Cointegration, S&P, and Random Matrices

Vadim Gorin (joint work with Anna Bykhovskaya)

Anna is looking for a job this year. Like the talk? \Rightarrow Hire her!

Warm up I: angles and correlations

Geometry: A unique invariant (under orthogonal transformations) of a pair of lines through the origin is the angle.

Probability: Dependence of (mean 0) random variables ξ and η is measured by the (squared) correlation coefficient.

Statistics: Dependence of (mean 0) data sequences is measured by the (squared) sample correlation coefficient

Warm up II: canonical angles and canonical correlations **Geometry:** Invariants of a pair of linear subspaces \overline{A} and \overline{B} are canonical angles: their squared cosines are eigenvalues of $P_A P_B$ $-$ product of orthogonal projections on spaces A and B.

The squared cosines have **variational meaning**. The largest one is

$$
\max_{u \in A, v \in B} \frac{\langle u, v \rangle^2}{\langle u, u \rangle \langle v, v \rangle}
$$

Statistics: Squared sample canonical correlations of $N \times T$ datasets A and B: eigenvalues of $P_A P_B$ — product of projectors on (rows of A) and (rows of B) in T –dimensional space.

What famous laws are fitted by orange curves?

Histogram: $X_t = \ln(S\&P\,100$ stocks)

Weekly data 2010-2020.

Squared sample canonical correlations of X_{t-1} and $\varDelta X_t := X_t - X_{t-1}.$

[Figures from (Bykhovskaya-Gorin 2021)]

S&P 100 stocks fit Wachter distribution

Theorem (Wachter, 1980)

Consider N–particle Jacobi ensemble: $1 > x_1 > \cdots > x_N > 0$ $\sim \prod (x_i - x_j) \prod$ i<j N $i=1$ $(x_i)^{\frac{N}{2}(p-1)}(1-x_i)^{\frac{N}{2}(q-1)}$ Set $\lambda_{\pm} = \frac{1}{(n+1)^2}$ $\frac{1}{(p+q)^2}(\sqrt{p(p+q-1)}\pm\sqrt{q})^2$. Then as $N\to\infty$: 1 N \sum N $i=1$ $\delta_{x_i} \longrightarrow \frac{\mathfrak{p}+\mathfrak{q}}{2\pi}$ $rac{1}{2\pi}$. $\sqrt{(x-\lambda_-)(\lambda_+-x)}$ $\frac{1}{x(1-x)}\mathbf{1}_{\left[\lambda_-, \lambda_+\right]} dx$

Weekly S&P stocks fit with: $p = 2$, $q = \frac{number\ of\ weeks}{number\ of\ stocks} - 1.$

S&P 100 stocks fit Wachter distribution

Theorem (Wachter, 1980)

Consider N-particle Jacobi ensemble: $1 > x_1 > \cdots > x_N > 0$ $\sim \prod (x_i - x_j) \prod$ i<j N $i=1$ $(x_i)^{\frac{N}{2}(p-1)}(1-x_i)^{\frac{N}{2}(q-1)}$ Set $\lambda_{\pm} = \frac{1}{(n+1)^2}$ $\frac{1}{(p+q)^2}(\sqrt{p(p+q-1)}\pm\sqrt{q})^2$. Then as $N\to\infty$: 1 N \sum N $i=1$ $\delta_{x_i} \longrightarrow \frac{\mathfrak{p}+\mathfrak{q}}{2\pi}$ $rac{1}{2\pi}$. $\sqrt{(x-\lambda_-)(\lambda_+-x)}$ $\frac{1}{x(1-x)}\mathbf{1}_{\left[\lambda_-, \lambda_+\right]} dx$

Weekly S&P stocks fit with: $p = 2$, $q = \frac{number\ of\ weeks}{number\ of\ stocks} - 1.$

What does Standard & Poor's has to do with Jacobi?

