mathbb{C}^N\times\mathbb{C}^M\longrightarrow\mathbb{C}^N\times\mathbb{C}^M,\,\,R_+=\sum_{i=1}^M\delta_i\circ\textbf{e}_i^*,\quad R_-=\sum_{i=1}^Mf_i\circ\delta_i^*.
$$

 R

KONKRAKEN E

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$
\mathcal{P} = \begin{pmatrix} A & B_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ R_+ = \sum_{i=1}^M \delta_i \circ e_i^*, \quad R_- = \sum_{i=1}^M f_i \circ \delta_i^*.
$$

$$
E = \sum_{M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, \quad E_+ = \sum_{1}^{M} e_i \circ \delta_i^*,
$$

$$
E_- = \sum_{1}^{M} \delta_i \circ t_i^*, \quad E_{-1} = -\sum_{1}^{M} t_i \delta_i \circ \delta_i^*.
$$

 R

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ⊁ …

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$
\mathcal{P}=\begin{pmatrix}A & R_-\\ R_+ & 0\end{pmatrix}:\mathbb{C}^N\times\mathbb{C}^M\longrightarrow\mathbb{C}^N\times\mathbb{C}^M,\,\,R_+=\sum_{i=1}^M\delta_i\circ\textbf{e}_i^*\,,\quad R_-=\sum_{i=1}^Mf_i\circ\delta_i^*\,.
$$

$$
E = \sum_{M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, \quad E_+ = \sum_{1}^{M} e_i \circ \delta_i^*,
$$

$$
E_- = \sum_{1}^{M} \delta_i \circ t_i^*, \quad E_{-+} = -\sum_{1}^{M} t_i \delta_i \circ \delta_i^*.
$$

With $A^\delta = A + \delta G, \quad 0 \leq \delta \ll 1,$ the perturbed Grushin problem is

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \quad \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta}_- + \end{pmatrix}.
$$

KEINK REINER STARK I STARK KIEN

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M,

$$
\mathcal{P}=\begin{pmatrix}A & R_-\\ R_+ & 0\end{pmatrix}:\mathbb{C}^N\times\mathbb{C}^M\longrightarrow\mathbb{C}^N\times\mathbb{C}^M,\,\,R_+=\sum_{i=1}^M\delta_i\circ\textbf{e}_i^*\,,\quad R_-=\sum_{i=1}^Mf_i\circ\delta_i^*\,.
$$

$$
E = \sum_{M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, \quad E_+ = \sum_{1}^{M} e_i \circ \delta_i^*,
$$

$$
E_- = \sum_{1}^{M} \delta_i \circ t_i^*, \quad E_{-+} = -\sum_{1}^{M} t_i \delta_i \circ \delta_i^*.
$$

With $A^\delta = A + \delta G, \quad 0 \leq \delta \ll 1,$ the perturbed Grushin problem is

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ \ \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta^+}_{-+} \end{pmatrix}.
$$

As soon as $I+\delta Q E$ is invertible, \mathcal{P}^{δ} is invertible, and

$$
E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, \ E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.
$$

KEINK REINER STARK I STARK KIEN

Back to bijective Grushin problem, introduceed by Sjöstrand-Vogel. Fix M.

$$
\mathcal{P}=\begin{pmatrix}A & R_-\\ R_+ & 0\end{pmatrix}:\mathbb{C}^N\times\mathbb{C}^M\longrightarrow\mathbb{C}^N\times\mathbb{C}^M,\,\,R_+=\sum_{i=1}^M\delta_i\circ\textbf{e}_i^*\,,\quad R_-=\sum_{i=1}^Mf_i\circ\delta_i^*\,.
$$

$$
E = \sum_{M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, \quad E_+ = \sum_{1}^{M} e_i \circ \delta_i^*,
$$

$$
E_- = \sum_{1}^{M} \delta_i \circ t_i^*, \quad E_{-+} = -\sum_{1}^{M} t_i \delta_i \circ \delta_i^*.
$$

