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Warm up I: angles and correlations

Geometry: A unique invariant (under
orthogonal transformations) of a pair of
lines through the origin is the angle.
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Probability: Dependence of (mean 0)
random variables ξ and η is measured by the
(squared) correlation coefficient.
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Statistics: Dependence of (mean 0) data
sequences is measured by the (squared)
sample correlation coefficient
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Warm up II: canonical angles and canonical correlations
Geometry: Invariants of a pair of linear subspaces A and B are
canonical angles: their squared cosines are eigenvalues of PAPB

— product of orthogonal projections on spaces A and B.
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The squared cosines have variational meaning. The largest one is

max
u∈A, v∈B

〈u, v〉2

〈u, u〉〈v , v〉

Statistics: Squared sample canonical correlations of N × T
datasets A and B: eigenvalues of PAPB — product of projectors
on (rows of A) and (rows of B) in T–dimensional space.



What famous laws are fitted by orange curves?

Histogram:
Xt = ln(S&P 100 stocks)

Weekly data 2010-2020.

Squared sample canonical
correlations of Xt−1 and
∆Xt := Xt − Xt−1.
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[Figures from (Bykhovskaya-Gorin 2021)]



S&P 100 stocks fit Wachter distribution

Theorem (Wachter, 1980)

Consider N–particle Jacobi ensemble: 1 > x1 > · · · > xN > 0

∼
∏
i<j

(xi − xj)
N∏
i=1

(xi )
N
2
(p−1)(1− xi )

N
2
(q−1)

Set λ± = 1
(p+q)2

(
√

p(p + q− 1)±√q)2. Then as N →∞:

1

N

N∑
i=1

δxi −→
p + q

2π
·
√

(x − λ−)(λ+ − x)

x(1− x)
1[λ−,λ+] dx
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Weekly S&P stocks fit with:
p = 2,
q = number of weeks

number of stocks − 1.

What does Standard & Poor’s
has to do with Jacobi?
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Basic modeling of a time series

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T

Xt : N × 1 observed vector

εt : i.i.d. N (0, Λ) unobserved random innovations

Λ : N × N unknown covariance matrix

µ : N × 1 unknown intercept vector

↪→ high-dimensional random walk

[Bykhovskaya–Gorin 2021] Jacobi ensemble is hiding already here!
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Search for Jacobi

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Σ)

Step 1. De-trend the data and define X̃t = Xt−1− t−1
T (XT −X0).
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Step 2. De-mean the data and define

R0t = X̃t −
1

T

T∑
τ=1

X̃τ , R1t = (Xt − Xt−1)− 1

T

T∑
τ=1

(Xτ − Xτ−1).

Step 3. Define Sij =
T∑
t=1

RitR
∗
jt , i , j = 0, 1, and

solve det
(
S10S

−1
00 S01 − λS11

)
= 0;

↪→ λ1 ≥ . . . ≥ λN = eigenvalues of S10S
−1
00 S01S

−1
11 .

Summary: These are squared sample canonical correlations of
Xt−1 and ∆Xt , after removing constants.
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Search for Jacobi

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Λ)

λ1 ≥ . . . ≥ λN are squared sample canonical correlations of
Xt−1 and ∆Xt , after removing constants.

Theorem (Bykhovskaya-G. 2021)

Suppose 2 + C−1 < T
N < C . One can couple λ1 ≥ · · · ≥ λN and

x1 ≥ · · · ≥ xN of the Jacobi ensemble J(N; N
2 ,

T−2N
2 ), so that for

each ε > 0

lim
T ,N→∞

Prob

(
max
1≤i≤N

|λi − xi | <
1

N1−ε

)
= 1.

J(N; N
2 ,

T−2N
2 ) ∼

∏
i<j

(xi − xj)
N∏
i=1

(xi )
N
2
−1(1− xi )

T−2N
2
−1.



Wachter distribution for random walks

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Λ)

λ1 ≥ . . . ≥ λN are squared sample canonical correlations of
Xt−1 and ∆Xt , after removing constants.