Basic modeling of a time series

$$
X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T
$$

 X_t : $N \times 1$ observed vector ε_t : i.i.d. $\mathcal{N}(0,\Lambda)$ unobserved random innovations $\Lambda : N \times N$ unknown covariance matrix $\mu : N \times 1$ unknown intercept vector

 \hookrightarrow high-dimensional random walk

Basic modeling of a time series

$$
X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T
$$

 X_t : $N \times 1$ observed vector ε_t : i.i.d. $\mathcal{N}(0,\Lambda)$ unobserved random innovations $\Lambda : N \times N$ unknown covariance matrix $\mu : N \times 1$ unknown intercept vector

\hookrightarrow high-dimensional random walk

[Bykhovskaya–Gorin 2021] Jacobi ensemble is hiding already here!

$$
X_t = X_{t-1} + \mu + \varepsilon_t
$$
, $t = 1, ..., T$, $\varepsilon_t \sim$ i.i.d. $\mathcal{N}(0, \Sigma)$

<code>Step 1. De-trend</code> the data and define $\tilde{X}_t = X_{t-1} - \frac{t-1}{T}$ $\frac{-1}{T}(X_T - X_0).$

 $X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d. } \mathcal{N}(0, \Sigma)$

<code>Step 1. De-trend</code> the data and define $\tilde{X}_t = X_{t-1} - \frac{t-1}{\mathcal{T}}$ $\frac{-1}{T}(X_T - X_0).$ Step 2. De-mean the data and define

$$
R_{0t} = \tilde{X}_t - \frac{1}{T} \sum_{\tau=1}^T \tilde{X}_\tau, \quad R_{1t} = (X_t - X_{t-1}) - \frac{1}{T} \sum_{\tau=1}^T (X_\tau - X_{\tau-1}).
$$

$$
X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d. } \mathcal{N}(0, \Sigma)
$$

<code>Step 1. De-trend</code> the data and define $\tilde{X}_t = X_{t-1} - \frac{t-1}{\mathcal{T}}$ $\frac{-1}{T}(X_T - X_0).$ Step 2. De-mean the data and define

$$
R_{0t} = \tilde{X}_t - \frac{1}{T} \sum_{\tau=1}^T \tilde{X}_\tau, \quad R_{1t} = (X_t - X_{t-1}) - \frac{1}{T} \sum_{\tau=1}^T (X_\tau - X_{\tau-1}).
$$

Step 3. Define
$$
S_{ij} = \sum_{t=1}^{T} R_{it} R_{jt}^*
$$
, $i, j = 0, 1$, and
\n**solve** det $(S_{10} S_{00}^{-1} S_{01} - \lambda S_{11}) = 0$;
\n $\rightarrow \lambda_1 \geq ... \geq \lambda_N$ = eigenvalues of $S_{10} S_{00}^{-1} S_{01} S_{11}^{-1}$.

Summary: These are squared sample canonical correlations of X_{t-1} and $\varDelta X_t$, after removing constants.

$$
X_t = X_{t-1} + \mu + \varepsilon_t
$$
, $t = 1, ..., T$, $\varepsilon_t \sim$ i.i.d. $\mathcal{N}(0, \Lambda)$

 $\lambda_1 \geq \ldots \geq \lambda_N$ are squared sample canonical correlations of X_{t-1} and $\varDelta X_t$, after removing constants.

Theorem (Bykhovskaya-G. 2021)

Suppose $2+C^{-1}<\frac{T}{N}< C.$ One can couple $\frac{\lambda_1}{\lambda_2} \geq \cdots \geq \lambda_N$ and $\alpha_1 \geq \cdots \geq \alpha_N$ of the Jacobi ensemble J(N; $\frac{N}{2}$ $\frac{N}{2}, \frac{T-2N}{2}$ $\frac{-2N}{2}$), so that for each $\epsilon > 0$

$$
\lim_{T,N\to\infty}\operatorname{Prob}\left(\max_{1\leq i\leq N}|\lambda_i-x_i|<\frac{1}{N^{1-\epsilon}}\right)=1.
$$

$$
\mathbf{J}(N; \frac{N}{2}, \frac{T-2N}{2}) \sim \prod_{i < j} (x_i - x_j) \prod_{i=1}^N (x_i)^{\frac{N}{2}-1} (1-x_i)^{\frac{T-2N}{2}-1}.
$$

Wachter distribution for random walks

$$
X_t = X_{t-1} + \mu + \varepsilon_t
$$
, $t = 1, ..., T$, $\varepsilon_t \sim$ i.i.d. $\mathcal{N}(0, \Lambda)$

 $\lambda_1 \geq \ldots \geq \lambda_N$ are squared sample canonical correlations of X_{t-1} and $\varDelta X_t$, after removing constants.