With $A^\delta = A + \delta G, \quad 0 \leq \delta \ll 1,$ the perturbed Grushin problem is

$$
\mathcal{P}^{\delta} = \begin{pmatrix} A^{\delta} & R_- \\ R_+ & 0 \end{pmatrix} : \mathbb{C}^N \times \mathbb{C}^M \longrightarrow \mathbb{C}^N \times \mathbb{C}^M, \ \ \mathcal{E}^{\delta} = (\mathcal{P}^{\delta})^{-1} \stackrel{\text{def}}{=} \begin{pmatrix} E^{\delta} & E^{\delta}_+ \\ E^{\delta}_- & E^{\delta^+}_{-+} \end{pmatrix}.
$$

As soon as $I+\delta Q E$ is invertible, \mathcal{P}^{δ} is invertible, and

$$
E_{-+}^{\delta}=E_{-+}-E_{-}(I+\delta QE)^{-1}\delta QE_{+},\ E_{+}^{\delta}=E_{+}-E(I+\delta QE)^{-1}\delta QE_{+}.
$$

 E_+^δ E_+^δ E_+^δ is a [b](#page-57-0)ijection from the kernel [o](#page-62-0)f E_{-+}^δ to the kernel of A^δ , with inverse given by th[e un](#page-60-0)[pert](#page-62-0)[ur](#page-56-0)b[ed](#page-61-0) o[pe](#page-53-0)[ra](#page-54-0)[tor](#page-101-0) R_+ R_+ [.](#page-101-0)

 Ω

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta QE)^{-1} \delta QE_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta QE)^{-1} \delta QE_{+}.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator $R_+.$

KEINK REINER STARK I STARK KIEN

 $E^{\delta}_{-+} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$ We take $A_N = J_N - zI_N$ and *Q* Gaussian iid, $\delta = N^{-\gamma}$, where *z* is eigenvalue of $J_M + \delta Q$.

KEIN KARA KEIN EE KORA

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}, \mathsf{E}=\sum_{i=M+1}^{N}\frac{1}{t_{i}}\mathsf{e}_{i}\circ f_{i}^{*}, \mathsf{E}_{+}=\sum_{i=1}^{M}\mathsf{e}_{i}\circ \delta_{i}^{*}, \mathsf{E}_{+}^{\delta}=\mathsf{E}_{+}-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . Also, $M=1$ for $\gamma>1$ and $M=N^{2(1-\gamma)}$ for $\gamma< 1.$ Consider $\gamma>1$ first

 PQQ

イロト イ母 トイヨ トイヨ トーヨー

 $E^{\delta}_{-+} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_{i}} e_{i} \circ f_{i}^{*}, E_{+} = \sum_{i=1}^{M} e_{i} \circ \delta_{i}^{*}, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$ We take $A_N = J_N - zI_N$ and *Q* Gaussian iid, $\delta = N^{-\gamma}$, where *z* is eigenvalue of $J_M + \delta Q$. Important fact: $|z| = 1 - c_y(\log N)/N$, with $c_y = \gamma - 1$; set $v = [1, z, z^2, \ldots, z^{N-1}]^T / \sqrt{(N/\log N)}$, of norm *O*(1) (pseudomode).

KEINK REIN A BIN BIN A Q A

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1} \delta \mathsf{Q} \mathsf{E}_+, \mathsf{E}=\sum_{i=M+1}^{N} \frac{1}{t_i} \mathsf{e}_i \circ \mathsf{f}_i^*, \mathsf{E}_+=\sum_{i=1}^{M} \mathsf{e}_i \circ \delta_i^*, \mathsf{E}_+^{\delta}=\mathsf{E}_+-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1} \delta \mathsf{Q} \mathsf{E}_+.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . We take $A_N = J_N - zI_N$ and *Q* Gaussian iid, $\delta = N^{-\gamma}$, where *z* is eigenvalue of $J_M + \delta Q$. Important fact: $|z| = 1 - c_y(\log N)/N$, with $c_y = \gamma - 1$; set $v = [1, z, z^2, \ldots, z^{N-1}]^T / \sqrt{(N/\log N)}$, of norm *O*(1) (pseudomode). $||A_Nv||_2 = o(1/N)$, so $t_1 \ll 1/N$ while $t_i \sim i/N$ for $i \ge 2$.

