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Part 1: Motivating Examples



Random Lozenge Tilling

Random Lozenge Tiling

uniform probability measure on the set of Lozenge tilings of a given domain.
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Random Lozenge Tilling

Random Lozenge Tiling

uniform probability measure on the set of Lozenge tilings of a given domain.

One feature of the limit shapes of random lozenge tilings is the presence of frozen regions which
contain only one type of lozenges and the liquid regions which contain all three types of lozenges.
The boundary curves separate liquid region and frozen region are referred to as “arctic curves”.
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Random Lozenge Tilling

Theorem (Cohn-Kenyon-Propp (2001))

Let R be a domain in the plane, and R is obtained from R after rescaling by a factor n. The

height function H(x, t) satisfies
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Random Lozenge Tilling

Photo credit: Gorin, Kenyon-Okounkov

Conjecture (Kenyon (2004), Kenyon-Okounkov (2005))

In the liquid region, the fluctuation of the height function converges to the Gaussian Free Field

with complex structure given by the complex slope and zero boundary condition

p
⇡(H(nx, nt) � E[H(nx, nt)]) ! GFF .

Gaussian Free Field fluctuation for domains without frozen regions (Kenyon, Berestycki, Laslier,
Ray, Russkikh...); trapezoidal domains (Petrov); non-simply connected domains (Bufetov-Gorin).



Dyson’s Nonintersecting Brownian Motion

Brownian Watermelon

n Brownian motions starting from the origin at time t = 0 , conditioned to return to the origin at
time t = 1 and stay nonintersecting.



Dyson’s Nonintersecting Brownian Motion

Dyson’s Brownian motion

Matrix Valued Brownian motion:

dAt =
1
p
n
dBt , A0 = A

where Bt have complex Brownian motion entries (� = 2), real Brownian motion entries (� = 1).
Integrating out the eigenvectors, the dynamic for the eigenvalues is called Dyson’s Brownian
motion

d�i (t) =

s
2

�n
dWi (t) +

1

n

X

j :j 6=i

dt

�i (t) � �j (t)
, 1 6 i 6 n.

If � = 2, this is also the Brownian motions starting from A conditioned to be nonintersecting.



Dyson’s Nonintersecting Brownian Motion

Nonintersecting Brownian Motion

We consider n particle non-intersecting Brownian motions (x1(t) 6 x2(t) 6 · · · xn(t)) with initial
configuration (a1 6 a2 6 · · · 6 an) at time t = 0 and terminal configuration
(b1 6 b2 6 · · · 6 bn) at time t = 1.
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Dyson’s Nonintersecting Brownian Motion

We consider n particle non-intersecting Brownian motions (x1(t) 6 x2(t) 6 · · · xn(t)) with initial
configuration (a1 6 a2 6 · · · 6 an) at time t = 0 and terminal configuration
(b1 6 b2 6 · · · 6 bn) at time t = 1.

Theorem (Guionnet-Zeitouni (2002))

For n particle non-intersecting Brownian motion with boundary data µAn
= (1/n)

P
n

i=1 �ai and

µBn
= (1/n)

P
n

i=1 �bi converges weakly

lim
n!1

µAn
= µA, lim

n!1
µBn

= µB .

The empirical measure µt = (1/n)
P

n

i=1 �xi (t) converging weakly to ⇢⇤
t
(x), which is the minimizer

of the variational problem:

inf

Z 1

0

Z
ut(x)

2⇢t(x) +
⇡2

12
⇢t(x)

3dxdt,

where inf is taken over all the pairs (ut , ⇢t) with @t⇢t + @x (⇢tut) = 0 in the sense of distributions,

and the initial and terminal data for ⇢t are given by

lim
t!0

⇢t(x)dx = µA, lim
t!1

⇢t(x)dx = µB .

Gaussian Free Field fluctuation for Dyson’s Brownian motion (Spohn 1998, Israelsson 2001,
Bender 2008); for Brownian watermelon (Breuer-Duits 2013).
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Part 2: Loop Equations and Dynamical Loop Equations



Loop Equation

The �-ensemble is an n-particle stochastic system

pn(�1, . . . ,�n) =
1

Zn

Y

16i<j6n

|�i � �j |�e�n
Pn

i=1 V (�i )

For classical values of � = 1, 2, 4 and V (x) = �x2/4, Pn corresponds to the joint law of the
eigenvalues of the Gaussian Orthogonal (with real entries), Gaussian Unitary (with complex
entries) or Gaussian Symplectic (with quaternion entries) Ensembles.



Loop Equation

The �-ensemble is an n-particle stochastic system

pn(�1, . . . ,�n) =
1

Zn

Y

16i<j6n

|�i � �j |�e�n
Pn

i=1 V (�i )

We denote the empirical particle density and its Stieltjes transform as

dµn =
1

n

nX

i=1

��i
, mn(z) =

Z
dµn(�)

z � �
=

1

n

nX

i=1

1

z � �i

, z 2 C+.

