Cointegration, S&P, and Random Matrices

Vadim Gorin
(joint work with Anna Bykhovskaya)

Anna is looking for a job this year.  Like the talk? = Hire her!



Warm up |: angles and correlations

A

=\

Geometry: A unique invariant (under
orthogonal transformations) of a pair of
lines through the origin is the angle.

Probability: Dependence of (mean 0)
random variables £ and 7 is measured by the
(squared) correlation coefficient.

2
Statistics: Dependence of (mean 0) data (i §t77t>
sequences is measured by the (squared)
sample correlation coefficient



Warm up Il: canonical angles and canonical correlations
Geometry: Invariants of a pair of linear subspaces A and B are
canonical angles: their squared cosines are eigenvalues of P4Ppg
— product of orthogonal projections on spaces A and B.

cos(6)
A 0
B cos?(6) L

The squared cosines have variational meaning. The largest one is

{u, v)
max
ueA,veB (u, u)(v, v)

Statistics: Squared sample canonical correlations of N x T
datasets A and B: eigenvalues of P4Pg — product of projectors
on (rows of A) and (rows of B) in T—dimensional space.



What famous laws are fitted by orange curves?

Histogram:
Xt = In(S&P 100 stocks)

Weekly data 2010-2020.

Squared sample canonical
correlations of X;_; and

AXt = Xt — Xt—l-
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[Figures from (Bykhovskaya-Gorin 2021)]



S&P 100 stocks fit Wachter distribution

Theorem (Wachter, 1980)
Consider N—particle Jacobi ensemble: 1 > x; > --- > xy >0

N
~TT6s =) [T 20700 — 26D
i=1

i<j

&Mi:m%$@@+m4:hfﬁ Then as N — co:

p+q VA )0 —x)
N de’ x(1 —X)+

1[)\7’)\_'_] dx

Weekly S&P stocks fit with:

p=2
__ number of weeks 1
9 = humber of stocks




S&P 100 stocks fit Wachter distribution

Theorem (Wachter, 1980)
Consider N—particle Jacobi ensemble: 1 > x; > --- > xy >0

N
~TT6s =) [T 20700 — 26D
i=1

i<j

Set)\izm(\/p(p—i—q—l ) £ /@)% Then as N — oo:
P+CI V=)0 —x)
56—

x(1—x)

1[)\7’)\_'_] dx

Weekly S&P stocks fit with:

p=2
__ number of weeks 1
9 = humber of stocks

What does Standard & Poor’s
has to do with Jacobi?




Basic modeling of a time series

‘Xt:Xt_l—f-M-f—gt, t:].,...,T

Xe:t Nx1 observed vector
g¢ 1 iid. N(0, A) unobserved random innovations
A:NxN unknown covariance matrix
wilNx1 unknown intercept vector

— high-dimensional random walk



Basic modeling of a time series

‘Xt:Xt_l—f-M-f—gt, t:].,...,T

Xe:t Nx1 observed vector
g¢ 1 iid. N(0, A) unobserved random innovations
A:NxN unknown covariance matrix
wilNx1 unknown intercept vector

— high-dimensional random walk

[Bykhovskaya—Gorin 2021] Jacobi ensemble is hiding already here!



Search for Jacobi

Xe=Xea+pte, t=1,...,T, e ~iid N(0,Y)

Step 1. the data and define X; = X;_1 — %(XT — Xo).
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Search for Jacobi

Xe=Xe_1+pt+en, t=1,...,T, e ~iid. N(o,x)\

Step 1. the data and define X; = X;_1 — (X7 — Xo).
Step 2. the data and define

-
Rot = Rie = (Xe — Xe1) — ZX ~ X-1).

IIMﬂ



Search for Jacobi

Xe=Xe_1+pt+en, t=1,...,T, e ~iid. N(o,x)\

Step 1. the data and define X; = X;_1 — (X7 — Xo).
Step 2. the data and define

-
Rot = Rir = (Xe — Xe1) Zx ~ Xr1)

IIMﬂ

Step 3. Define §;; = Z RiR;, i,j=0,1, and

det(Slosoo So1 — )\511) =0
— A1 > ... > Ay = eigenvalues of 5105&)150151*11.

Summary: These are squared sample canonical correlations of
X¢_1 and AX;, after removing constants.