KEINK REINER STARK I STARK KIEN

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1} \delta \mathsf{Q} \mathsf{E}_+, \mathsf{E}=\sum_{i=M+1}^N \frac{1}{t_i} \mathsf{e}_i \circ \mathsf{f}_i^*, \mathsf{E}_+=\sum_{i=1}^M \mathsf{e}_i \circ \delta_i^*, \mathsf{E}_+^{\delta}=\mathsf{E}_+-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1} \delta \mathsf{Q} \mathsf{E}_+.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . Easiest case: $\gamma > 3/2$, $M = 1$. Then $\|\delta Q E\|_\infty \sim N^{-(\gamma-3/2)} \ll 1$, so kernel of E_{-+}^{δ} is essentially 1, so kernel of A^{δ} is essentially pseudomode.

KEINK REINER STARK I STARK KIEN

 $E^{\delta}_{-+} = E_{-+} - E_-(l+\delta \textsf{QE})^{-1}\delta \textsf{QE}_+, E = \sum_{i=M+1}^N \frac{1}{t_i} \textsf{e}_i \circ \textsf{f}_i^*, E_+ = \sum_{i=1}^M \textsf{e}_i \circ \delta_i^*, E_+^{\delta} = E_+ - E(l+\delta \textsf{QE})^{-1}\delta \textsf{QE}_+.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . $\gamma \in (1, 3/2]$. Here $\|\delta QE\|_{\infty}$ is not small, but whp $I + \delta QE$ is invertible, inverse norm bounded by polynomial in *N*.

 Ω

イロト イ母 トイヨ トイヨ トーヨ

 $E^{\delta}_{-+} = E_{-+} - E_-(l+\delta \textsf{QE})^{-1}\delta \textsf{QE}_+, E = \sum_{i=M+1}^N \frac{1}{t_i} \textsf{e}_i \circ \textsf{f}_i^*, E_+ = \sum_{i=1}^M \textsf{e}_i \circ \delta_i^*, E_+^{\delta} = E_+ - E(l+\delta \textsf{QE})^{-1}\delta \textsf{QE}_+.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . $\gamma \in (1, 3/2]$. Here $\|\delta QE\|_{\infty}$ is not small, but whp $I + \delta QE$ is invertible, inverse norm bounded by polynomial in *N*. Expand:

$$
E_{-+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+} = E_{+} - \delta E Q E_{+} - \delta^{2} (E Q)^{2} E_{+} - \dots
$$

But δ^p $\|(EQ)^pE_+\|_\infty = o(1)$, so same conclusion as for $\gamma > 3/2$.

KEL KALK LELKEL EL VOOR

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}, \mathsf{E}=\sum_{i=M+1}^{N}\frac{1}{t_{i}}\mathsf{e}_{i}\circ f_{i}^{*}, \mathsf{E}_{+}=\sum_{i=1}^{M}\mathsf{e}_{i}\circ \delta_{i}^{*}, \mathsf{E}_{+}^{\delta}=\mathsf{E}_{+}-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . Also, $M=1$ for $\gamma>1$ and $M=N^{2(1-\gamma)}$ for $\gamma< 1.$ Consider $\gamma>1$ first γ < 1. Norm estimate with $M = 1$ fails, so need larger M. Eigenvector is then (random) combination of singular vectors of *A* − *zI*.

KEINK REIN A BIN BIN A Q A

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}, \mathsf{E}=\sum_{i=M+1}^{N}\frac{1}{t_{i}}\mathsf{e}_{i}\circ f_{i}^{*}, \mathsf{E}_{+}=\sum_{i=1}^{M}\mathsf{e}_{i}\circ \delta_{i}^{*}, \mathsf{E}_{+}^{\delta}=\mathsf{E}_{+}-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . Also, $M=1$ for $\gamma>1$ and $M=N^{2(1-\gamma)}$ for $\gamma< 1.$ Consider $\gamma>1$ first γ < 1. Norm estimate with $M = 1$ fails, so need larger M. Eigenvector is then (random) combination of singular vectors of *A* − *zI*. Get a stochastic process, correlation length *N*/*M* = *N* 2γ−1 .