The Stieltjes transform encodes all the information of the empirical particle density, we can recover
the empirical particle density as µn = � lim⌘!0+ Im[mn(x + i⌘)]/⇡.

Under the assumption that V (�) grows su�ciently fast, the empirical measure µn converges
almost surely to a deterministic measure µV , characterized by certain variational problem. The
loop (Schwinger-Dyson) equation was use to study matrix models in physics literature (Migdal,
Ambjorn-Makeenko), and used to study the fluctuations of µn � µV by Johansson (1998).
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Loop Equation

�-ensembles with analytic potential V

pn(�1, . . . ,�n) =
1

Zn

Y

16i<j6n

|�i � �j |�e�n
Pn

i=1 V (�i )

Loop (Schwinger-Dyson) Equation

For any p > 0 and z, z1, z2, · · · , zp 2 C, the following holds
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Loop Equation

By taking p = 0, the first order loop equation

En

"
m

2
n
�

2V 0(z)

�
mn +
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n�

nX

i=1

V
0(z) � V

0(�i )
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#

= En[m
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n
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2V 0(z)

�
En[mn] + analytic =

1

n
(· · · ).

The limiting equation is

m
2
V
�

2V 0(z)

�
mV + Q = 0.

For the noncritical one-cut setting, it can be solved as

mV �
V

0(z)

�
=
q

(V 0(z)/�)2 � Q = S(z)
q

(z � a)(z � b),

where µV is supported on [a, b] and S(z) is analytic and nonzero in a neighborhood of [a, b]. By
taking di↵erence and divide by S(z)

(En[mn] � mV )

✓
mV �

V
0(z)

�

◆
+ analytic =

1

n
(· · · ),

(En[mn] � mV )
q

(z � a)(z � b) +
analytic

S(z)
=

1

n

(· · · )
S(z)

,

This determines the mean shift En[mn] � mV , via a contour integral.
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Loop Equation

Macroscopic: Loop equations can be used to get the also the variance of mn(z) � mV (z),
and joint moments of mn(zj ) � mV (zj ) for 1 6 j 6 p. For V su�ciently regular (not
necessarily analytic), the �-ensemble can also be studied using the loop equation, taking an
operator approach (Bekerman-Figalli-Guionnet 2013).

Loop equation leads to Mesoscopic and Microscopic fluctuations.

Loop equations are i) infinite hierarchy of equations, ii) relates (k + 1)-point correlation
functions with k-point correlation functions, iii) certain observable is analytic.



Discrete Loop Equation

Discrete �-ensembles as introduced by Borodin, Gorin and Guionnet, are probability measures on
n-tuples of integers �1 > �2 > · · · > �n, which we call Young diagrams (in the case �n > 0).
They can be identified with a particle configuration as

x = (x1, x2, · · · , xn) = (�1,�2 � ✓,�3 � 2✓, · · · ,�n � (n � 1)✓) 2 W
n

✓

Discrete �-ensemble with � = 2✓ (Borodin-Gorin-Guionnet 2015)

Pn(x1, . . . , xn) =
1

Zn

Y

16i<j6n

�(xj � xi + 1)�(xj � xi + ✓)

�(xj � xi )�(xj � xi + 1 � ✓)

nY

i=1

wn(xi ),

where x1 > x2 > · · · > xn with xi 2 Z � (i � 1)✓.

� = 2 case gives the discrete orthogonal polynomial ensemble

Pn(x1, . . . , xn) =
1

Zn

Y

16i<j6n

|xi � xj |2
nY

i=1

w(xi ), x1, x2, · · · , xn 2 Z.
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Discrete Loop Equation

Discrete �-ensemble with � = 2✓ (Borodin-Gorin-Guionnet 2015)
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Theorem (Borodin-Gorin-Guionnet (2015), Nekrasov (2012))

Consider the probability distribution (1), and assume that

w(x)

w(x � 1)
=

�+(x)

��(x)
,

and �±(z) are analytic. Then

��(z)E
"
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i=1

✓
1 �

✓

z � xi

◆#
+ �+(z)E

"
nY

i=1

✓
1 +

✓

z � xi � 1

◆#

is analytic.

Generalization to q-weighted measures and multi-level loop equations by Dimitrov-Knizel.



Dynamical Loop Equations

One slice of the Brownian watermelon and random lozenge tiling of hexagon is given by a
(discrete) �-ensemble. They can be analyzed by loop equations, and have Gaussian fluctuation.

Need a loop equation for 1 + 1 dimension stochastic systems!