Corollary 1 (Bykhovskaya-G. 2021)

lim
N,T→∞

1

N

N∑
i=1

δλi =
p + q

2π
·
√

(x − λ−)(λ+ − x)

x(1− x)
1[λ−,λ+] dx ,

λ± = 1
(p+q)2

(
√

p(p + q− 1)±
√
q)2, p = 2, q = T

N − 1.

• Exact match with S&P 100 data.
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• Another approach in [Onatski-Wang-2018]



Airy1 point process for random walks

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Λ)

λ1 ≥ . . . ≥ λN are squared sample canonical correlations of
Xt−1 and ∆Xt , after removing constants.

Corollary 2 (Bykhovskaya-G. 2021)

Set λ± = 1
(p+q)2 (

√
p(p + q− 1)±√q)2, p = 2, q = T

N − 1. Then

lim
N,T→∞

3
√
λ+ − λ−

(
p+q

2λ+(1−λ+)

)2/3
N2/3

[
λi − λ+

]
i≥1 =

[
ai
]
i≥1,

where [ai ]
∞
i=1 is the Airy1 point process.

• Important for developing statistical cointegration tests.

• Similar result for β = 2 with complex εt and Airy2.



Classical appearance of the Jacobi ensemble

Theorem (Hotelling; Fisher; Hsu 1936-1939)

Suppose:

• X = (N × T ) Gaussian matrix with i.i.d. mean 0 columns;

• Y = (K × T ) Gaussian matrix with i.i.d. mean 0 columns;

• N ≤ K , N + K ≤ T and X and Y are independent.

Then squared sample canonical correlations of X and Y are

J(N; K−N+1
2 , T−N−K+1

2 ) ∼
∏
i<j

(xi − xj)
N∏
i=1

(xi )
K−N−1

2 (1− xi )
T−N−K−1

2 .

Key differences:

1. We deal with (maximally) dependent Xt−1 and ∆Xt .

2. We approximate by Jacobi ensemble instead of exact match.
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Strategy of the proof

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Λ)

λ1 ≥ . . . ≥ λN are squared sample canonical correlations of
Xt−1 and ∆Xt , after removing constants.

Theorem (Bykhovskaya-G. 2021)

One can couple λ1 ≥ · · · ≥ λN and x1 ≥ · · · ≥ xN of the Jacobi
ensemble J(N; N

2 ,
T−2N

2 ), so that

lim
T ,N→∞

Prob

(
max
1≤i≤N

|λi − xi | <
1

N1−ε

)
= 1.

Proof: Step 1. Linear algebra + rotational symmetries.

(λ1, . . . , λN)
d
= eigenvalues of [Ũ]NN

(
[Ũ∗Ũ]NN

)−1
[Ũ∗]NN

Ũ = (IT−1 − oFo∗)−1, o ∼ Haar-random in SO(T − 1).

F ∼ deterministic with eigenvalues evenly spaced on the unit circle
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Step 2. A new matrix integral leading to the Jacobi ensemble.
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d
= oFo∗ + small error.

Analogy: canonical vs grand canonical ensembles.
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Step 4. Show that small error passes through inversions. �



Cointegration

Why do we care about canonical correlations of Xt and ∆Xt?

A more general time-series model:

Xt = Xt−1 +ΠXt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d.

N × N matrix Π allows for richer temporal behavior.

• Π = 0 : coordinates “grow” like random walks.

• Π = −IN : coordinates are stationary in time (i.i.d.).

• Π of rank r <≈> there are r cointegrating relations —
stationary linear combinations of non-stationary coordinates.

[need a technical condition to get rid of a “faster than random walk” growth cases]
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Cointegration is an important topic in economics.
• Π of rank r <≈> there are r cointegrating relations —

stationary linear combinations of non-stationary coordinates.

Example:
ln(GDP) and
ln(consumption)
are
cointegrated.
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Cointegration tests

Xt = Xt−1 +ΠXt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d.

• Π = 0 : coordinates “grow” like random walks.