KEINK REINER STARK I STARK KIEN
$\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}, \mathsf{E}=\sum_{i=M+1}^{N}\frac{1}{t_{i}}\mathsf{e}_{i}\circ f_{i}^{*}, \mathsf{E}_{+}=\sum_{i=1}^{M}\mathsf{e}_{i}\circ \delta_{i}^{*}, \mathsf{E}_{+}^{\delta}=\mathsf{E}_{+}-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q}\mathsf{E})^{-1}\delta \mathsf{Q}\mathsf{E}_{+}.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . Also, $M=1$ for $\gamma>1$ and $M=N^{2(1-\gamma)}$ for $\gamma< 1.$ Consider $\gamma>1$ first γ < 1. Norm estimate with $M = 1$ fails, so need larger M. Eigenvector is then (random) combination of singular vectors of *A* − *zI*. Get a stochastic process, correlation length *N*/*M* = *N* 2γ−1 .

KEINK REINER STARK I STARK KIEN

Eigenvectors

 $\mathsf{E}^{\delta}_{-+}=\mathsf{E}_{-+}-\mathsf{E}_{-}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1}\delta \mathsf{Q} \mathsf{E}_+, \mathsf{E}=\sum_{i=M+1}^{N} \frac{1}{t_i}\mathsf{e}_i\circ \mathsf{f}_i^*, \mathsf{E}_+=\sum_{i=1}^{M}\mathsf{e}_i\circ \delta_i^*, \mathsf{E}_+^{\delta}=\mathsf{E}_+-\mathsf{E}(\mathsf{I}+\delta \mathsf{Q} \mathsf{E})^{-1}\delta \mathsf{Q} \mathsf{E}_+.$ E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator R_+ . We take $A_N = J_N - zI_N$ and *Q* Gaussian iid, $\delta = N^{-\gamma}$, where *z* is eigenvalue of *J^N* + δ*Q*. Also, *M* = 1 for γ > 1 and *M* = *N* 2(1−γ) for γ < 1. Consider γ > 1 first Important fact: $|z| = 1 - c_y(\log N)/N$, with $c_y = \gamma - 1$; set $v = [1, z, z^2, \ldots, z^{N-1}]^T / \sqrt{(N/\log N)}$, of norm *O*(1) (pseudomode). $||A_Nv||_2 = o(1/N)$, so $t_1 \ll 1/N$ while $t_i \sim i/N$ for $i \ge 2$. Easiest case: $\gamma > 3/2$, $M = 1$. Then $\|\delta Q E\|_\infty \sim N^{-(\gamma - 3/2)} \ll 1$, so kernel of E_{-+}^{δ} is essentially 1, so kernel of A^{δ} is essentially pseudomode. $\gamma \in (1, 3/2]$. Here $\|\delta QE\|_{\infty}$ is not small, but whp $I + \delta QE$ is invertible, inverse norm bounded by polynomial in *N*. Expand:

$$
E_{-+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+} = E_{+} - \delta E Q E_{+} - \delta^{2} (E Q)^{2} E_{+} - \dots
$$

But δ^{ρ} $\|(EQ)^{\rho}E_+\|_{\infty} = o(1)$, so same conclusion as for $\gamma > 3/2$.

 γ < 1. Norm estimate with $M = 1$ fails, so need larger M. Eigenvector is then (random) combination of singular vectors of *A* − *zI*. Get a stochastic process, correlation length *N*/*M* = *N* 2γ−1 . K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

Eigenvectors

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N$, $N = 1000$

Ofer Zeitouni [Small Perturbations](#page-0-0) MSRI 2021 18/27 MSRI 2021 18/27

 $2Q$

KONKRAKEN E

Eigenvectors

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N$, $N = 1000$

Major cheat: norm estimates stated were for deterministic *z*, not the random eigenvalue!

 Ω

イロト イ母ト イヨト イヨ

Eigenvectors

Figure: Eigenvectors for $\gamma = 2, 1.5, 0.9, 0.75, T_N = J_N$, $N = 1000$

Major cheat: norm estimates stated were for deterministic *z*, not the random eigenvalue! Solution uses a net of deterministic *z*'s, and a good probabilistic estimate on norm.

 Ω

イロト イ母 トイヨ トイヨ

Eigenvectors

We slightly shift notation:

$$
P_N = \begin{pmatrix} a_0 & a_{-1} & \dots & a_{-N_-} & \dots \\ a_1 & a_0 & a_{-1} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N_+} & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \dots & \dots & a_{N_+} & \dots & a_0 \end{pmatrix}
$$

$$
P_{N,\gamma}^Q = P_N + N^{-\gamma} Q_N,
$$

(i) The entries of *Q* are jointly independent and have zero mean.