Search for Jacobi

\xtzxt_1+ﬂ+et, t=1,...,T, er~iid. /\/(o,A)\

A1 > ... > Ay are squared sample canonical correlations of
X¢—1 and AX;, after removing constants.

Theorem (Bykhovskaya-G. 2021)

Suppose 2+ C~1 < % < C. One can couple \1 > --- > \y and
x1 > -+ > xy of the Jacobi ensemble J(N; g’, I 22’\’) so that for
each e >0

1
T“TmoPrOb< max A — x| < W) =

N
S | (O Xj)H(Xi)%il(l —Xi) 2




Wachter distribution for random walks
‘Xt:Xt—l—i_,u—i_Eta t:]_,...7T, €tN||dN(0,A)‘

A1 > ... > Ay are squared sample canonical correlations of
X¢—1 and AX;, after removing constants.

Corollary 1 (Bykhovskaya-G. 2021)

1e~, _ptra VE—2)0: —x)
NZ&\"_ or X(l—x)+

de = eV +a- D+ VAP, p=2 a=F-1

—~

® Exact match with S&P 100 data.

® Another approach in [Onatski-Wang-2018]



Airy; point process for random walks

\thxt,1+u+st, t=1,...,T, & ~iid. N(O,A)\

A1 > ... > Ay are squared sample canonical correlations of
Xt—1 and AX;, after removing constants.

Corollary 2 (Bykhovskaya-G. 2021)
Set A\ = m(\/p(iﬂ—q 1)+ 4?2 p=2q=4—1. Then

: 2/3
lim /A=A (%) 23 [N — /\+]i21 = [ai] i>1

N, T—o0

where [a;]3°, is the Airyy point process.

® Important for developing statistical cointegration tests.

® Similar result for 5 = 2 with complex £; and Airys,.



Classical appearance of the Jacobi ensemble

Theorem (Hotelling; Fisher; Hsu 1936-1939)
Suppose:

¢ X = (N x T) Gaussian matrix with i.i.d. mean 0 columns;

® Y = (K x T) Gaussian matrix with i.i.d. mean 0 columns;

o N<K,N+K<T and X and Y are independent.
Then squared sample canonical correlations of X and Y are

K—N-1 T-N—K-1
2 (1-x) 2

=

J(N; K—£V+1’ T—N2—K+1) -~ H(Xi _ XJ)

i<j i

(xi)

1




Classical appearance of the Jacobi ensemble

Theorem (Hotelling; Fisher; Hsu 1936-1939)

Suppose:

¢ X = (N x T) Gaussian matrix with i.i.d. mean 0 columns;

® Y = (K x T) Gaussian matrix with i.i.d. mean 0 columns;

o N<K,N+K<T and X and Y are independent.
Then squared sample canonical correlations of X and Y are

J(N; K—éV-&-l’ T—N2—K+1) -~ H(Xi _ XJ)

i<j i

K—N—1 T—N—K—1
2 (1 — X,-) 2

=

(xi)

1

Key differences:

1. We deal with (maximally) dependent X;_; and AX;.

2. We approximate by Jacobi ensemble instead of exact match.



Strategy of the proof

‘Xt:Xt—l‘f‘,U«‘i‘Et, t:]_,...7T, €tN||dN(0,A)‘

A1 > ... > Ay are squared sample canonical correlations of
Xi—1 and AX;, after removing constants.

Theorem (Bykhovskaya-G. 2021)

One can couple A1 > --- > Ay and x; > --- > xp of the Jacobi
ensemble J(NV; T- 2N) so that

1
lim Prob max IAi—xi| < /s— ) =1
T,N—s00 1<i< N1-—e

Proof: Step 1. Linear algebra + rotational symmetries.
()\1, e :)\N) g eigenvalues of [U]NN([U* 0]/\//\/)71[0*]/\//\/
U= (lt_1 —oFo*)"', o~ Haar-random in SO(T —1).

F ~ deterministic with eigenvalues evenly spaced on the unit circle



Strategy of the proof

T ,N—oco

. 1
lim Prob <1gax A — x| < W) =1,

Proof: Step 1. Linear algebra + rotational symmetries.
(A, ) d eigenvalues of [U]NN([U* U]NN)_l[U*]NN
U= (lt_1 —oFo*)"Y, o~ Haar-random in SO(T —1).

F ~ deterministic with eigenvalues evenly spaced on the unit circle

Step 2. A new matrix integral leading to the Jacobi ensemble.