• Π = −IN : coordinates are stationary in time (i.i.d.).

• Π of rank r <≈> there are r cointegrating relations

How to statistically test the rank of Π?



Cointegration tests

Xt = Xt−1 +ΠXt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d.

• Π = 0 : coordinates “grow” like random walks.
• Π = −IN : coordinates are stationary in time (i.i.d.).
• Π of rank r : ≈ there are r cointegrating relations

Theorem (Anderson 1951; Johansen 1988)

The (Gaussian) maximum likelihood ratio test of

H0 : Π = 0 vs H1 : rank(Π) ≤ r

is based on the value of the statistic

LR = −
r∑

i=1

ln(1− λi ).

λ1 ≥ · · · ≥ λN ≈ squared sample canonical correlations of Xt−1 and ∆Xt

We reject H0 if LR is atypically large (> 95% percentile).
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Cointegration tests

Xt = Xt−1 +ΠXt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d.

Need: asymptotics of LR = −
r∑

i=1

ln(1− λi ) under H0 : Π = 0.

λ1 ≥ · · · ≥ λN ≈ squared sample canonical correlations of Xt−1 and ∆Xt

Classical results. (Johansen 1988, 1991) Limit theorems based on
fixed N and large T −→ integral functionals of Brownian motions.

• Widely used.

• Perform badly for intermediate N.

• [Onatski-Wang 2018]: explanation of bad performance based
on joint N,T →∞, T/N → c asymptotics.
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Cointegration tests

Xt = Xt−1 +ΠXt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d.

λ1 ≥ · · · ≥ λN ≈ squared sample canonical correlations of Xt−1 and ∆Xt

Corollary 3 (Bykhovskaya-G. 2021)

Suppose 2 + C−1 < T/N < C and H0 holds: Π = 0. Then

∑r
i=1 ln(1− λi )− r · c1(N,T )

N−2/3c2(N,T )

d−−−−−→
T ,N→∞

r∑
i=1

ai ,

where c1 (N,T ) = ln (1− λ+) ,

c2 (N,T ) = − 22/3λ
2/3
+

(1−λ+)1/3(λ+−λ−)1/3
(p + q)−2/3

< 0,

p = 2, q = T
N − 1, λ± =

1

(p + q)2

[√
p(p + q− 1)±

√
q
]2
.



Finite sample performance of tests
Our Test
↘

N LRN,T LR RALR

5 6.60 20.75 3.59
6 5.45 31.66 2.68

T = 30 7 4.52 47.44 1.98
8 3.80 67.42 2.00
9 3.16 85.00 1.32

10 2.60 96.69 0.96

Empirical size under no cointegration hypothesis (5% nominal level). DGP: ∆Xit = εit ,

εit ∼ i.i.d. N (0, 1), MC = 1, 000, 000 for LRN,T and MC = 10, 000 for LR and RALR.

Critical values for H0 rejection based on:

• LRN,T — our asymptotic theorem.
• LR — Johansen’s asymptotic theorem.
• RALR — empirical correction to LR of [Reinsel-Ahn 1992].



Open problems
Universality:

Conjecture

The Airy1 asymptotic behavior for largest eigenvalues and tests
extends to non-Gaussian innovations εt . All we need is the
existence of second moments.

Conjecture

The Airy1 asymptotic behavior for largest eigenvalues and tests
extends to different treatments of constants µ
(de-trending/de-meaning steps in our procedure).

Integrability:

Question

What is the law of
r∑

i=1
ai , where (ai )

∞
i=1 is the Airy1 point process?

(For Airy2 point process this is also unknown.)
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Summary

Xt = Xt−1 + µ+ εt , t = 1, . . . ,T , εt ∼ i.i.d. N (0, Λ)

1. Squared sample canonical correlations of a
high-dimensional random walk and its time-increments are
closely approximated by the Jacobi ensemble J(N; N

2 ,
T−2N

2 ).

2. Consistent with behavior of logarithms of S&P 100 stocks.
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3. Leads to cointegration tests with superior performance.

4. No cointegration in S&P.