(ii) For any $h \in \mathbb{N}$ there exists an absolute constant $\mathfrak{C}_h < \infty$ such that

$$
\max_{i,j=1}^N E[|Q_{i,j}|^{2h}] \leq \mathfrak{C}_h.
$$

(We also impose an anti-concentration assumptio[n o](#page-76-0)[n t](#page-78-0)[h](#page-76-0)[e e](#page-77-0)[n](#page-78-0)[t](#page-53-0)[ri](#page-54-0)[es](#page-101-0)[of](#page-54-0) *[Q](#page-101-0)*[.\)](#page-0-0)

 000

.

Assume for symplicity that the gcd of $\{|j| : j \neq 0, a_j \neq 0\}$ is 1.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 めんぴ

Assume for symplicity that the gcd of $\{|j| : j \neq 0, a_j \neq 0\}$ is 1. Let *q* be the symbol associated with $\{a_i\}$, let B_1 be the collection of self intersection points of $q(S^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points *z* where the Laurent polynomial $q(\cdot) - z$ has double roots.

 OQ

イロメ イ何メ イヨメ イヨメーヨー

Assume for symplicity that the gcd of $\{|j| : j \neq 0, a_j \neq 0\}$ is 1. Let q be the symbol associated with $\{a_i\}$, let B_1 be the collection of self intersection points of $q(S^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points *z* where the Laurent polynomial $q(\cdot) - z$ has double roots. $\mathsf{Set}\ \mathcal{B}_\mathcal{P}:=\mathcal{B}_1\cup\mathcal{B}_2$ and $\mathcal{G}_{\mathcal{P},\varepsilon}:=\mathcal{P}(\mathcal{S}^1)\setminus\mathcal{B}^\varepsilon_\mathcal{P}.$ When either $\mathcal{N}_-\neq\mathcal{N}_+$ or $|a_{-N_-}|\neq |a_{N_+}|,$ the set $\mathcal{B}_1\cup\mathcal{B}_2$ is a finite set, and we assume this in what follows.

 OQ

イロト イ何 トイヨ トイヨ トーヨー

Assume for symplicity that the gcd of $\{|j| : j \neq 0, a_j \neq 0\}$ is 1. Let q be the symbol associated with $\{a_i\}$, let B_1 be the collection of self intersection points of $q(S^1)$, and let \mathcal{B}_2 be the set of branch points, i.e. points *z* where the Laurent polynomial $q(\cdot) - z$ has double roots. $\mathsf{Set}\ \mathcal{B}_\mathcal{P}:=\mathcal{B}_1\cup\mathcal{B}_2$ and $\mathcal{G}_{\mathcal{P},\varepsilon}:=\mathcal{P}(\mathcal{S}^1)\setminus\mathcal{B}^\varepsilon_\mathcal{P}.$ When either $\mathcal{N}_-\neq\mathcal{N}_+$ or $|a_{-N_-}|\neq |a_{N_+}|,$ the set $\mathcal{B}_1\cup\mathcal{B}_2$ is a finite set, and we assume this in what follows.

For a point $z \in \mathbb{C}$, let $d(z)$ be the winding number of $p(\cdot)$ around z. Let

 $\Omega(\varepsilon, C, N) := \{z \in \mathbb{C} : C^{-1} \log N/N < \text{dist}(z, \mathcal{G}_{p,\varepsilon}) < C \log N/N, d(z) \neq 0\}$

Let $\mathcal{N}_{\Omega(\varepsilon, C, N), N, \gamma} := |\{\lambda^{\textit{N}}_i \in \Omega(\varepsilon, C, N)\}|$ denote the number of eigenvalues of $P^Q_{\mathcal{N},\gamma}$ that lie in $\Omega(\varepsilon,C,\mathcal{N}).$

KEIK (FIX A BIX A BIX A GA)

Location of eigenvalues

Theorem (BVZ21)

Fix $\mu > 0$ *and* $\gamma > 1$ *. Then there exist* $0 < \varepsilon$, $C < \infty$ *(depending on* γ , μ *and p only) so that*

$$
P\big(\mathcal{N}_{\Omega(\varepsilon,C,N),N,\gamma}<(1-\mu)N\big)\to_{N\to\infty}0.
$$