Corollary 1 (Bykhovskaya-G. 2021)
\n
$$
\lim_{N, T \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i} = \frac{\mathfrak{p} + \mathfrak{q}}{2\pi} \cdot \frac{\sqrt{(x - \lambda_{-})(\lambda_{+} - x)}}{x(1 - x)} \mathbf{1}_{[\lambda_{-}, \lambda_{+}]} dx,
$$
\n
$$
\lambda_{\pm} = \frac{1}{(\mathfrak{p} + \mathfrak{q})^2} (\sqrt{\mathfrak{p}(\mathfrak{p} + \mathfrak{q} - 1)} \pm \sqrt{\mathfrak{q}})^2, \quad \mathfrak{p} = 2, \quad \mathfrak{q} = \frac{T}{N} - 1.
$$

• Exact match with S&P 100 data.

• Another approach in [Onatski-Wang-2018]

$Airy₁$ point process for random walks

$$
\big| X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d. } \mathcal{N}(0, \Lambda)
$$

 $\lambda_1 \geq \ldots \geq \lambda_N$ are squared sample canonical correlations of X_{t-1} and $\varDelta X_t$, after removing constants.

Corollary 2 (Bykhovskaya-G. 2021)
\nSet
$$
\lambda_{\pm} = \frac{1}{(p+q)^2} (\sqrt{p(p+q-1)} \pm \sqrt{q})^2
$$
, $p = 2$, $q = \frac{T}{N} - 1$. Then
\n
$$
\lim_{N, T \to \infty} \sqrt[3]{\lambda_{+} - \lambda_{-}} \left(\frac{p+q}{2\lambda_{+}(1-\lambda_{+})} \right)^{2/3} N^{2/3} [\lambda_{i} - \lambda_{+}]_{i \ge 1} = [a_{i}]_{i \ge 1},
$$

where $[\mathfrak{a}_i]_{i=1}^{\infty}$ is the Airy₁ point process.

- Important for developing statistical cointegration tests.
- Similar result for $\beta = 2$ with complex ε_t and Airy₂.

Classical appearance of the Jacobi ensemble

Theorem (Hotelling; Fisher; Hsu 1936-1939)

Suppose:

- $X = (N \times T)$ Gaussian matrix with i.i.d. mean 0 columns;
- $Y = (K \times T)$ Gaussian matrix with i.i.d. mean 0 columns;
- $N < K$, $N + K < T$ and X and Y are independent.

Then squared sample canonical correlations of X and Y are

$$
\mathbf{J}(N;\frac{K-N+1}{2},\frac{T-N-K+1}{2})\sim \prod_{i
$$

Classical appearance of the Jacobi ensemble

Theorem (Hotelling; Fisher; Hsu 1936-1939)

Suppose:

- $X = (N \times T)$ Gaussian matrix with i.i.d. mean 0 columns;
- $Y = (K \times T)$ Gaussian matrix with i.i.d. mean 0 columns;
- $N < K$, $N + K < T$ and X and Y are independent.

Then squared sample canonical correlations of X and Y are

$$
\mathbf{J}(N;\frac{K-N+1}{2},\frac{T-N-K+1}{2})\sim \prod_{i
$$

Key differences:

- 1. We deal with (maximally) dependent X_{t-1} and $\varDelta X_t.$
- 2. We approximate by Jacobi ensemble instead of exact match.

$$
X_t = X_{t-1} + \mu + \varepsilon_t
$$
, $t = 1, ..., T$, $\varepsilon_t \sim$ i.i.d. $\mathcal{N}(0, \Lambda)$

 $\lambda_1 \geq \ldots \geq \lambda_N$ are squared sample canonical correlations of X_{t-1} and $\varDelta X_t$, after removing constants.