Dynamical Loop Equation

Zoo of Symmetric Polynomial (by V. Gorin)



Part 3: Application of Dynamical Loop Equation



Application: Nonintersecting Bernoulli Random Walk

For the nonintersecting Bernoulli random walk:

P(x(t + 1) = x + e|x(t) = x) =
1

2n

Y

16i<j6n

xi + ei � xj � ej

xi � xj

=
1

2n
V (x + e)
V (x)

,

where e = (e1, e2, · · · , en) 2 {0, 1}n. Fix " = N/n ⌧ 1, and denote the normalized empirical
particle density and its Stieltjes transform as

µt =
1

n

nX

i=1

�"xi (t), mt(z) =
1

n

nX

i=1

1

z � "xi (t)
,

Dynamical loop equation gives

mt+1(z) � mt(z)

"
= "1/2�Mt(z) + @z

⇣
e
mt (z) + 1

⌘
+ "Et(z) + O("2), (2)

where �Mt(z) is a martingale di↵erence term.
The leading order term converges to the complex Burgers equation. By a tightness argument, we
can show that the martingale

Mt(z) =
X

s6t

"1/2�Ms (z),

converges to a Gaussian process, and (2) converges to a stochastic di↵erential equation. The hard
part is to identify it with the Gaussian Free Field.
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Application: Lozenge Tiling

Theorem (H. 2020)

Fix a polygonal domain R, the arctic boundary does not have tacnode, and the cusp points to the

right (tangent has slope in (�⇡,⇡)). Let H(x, t) be the height function of random lozenge tilings

of the domain R obtained from R by rescaling a factor n, then as n goes to infinity, its fluctuation

converges to a Gaussian Free Field on the liquid region with zero boundary condition,

p
⇡ (H(nx, nt) � E[H(nx, nt)]) ! GFF .



Application: Lozenge Tiling

We identify lozenge tilings with nonintersecting Bernoulli walks,

t

x1
x2

x3
x4
x5

x6
x7

x8

0 T

Nonintersecting means that at time t the particle configuration
x1(t) < x2(t) < · · · < xn(t)(t) 2 Z, where n(t) is the number of particles at time t and it is
uniquely determined by the domain R.

We denote Nt(x1, x2, · · · , xn(t)) the number of nonintersecting Bernoulli walks staying in R and
starting from particle configuration x = (x1, x2, · · · , xn(t)) at time t. We simply set
Nt(x1, x2, · · · , xn(t)) = 0 for particle configurations not in R or containing overlap particles. Then
it satisfies the following discrete heat equation

Nt(x) =
X

e=(e1,e2,··· ,en(t))2{0,1}n(t)
Nt+1(x + e).
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Application: Lozenge Tiling

We can solve the discrete heat equation

Nt(x) =
X

e=(e1,e2,··· ,en(t))2{0,1}n(t)
Nt+1(x + e).

by an ansatz

Nt+1(x + e)
Nt(x)

=
V (x + e)
V (x)

Nt+1(x + e)/V (x + e)
Nt(x)/V (x)

=
1

Zt(x)
V (x + e)
V (x)

n(t)Y

i=1

(g(xi ; x, t))ei
Et+1(x + e)

Et(x)
,

(3)

where g(z; x, t) is constructed using the complex Burgers equation.

g(z; x, t) is analytic except at cusps which point to the left, where it has a branch point. If the all
the cusps point to the right, we can solve (3) and Et+1/n(x)/Et(x) ⇡ 1 is negligible.
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Application: Lozenge Tiling

We can use the partition function Nt(x)

Nt(x) =
X

e=(e1,e2,··· ,en(t))2{0,1}n(t)
Nt+1(x + e).

to define a nonintersecting Bernoulli random walk with transition probability given by

P(x(t + 1) = x + e|x(t) = x) =
Nt+1(x + e)

Nt(x)

⇡
1

Zt(x)
V (x + e)
V (x)

n(t)Y

i=1

(gt(xi ; x, t))ei ,

for any t 2 [0,T ] \ Z, and e = (e1, e2, · · · , en(t)) 2 {0, 1}n(t).



Application

Weighted Lozenge tiling

Corner Process



Summary

We study 1 + 1 dimensional stochastic systems related to symmetric polynomials:

P(y = x + e|x) =
1

Z(x)

Y

16i<j6n

b(xi + ✓ei ) � b(xj + ✓ej )

b(xi ) � b(xj )

nY

i=1

�+(xi )
ei ��(xi )

1�ei ,

We introduced a dynamical version of loop equations: the first order loop equation is given by

E

2

4�+(z)
nY

j=1

b(z + ✓) � b(xj + ✓ej )

b(z) � b(xj )
+ ��(z)

nY

j=1

b(z) � b(xj + ✓ej )

b(z) � b(xj )

3

5 .

is analytic.

The dynamical loop equations imply a decomposition of empirical particle measure as
Gaussian fluctuation part and deterministic part. Stochastic di↵erential equation can be
identified with GFF.

Thank you for listening!
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