Location of eigenvalues

Theorem (BVZ21)

Fix $\mu > 0$ *and* $\gamma > 1$ *. Then there exist* $0 < \varepsilon$, $C < \infty$ *(depending on* γ , μ *and p only) so that*

$$
P\big(\mathcal{N}_{\Omega(\varepsilon,C,N),N,\gamma}<(1-\mu)N\big)\to_{N\to\infty}0.
$$

Theorem (BVZ21, $\gamma > 1$)

1. The following occurs with probability approaching one as N → ∞*. For* e ach $\hat{z}\in \Omega(\varepsilon,C,N)$ which is an eigenvalue of $P^Q_{N,\gamma}$, let $v=v(\hat{z})$ denote the *corresponding (right) eigenvector, normalized so that* $||v||_2 = 1$. Then there *exists a vector w, linear combination of the d smallest eigenvectors of* |*d*| e *igenvectors of* $(P_N - \hat{z}I)^*(P_N - \hat{z}I)$, with $\|w\|_2 = 1$ such that $||v - w||_2 = o(1)$ *and a constant c*_γ > 0*, so that for any* $\ell \in [N]$ *,*

$$
||w||_{\ell^2([\ell,M])} \leq \varepsilon^{-c\ell \log N/N}/c, \quad \text{if } d > 0, ||w||_{\ell^2([1,N-\ell])} \leq \varepsilon^{-c\ell \log N/N}/c, \quad \text{if } d < 0.
$$

 $Omega$

イロメ イ何 メ ミ メ ス ヨ メ ニヨ

Theorem (BVZ21, $\gamma > 1$)

*Fix z*₀ = *z*₀(*N*) $\in \Omega(\varepsilon, C, N)$ *deterministic, C*₀*, C*₀ *large, and* $\eta > 0$ *small. Then, there exist constants* $c_1 = c_1(\eta, C_0, C_0)$ *and* $c_0 = c_0(\gamma) \in (0, 1)$ *<i>, with* $c_0 \rightarrow 1$ *as* $\gamma \rightarrow 1$ *and* $c_0 \rightarrow 0$ *as* $\gamma \rightarrow \infty$ *, so that, with probability at least* $1 - \eta$, for every $\hat{z} = \lambda_i^N \in D(z_0, C_0 \log N/N)$, any $0 < \ell \leq \ell' \leq C_0 N/\log N$ s atisfying $\ell' - \ell > N^{c_0}$ and all large N,

$$
\|w\|_{\ell^2([{\ell}, {\ell'}])}^2 \geq c_1({\ell'}-{\ell})\log N/N, \qquad \text{if } d > 0,\\ \|w\|_{\ell^2([N-{\ell'}, N-{\ell}])}^2 \geq c_1({\ell'}-{\ell})\log N/N, \quad \text{if } d < 0.
$$

Further, for any $0 < c' \leq C_0$,

$$
\begin{array}{ll} \|v\|_{\ell^2([1,c'N/\log N])}^2 \geq c' c_1/2, & \text{if $d>0$},\\ \|v\|_{\ell^2([N-c'N/\log N,N])}^2 \geq c' c_1/2, & \text{if $d<0$}. \end{array}
$$

 Ω

イロメ イ何 メスコメスコメンコン

Eigenvectors

Figure: $N = 4000, \, \gamma = 1.2,$ symbol $\zeta + \zeta^2.$ The bottom row is not covered by the theorem, because the chosen eigenvalue is at vanishing distance from B_1 .

 QQQ

K ロ X K 御 X K 重 X K 重

Eigenvectors

Figure: $N = 4000, \, \gamma = 1.2,$ symbol $\zeta + \zeta^2.$ The bottom row is not covered by the theorem, because the chosen eigenvalue is at vanishing distance from B_1 .