Theorem (Bykhovskaya-G. 2021)

One can couple $\lambda_1 > \cdots > \lambda_N$ and $x_1 > \cdots > x_N$ of the **Jacobi** ensemble $\mathsf{J}(N;\frac{N}{2})$ $\frac{N}{2}, \frac{T-2N}{2}$ $\frac{-2N}{2}$), so that $\lim_{T,N\to\infty}$ Prob $\left(\max_{1\leq i\leq N}|\lambda_i-x_i|<\frac{1}{N^1}\right)$ $\Big) = 1.$

Proof: Step 1. Linear algebra + rotational symmetries.

$$
(\lambda_1, ..., \lambda_N) \stackrel{d}{=} \text{ eigenvalues of } [\tilde{U}]_{NN} ([\tilde{U}^* \tilde{U}]_{NN})^{-1} [\tilde{U}^*]_{NN}
$$

$$
\tilde{U} = (I_{T-1} - oFo^*)^{-1}, \quad o \sim \text{ Haar-random in } SO(T-1).
$$

 $F \sim \text{ deterministic with eigenvalues evenly spaced on the unit circle}$

 $N^{1-\epsilon}$

Proof: Step 1. Linear algebra $+$ rotational symmetries.

$$
(\lambda_1, ..., \lambda_N) \stackrel{d}{=} \text{ eigenvalues of } [\tilde{U}]_{NN} ([\tilde{U}^* \tilde{U}]_{NN})^{-1} [\tilde{U}^*]_{NN}
$$

$$
\tilde{U} = (I_{T-1} - oFo^*)^{-1}, \quad o \sim \text{Haar-random in } SO(T-1).
$$

$$
F \sim \text{ deterministic with eigenvalues evenly spaced on the unit circle}
$$

Step 2. A new matrix integral leading to the **Jacobi ensemble**.

$$
(x_1, \ldots, x_N) \stackrel{d}{=} \text{ eigenvalues of } [U]_{NN} ([U^*U]_{NN})^{-1} [U^*]_{NN}
$$

 $U = (I_{T-1} - Q)^{-1}, \quad Q \sim \text{Haar-random in } SO(T-1).$

Theorem

$$
\lim_{T,N\to\infty}\operatorname{Prob}\left(\max_{1\leq i\leq N}|\lambda_i-x_i|<\frac{1}{N^{1-\epsilon}}\right)=1.
$$

Proof: Step 1. Linear algebra $+$ rotational symmetries.

 $(\lambda_1,\ldots,\lambda_N)\stackrel{d}{=}$ eigenvalues of $[\tilde{U}]_{NN}\big([\tilde{U}^*\tilde{U}]_{NN}\big)^{-1}[\tilde{U}^*]_{NN}$ $\tilde{U} = (I_{\mathcal{T}-1} - oFo^*)^{-1}$, $o \sim$ Haar-random in $SO(\mathcal{T}-1)$. $F \sim$ deterministic with eigenvalues evenly spaced on the unit circle **Step 2.** A new matrix integral leading to the **Jacobi ensemble**. $(\mathsf{x}_1,\ldots,\mathsf{x}_\mathsf{N})\stackrel{d}{=}\,$ eigenvalues of $\llbracket U\rrbracket_{\mathsf{NN}}\big(\llbracket U^*U\rrbracket_{\mathsf{NN}}\big)^{-1}\llbracket U^*\rrbracket_{\mathsf{NN}}$ $U = (I_{T-1} - Q)^{-1}$, Q ~ Haar-random in $SO(T - 1)$.

Step 3. Rigidity for eigenvalues of Q : $Q = oFo^* +$ small error. Analogy: canonical vs grand canonical ensembles.

Theorem

$$
\lim_{T,N\to\infty}\operatorname{Prob}\left(\max_{1\leq i\leq N}|\lambda_i-x_i|<\frac{1}{N^{1-\epsilon}}\right)=1.
$$

Proof: Step 1. Linear algebra $+$ rotational symmetries.