(X155 Xn) 4 eigenvalues of [U]’VN([U*U]NN)_l[U*]NN
U=(lt_1—Q)"', @~ Haar-random in SO(T —1).



Strategy of the proof

lim Prob | max |\ —
1<i<N

T,N—oco

Proof: Step 1. Linear algebra + rotational symmetries.
(M, Aw) 2 eigenvalues of [T ([0 Olww) (0¥ ww
U= (lt_1 — oFo*)"', o~ Haar-random in SO(T —1).
F ~ deterministic with eigenvalues evenly spaced on the unit circle
Step 2. A new matrix integral leading to the Jacobi ensemble.
(X1, -, XN) 2 eigenvalues of [U]NN([U*U]NN)_l[U*]NN
U=(Ir-1— Q)_l, Q@ ~ Haar-random in SO(T —1).

Step 3. Rigidity for eigenvalues of @: @ 2 oFo* + small error.
Analogy: canonical vs grand canonical ensembles.



Strategy of the proof

lim Prob | max |\ —
1<i<N

T,N—oco

Proof: Step 1. Linear algebra + rotational symmetries.
(M, Aw) 2 eigenvalues of [T ([0 Olww) (0¥ ww
U= (lt_1—oFo*)"!, o~ Haar-random in SO(T —1).
F ~ deterministic with eigenvalues evenly spaced on the unit circle
Step 2. A new matrix integral leading to the Jacobi ensemble.
(X1, -, XN) 2 eigenvalues of [U]nn ([U* U]NN)_l[U*]NN
U=(Ir-1— Q)_l, Q@ ~ Haar-random in SO(T —1).
Step 3. Rigidity for eigenvalues of Q: @ 2 oFo* + small error.

Step 4. Show that small error passes through inversions. |



Cointegration

Why do we care about canonical correlations of X; and AX;?



Cointegration

Why do we care about canonical correlations of X; and AX;?

A more general time-series model:

Xt:Xt_1+HXt_1+/_L+€t, t:]_,...,T, Etf\/lld

N x N matrix II allows for richer temporal behavior.

e /I =0: coordinates “grow” like random walks.

® [T = —Iy : coordinates are stationary in time (i.i.d.).



Cointegration

Why do we care about canonical correlations of X; and AX;?

A more general time-series model:

Xt:Xt_1+HXt_1+/_L+€t, t:]_,...,T, EtNlld

N x N matrix II allows for richer temporal behavior.

e /I =0: coordinates “grow” like random walks.
® [T = —Iy : coordinates are stationary in time (i.i.d.).

® ]I of rank r <> there are r cointegrating relations —
stationary linear combinations of non-stationary coordinates.

[need a technical condition to get rid of a “faster than random walk” growth cases]



Cointegration is an important topic in economics.

e ]I of rank r <a> there are r cointegrating relations —
stationary linear combinations of non-stationary coordinates.

Example: B
In(GDP) and s
In(consumption) *
are )

comtegrated I I R T TR T

In(GDP)

45 5

In(GDP)-n(CONS)

4
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Co-integration and error correction: representation, estimation, and testing aa3s 1987
Tme cmEDBY  YEAR
Statistical analysis of cointegration vectors. 25704 1988

Maximum likelihood estimation and inference on cointegration—with appucations to the toaE 1990
demand for money

Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive 14219 1991
models.

F. Engle Il Clive W.J. Granger
P

Prize share: 1/2 73




Cointegration tests

Xt:thl—f—Hth]_—i—,u—{—gt, t:].,...,T, Et’\/lld‘

® ]I =0: coordinates “grow” like random walks.
e JI = —Iy : coordinates are stationary in time (i.i.d.).

e ]I of rank r <a> there are r cointegrating relations

How to statistically test the rank of 177



Cointegration tests

Xt:Xt_1+HXt_1+M+Et, t:].,...,T, €tN||d‘

® ]I =0: coordinates “grow” like random walks.
® JT = —Iy : coordinates are stationary in time (i.i.d.).
e ]I of rank r: =~ there are r cointegrating relations

Theorem (Anderson 1951; Johansen 1988)

The (Gaussian) maximum likelihood ratio test of

Ho: II=0 Vs Hy: rank(II) <'r
is based on the value of the statistic

LR=—) In(1-))).
i=1

A1 > -+ > Ay = squared sample canonical correlations of X;_1 and AX;