Localization at scale *N*/ log *N*. The *w*'s can in turn be approximated by *pseudomodes* ψ , with $\| (P_N - \hat{z}I) \psi \| \rightarrow_{N \to \infty} 0.$ $(1 + 4)$

Offrage 24/27 Consumer [Small Perturbations](#page-0-0) MSRI 2021 24/27

 PQQ

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$

 E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

KEIK (FIX A BIX A BIX A GA)

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$

 E_+^{δ} is a bijection from the kernel of E_{-+}^{δ} to the kernel of A^{δ} , with inverse given by the unperturbed operator $R_+.$ The following speculations work in the case $A_N = J_N$, general case work in progress.

KEINK REINER STARK I STARK KIEN

.

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$

 E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

The *i*th singular value of *zI* − *T* is bounded below by *i*/*N*. The norm of $\delta{\bm C}$ E is bounded above by ${\bm N}^{-\gamma+1/2+1}/{\bm M},$ while that of $\delta{\bm C}{\bm E}_+$ is bounded above by $N^{-\gamma}M^{1/2}$.

 Ω

イロメ イ何メ イヨメ イヨメーヨー

.

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

By resolvent expansion, the norm of (δ*QE*) 2 is small. We chose *M* so that $||E_\delta QE_+||$ < *M*/*N*, i.e. \sqrt{MN} ^{- γ} < *M*/*N*, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$
K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_{-} \delta Q E_{+}
$$

 OQ

イロメ イ何メ イヨメ イヨメーヨー

.

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

By resolvent expansion, the norm of (δ*QE*) 2 is small. We chose *M* so that $||E_\delta QE_+\|| \leq M/N$, i.e. $\sqrt{M}N^{-\gamma} \leq M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$
K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_{-} \delta Q E_{+}
$$

*E*²*QE*₊ is a noise matrix of dimension *M* and entries *N*^{-γ}, and singular values of order $N^{-\gamma}\sqrt{M} = N^{1-2\gamma} \sim M/N$. *If* the 0 eigenvector of *K* is delocalized, with essentially uncorrelated entries, then the kernel of \mathcal{P}^{δ} is a combination (with uncorrelated weights) of the *M* bottom singular vectors of $T - z_N I$, which in the case $T_N = J$ are just the eigenfunctions of the Laplacian, ie sinusoids modulated by ([−](#page-91-0)1) *x* [.](#page-93-0) [T](#page-87-0)[h](#page-94-0)[u](#page-95-0)[s](#page-53-0) [c](#page-54-0)[or](#page-101-0)[re](#page-53-0)[l](#page-54-0)[ati](#page-101-0)[on](#page-0-0) 000 window ∼ *N*/*M* (up to log terms). **Ofer Zeitouni [Small Perturbations](#page-0-0) MSRI 2021 25 / 27**

.

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

By resolvent expansion, the norm of (δ*QE*) 2 is small. We chose *M* so that $||E_\delta QE_+\|| \leq M/N$, i.e. $\sqrt{M}N^{-\gamma} \leq M/N$, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$
K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_{-} \delta Q E_{+}
$$

If the eigenfunction is $f(x) = M^{-1/2} \sum_{i=1}^M w_i e_i(x)$, the ansatz that $Ew_iw_i = \delta_{i=i}$ gives that

$$
Ef(x)f(y) \sim \frac{(-1)^{x+y}}{2M} \sum_{i=1}^{M} (\sin((x-y)i/N) + \sin((x+y)i/N))
$$

which indeed decorrelates at scale *N*/*M*.

 OQ

KONKRAKEN E

.

 $E_{-+}^{\delta} = E_{-+} - E_{-}(I + \delta Q E)^{-1} \delta Q E_{+}, E = \sum_{i=M+1}^{N} \frac{1}{t_i} e_i \circ t_i^*, E_{+} = \sum_{i=1}^{M} e_i \circ \delta_i^*, E_{+}^{\delta} = E_{+} - E(I + \delta Q E)^{-1} \delta Q E_{+}.$ E_+^δ is a bijection from the kernel of E_{-+}^δ to the kernel of A^δ , with inverse given by the unperturbed operator $R_+.$

By resolvent expansion, the norm of (δ*QE*) 2 is small. We chose *M* so that $||E_\delta QE_+||$ < *M*/*N*, i.e. \sqrt{MN} ^{- γ} < *M*/*N*, i.e. $M = N^{2(1-\gamma)}$. Now, the kernel of E_{-+}^{δ} is given by the kernel of

$$
K = \begin{pmatrix} t_1 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & \cdots \\ 0 & \cdots & t_j & 0 \\ 0 & \cdots & \cdots & t_M \end{pmatrix} - E_{-} \delta Q E_{+}
$$

In general, this requires QUE type results for matrices like *K* - a bit outside results of Benigni, Bourgade, Yau, . . .