 $(\lambda_1,\ldots,\lambda_N)\stackrel{d}{=}$ eigenvalues of $[\tilde{U}]_{NN}\big([\tilde{U}^*\tilde{U}]_{NN}\big)^{-1}[\tilde{U}^*]_{NN}$ $\tilde{U} = (I_{\mathcal{T}-1} - oFo^*)^{-1}$, $o \sim$ Haar-random in $SO(\mathcal{T}-1)$. $F \sim$ deterministic with eigenvalues evenly spaced on the unit circle **Step 2.** A new matrix integral leading to the **Jacobi ensemble**. $(\mathsf{x}_1,\ldots,\mathsf{x}_\mathsf{N})\stackrel{d}{=}\,$ eigenvalues of $\llbracket U\rrbracket_{\mathsf{NN}}\big(\llbracket U^*U\rrbracket_{\mathsf{NN}}\big)^{-1}\llbracket U^*\rrbracket_{\mathsf{NN}}$ $U = (I_{T-1} - Q)^{-1}$, Q ~ Haar-random in $SO(T - 1)$. **Step 3.** Rigidity for eigenvalues of Q : $Q = oFo^* +$ small error. Step 4. Show that small error passes through inversions.

Cointegration

Why do we care about canonical correlations of X_t and ΔX_t ?

Cointegration

Why do we care about canonical correlations of X_t and ΔX_t ?

A more general time-series model:

 $X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}$

 $N \times N$ matrix Π allows for richer temporal behavior.

- $\Pi = 0$: coordinates "grow" like random walks.
- $\Pi = -I_N$: coordinates are stationary in time (i.i.d.).

Cointegration

Why do we care about canonical correlations of X_t and ΔX_t ?

A more general time-series model:

 $X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}$

 $N \times N$ matrix Π allows for richer temporal behavior.

- $\Pi = 0$: coordinates "grow" like random walks.
- $\Pi = -I_N$: coordinates are stationary in time (i.i.d.).
- Π of rank $r \ll \gg$ there are r cointegrating relations stationary linear combinations of non-stationary coordinates.

[need a technical condition to get rid of a "faster than random walk" growth cases]

Cointegration is an important topic in economics.

• Π of rank $r \ll \gg$ there are r cointegrating relations stationary linear combinations of non-stationary coordinates.

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2003

Robert F. Engle III Prize share: 1/2

Clive W.J. Granger Prize share: 1/2

$X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}$

- $\Pi = 0$: coordinates "grow" like random walks.
- $\Pi = -I_N$: coordinates are stationary in time (i.i.d.).
- Π of rank $r \ll \gg$ there are r cointegrating relations

How to statistically test the rank of π ?

$$
X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \dots, T, \qquad \varepsilon_t \sim \text{i.i.d.}
$$

- $\Pi = 0$: coordinates "grow" like random walks.
- $\Pi = -I_N$: coordinates are stationary in time (i.i.d.).
- Π of rank $r: \infty$ there are r cointegrating relations

Theorem (Anderson 1951; Johansen 1988)

The (Gaussian) maximum likelihood ratio test of

 $H_0: \quad \Pi = 0$ vs $H_1: \quad \text{rank}(\Pi) \leq r$

is based on the value of the statistic

$$
\mathsf{LR}=-\sum_{i=1}^r\ln(1-\lambda_i).
$$

 $\lambda_1 \geq \cdots \geq \lambda_N \approx$ squared sample canonical correlations of X_{t-1} and $\varDelta X_t$

$$
X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \dots, T, \qquad \varepsilon_t \sim \text{i.i.d.}
$$

- $\Pi = 0$: coordinates "grow" like random walks.
- $\Pi = -I_N$: coordinates are stationary in time (i.i.d.).
- Π of rank $r: \infty$ there are r cointegrating relations

Theorem (Anderson 1951; Johansen 1988)

The (Gaussian) maximum likelihood ratio test of

 $H_0: \quad \Pi = 0$ vs $H_1: \quad \text{rank}(\Pi) \leq r$

is based on the value of the statistic

$$
\mathsf{LR}=-\sum_{i=1}^r\ln(1-\lambda_i).
$$

 $\lambda_1 \geq \cdots \geq \lambda_N \approx$ squared sample canonical correlations of X_{t-1} and $\varDelta X_t$

We reject H_0 if LR is atypically large ($> 95\%$ percentile).

$$
X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}
$$

Need: asymptotics of **LR** = $-\sum_{i=1}^{r} \ln(1 - \lambda_i)$ under $H_0 : \Pi = 0$. $i=1$ $\lambda_1 \geq \cdots \geq \lambda_N \approx$ squared sample canonical correlations of X_{t-1} and ΔX_t

 $X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}$

Need: asymptotics of **LR** = $-\sum_{i=1}^{r} \ln(1 - \lambda_i)$ under $H_0 : \Pi = 0$. $\lambda_1 \geq \cdots \geq \lambda_N \approx$ squared sample canonical correlations of X_{t-1} and $\varDelta X_t$

Classical results. (Johansen 1988, 1991) Limit theorems based on fixed N and large $T \longrightarrow$ integral functionals of Brownian motions.