Cointegration tests

Xt:Xt_1+HXt_1+M+Et, t:].,...,T, €tN||d‘

® ]I =0: coordinates “grow” like random walks.
® JT = —Iy : coordinates are stationary in time (i.i.d.).
e ]I of rank r: =~ there are r cointegrating relations

Theorem (Anderson 1951; Johansen 1988)

The (Gaussian) maximum likelihood ratio test of

Ho: II=0 Vs Hy: rank(II) <'r
is based on the value of the statistic

LR=—) In(1-))).
i=1

A1 > -+ > Ay = squared sample canonical correlations of X;_1 and AX;

We reject Hp if LR is atypically large (> 95% percentile).‘




Cointegration tests

Xt:Xt71+HXt71+,lL+5t, t:].,...,T, St'\‘lld

,

Need: asymptotics of LR = — Z In(1 — \;) under Hp : IT = 0.
i=1

A1 > -+ > Ay ~ squared sample canonical correlations of X;_; and AX;



Cointegration tests

Xt:Xt71+HXt71+,l,L+5t, t:].,...,T, Et'\‘lld

Need: asymptotics of LR = — Z In(1 — X\;) under Hy : IT = 0.

i=1
A1 > -+ > Ay ~ squared sample canonical correlations of X;_; and AX;

Classical results. (Johansen 1988, 1991) Limit theorems based on
fixed NV and large T — integral functionals of Brownian motions.
® Widely used.
® Perform badly for intermediate N.

® [Onatski-Wang 2018]: explanation of bad performance based
on joint N, T — oo, T/N — ¢ asymptotics.



Cointegration tests

‘Xt:Xt71+HXt7]_+,LL+8t, t:].,...,T, €tN||d‘

A1 > -+- > Ay & squared sample canonical correlations of X;_; and AX;

Corollary 3 (Bykhovskaya-G. 2021)
Suppose 2+ C~1 < T/N < C and Hg holds: M = 0. Then

Sl =X)—=r-ca(N,T) d Er:a-
N—=2/3¢y(N, T) T,N—oo "

where a(N, T)=In(1-X\}),
22/352/3
(N, T) =~ ml/s(ﬂ—x s (p+a) 7 <0,
=2, g=L£-1, X Vi( —1)+
p q N 4 = P Jr q [ P +q f}




Finite sample performance of tests

Our Test
N\

N | |LRnT LR | RALR

5 6.60 20.75 | 3.59

6 5.45 31.66 | 2.68
T=30 7 452 47.44 | 1.98

8 3.80 67.42 | 2.00

9 3.16 85.00 | 1.32

10 2.60 06.69 | 0.96

Empirical size under no cointegration hypothesis (5% nominal level). DGP: AXj; = €z,
eir ~ i.i.d. N(0,1), MC = 1,000,000 for LRy, and MC = 10,000 for LR and RALR.

Critical values for Hy rejection based on:

® [ Ry 7 — our asymptotic theorem.
® | R — Johansen’s asymptotic theorem.
® RALR — empirical correction to LR of [Reinsel-Ahn 1992].



Open problems
Universality:

Conjecture

The Airy; asymptotic behavior for largest eigenvalues and tests
extends to non-Gaussian innovations ;. All we need is the
existence of second moments.

| A

Conjecture

The Airy; asymptotic behavior for largest eigenvalues and tests
extends to different treatments of constants
(de-trending/de-meaning steps in our procedure).




Open problems
Universality:

Conjecture

The Airy; asymptotic behavior for largest eigenvalues and tests
extends to non-Gaussian innovations ;. All we need is the
existence of second moments.

| A\

Conjecture

The Airy; asymptotic behavior for largest eigenvalues and tests
extends to different treatments of constants
(de-trending/de-meaning steps in our procedure).

Integrability:

.

What is the law of ) a;, where (a;)7°, is the Airy; point process?
i=1

(For Airy> point process this is also unknown.)




Summary

Xe=Xeo1+p+e, t=1,...,T, e ~iid. N(o,A)\

1. Squared sample canonical correlations of a
high-dimensional random walk and its time-increments are
closely approximated by the Jacobi ensemble J(N; %, T_22N).

2. Consistent with behavior of logarithms of S&P 100 stocks.
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3. Leads to cointegration tests with superior performance.
4. No cointegration in S&P.