KEINK REIN A BIN BIN A Q A

KID K@ DIK ED K ED DE POQO

• Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).

 Ω

イロメ イ母メ イヨメ イヨメーヨ

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol :
- Expect mixture as in upper triangular case.

 OQ

イロメ イ母メ イヨメ イヨメーヨ

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol :
- Expect mixture as in upper triangular case.Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.

 OQ

イロメ イ母メ イヨメ イヨメーヨ

- Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol : Expect mixture as in upper triangular case.Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number. There are partial results of Martin Vogel.
- Toeplitz with infinite symbol depends on rate of decay Grushin problem based results of Sjöstrand-Vogel for fast decay.

 OQ

イロト イ母 トイヨ トイヨ トーヨ

- • Eigenvector side: Complete regime $\gamma \in (1/2, 1)$, requires results on pseudomodes and on QUE, weaker formulation (averaged).
- Spectrum side: General twisted Toeplitz symbol : Expect mixture as in upper triangular case.Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number. There are partial results of Martin Vogel.
- Toeplitz with infinite symbol depends on rate of decay Grushin problem based results of Sjöstrand-Vogel for fast decay.
- What about actual numerical algorithms/errors, as in case of random conjugation?

 OQ

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ │ 경

References

- Guionnet, A., Wood, P. and Zeitouni, O., Convergence of the spectral measure of non normal matrices, Proc. AMS 142 (2014), 667–679.
- Feldheim, O., Paquette, E. and Zeitouni, O., Regularization of non-normal matrices by Gaussian noise, IMRN (2015), 8724–8751.
- J. Sjostrand and M. Vogel. Large bi-diagonal matrices and random perturbations. Journal of spectral theory 6 (2016), ¨ 977–1020.
- **C** Basak, A., Paquette, E. and Zeitouni, O. Regularization of non-normal matrices by Gaussian noise the banded Toeplitz and twisted Toeplitz cases. Forum of Math., Sigma 7 (2019), paper e3.
- Basak, A., Vogel, M. and Zeitouni, O. Localization of eigenvectors of non-Hermitian banded noisy Toeplitz matrices. arXiv:2103.17148.
- J. Sjostrand and M. Vogel. Toeplitz band matrices with small random perturbations. Indagationes Mathematicae, 32(1), ¨ 275–322 (2021).
- \bullet J. Siöstrand and M. Vogel. General Toeplitz matrices subject to Gaussian perturbations. Annales Henri Poincaré, 22, 49–81 (2021).
- Basak, A., Paquette, E. and Zeitouni, O., Spectrum of random perturbations of Toeplitz matrices with finite symbols. Transactions AMS 373 (2020), 4999–5023.
- Basak, A. and Zeitouni, O., Outliers of random perturbations of Toeplitz matrices with finite symbols. PTRF 178, 771–826 (2020).
- Vogel, M., Almost sure Weyl law for quantized tori. arXiv:1912.08876. CMP 378(2), 1539–1585 (2020).
- Vogel, M. and Zeitouni, O., Deterministic equivalence for noisy perturbations. Proc. AMS 149 (2021), 3905-3911.

And the classics:

- Reichel, L. and Trefethen, L.N., Eigenvalues and pseudo–eigenvalues of Toeplitz matrices, Linear algebra and its applications 162 (1992), 153–185.
- Trefethen, L. N. and Embree, M., Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Princeton University Press, 2005.
- Trefethen, L. N. and Chapman, S.J., Wave packet pseudomodes of twisted Toeplitz matrices, CPAM 57 (2004), 1233–1264.
- Davies, R. B. and Hager, M., Perturbations of Jordan matrices, J. Approx. T[heor](#page-100-0)y [15](#page-101-0)[6](#page-100-0) [\(2009\)](#page-101-0)[,](#page-53-0) [82](#page-54-0)[–94](#page-101-0)[.](#page-53-0)

Ofer Zeitouni [Small Perturbations](#page-0-0) MSRI 2021 27/27

 R