- Widely used.
- Perform badly for intermediate N.
- [Onatski-Wang 2018]: explanation of bad performance based on joint $N, T \rightarrow \infty$, $T/N \rightarrow c$ asymptotics.

$$
X_t = X_{t-1} + \Pi X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d.}
$$

 $\lambda_1 \geq \cdots \geq \lambda_N \approx$ squared sample canonical correlations of X_{t-1} and ΔX_t

Corollary 3 (Bykhovskaya-G. 2021)

Suppose $2+C^{-1} < T/N < C$ and H_0 holds: $\Pi = 0$. Then

$$
\frac{\sum_{i=1}^{r} \ln(1-\lambda_i) - r \cdot c_1(N, T)}{N^{-2/3} c_2(N, T)} \xrightarrow{\ d \ } \sum_{i=1}^{r} \alpha_i,
$$

where

$$
c_{1}\left(N,\,T\right) =\ln\left(1-\lambda_{+}\right) ,
$$

$$
c_2\left(N,\, T\right)=-\tfrac{2^{2/3}\lambda_+^{2/3}}{(1-\lambda_+)^{1/3}(\lambda_+-\lambda_-)^{1/3}}\left(\mathfrak{p}+\mathfrak{q}\right)^{-2/3}<0,
$$

$$
\mathfrak{p}=2,\quad \mathfrak{q}=\tfrac{T}{N}-1,\quad \lambda_\pm=\frac{1}{(\mathfrak{p}+\mathfrak{q})^2}\left[\sqrt{\mathfrak{p}(\mathfrak{p}+\mathfrak{q}-1)}\pm\sqrt{\mathfrak{q}}\right]^2.
$$

Empirical size under no cointegration hypothesis (5% nominal level). DGP: $\Delta X_{it} = \varepsilon_{it}$, $\varepsilon_{it} \sim$ i.i.d. $\mathcal{N}(0, 1)$, $MC = 1,000,000$ for $LR_{N, T}$ and $MC = 10,000$ for LR and RALR.

Critical values for H_0 rejection based on:

- $LR_{N.T}$ our asymptotic theorem.
- LR Johansen's asymptotic theorem.
- RALR empirical correction to LR of [Reinsel-Ahn 1992].

Open problems

Universality:

Conjecture

The Air y_1 asymptotic behavior for largest eigenvalues and tests extends to non-Gaussian innovations ε_t . All we need is the existence of second moments.

Conjecture

The Airy₁ asymptotic behavior for largest eigenvalues and tests extends to different treatments of constants μ (de-trending/de-meaning steps in our procedure).

Open problems

Universality:

Conjecture

The Air y_1 asymptotic behavior for largest eigenvalues and tests extends to non-Gaussian innovations ε_t . All we need is the existence of second moments.

Conjecture

The Airy₁ asymptotic behavior for largest eigenvalues and tests extends to different treatments of constants μ (de-trending/de-meaning steps in our procedure).

Integrability:

Question

What is the law of $\sum_{i=1}^r a_i$, where $(a_i)_{i=1}^{\infty}$ is the Airy₁ point process? $i=1$ (For Airy₂ point process this is also unknown.)

Summary

 $X_t = X_{t-1} + \mu + \varepsilon_t, \qquad t = 1, \ldots, T, \qquad \varepsilon_t \sim \text{i.i.d. } \mathcal{N}(0, \Lambda)$

1. Squared sample canonical correlations of a

high-dimensional random walk and its time-increments are closely approximated by the Jacobi ensemble J(N; $\frac{N}{2}$ $\frac{N}{2}, \frac{T-2N}{2}$ $\frac{-2N}{2}$).

2. Consistent with behavior of logarithms of S&P 100 stocks.

- 3. Leads to cointegration tests with superior performance.
- 4. No cointegration in S&P.