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Eigenstate Thermalisation Hypothesis
=Quantum Unique Ergodicity



Quantization of classical systems: p → −i~∇x

Motto:

Eigenfunctions of the quantization of a chaotic classical dynamics are uniformly distributed.

Regular (integrable) billiard Chaotic billiard

Wavefunctions with symmetries Chaotic wavefunctions 2



Quantum (Unique) Ergodicity

Most prominent example:

ψi : efn’s of Laplace-Beltrami operator on a surface with ergodic geodesic flow, then

〈ψi, Aψj〉 → δij

∫
S∗
σ(A), i, j → ∞

holds for any appropriate pseudo-differential operator Awith symbol σ(A) (defined on the
unit tangent bundle).

Proven for most index pairs Quantum Ergodicity (Šnirel’man 1974), (Zelditch 1987),
(Colin de Verdière 1985)

Analogous discrete version on large regular graphs (Anantharaman, Le Masson 2015)

Quantum Unique Ergodicity (QUE) conjecture (Rudnick, Sarnak 1994): it holds for all pairs.

Only special cases are proven on arithmetic surfaces (Lindenstrauss 2006), (Soundararajan
2010)
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Convergence rate in Quantum Ergodicity

〈ψi, Aψj〉 → δij

∫
S∗
σ(A), i, j → ∞

Physics prediction for generic systems (Feingold, Peres 1986), (Eckhardt et al. 1995)

Var
[
〈ψi, Aψi〉

]
∼ (local ev. spacing)

Much slower (log) decay is proven in averaged sense (Zelditch 1994), (Schubert 2006):
optimal for highly degenerate spectrum.

Polynomial decay for special arithmetic surfaces (Luo, Sarnak 1995), linear maps on the
torus (Marklof, Rudnick 2000).
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Wigner matrices

E. Wigner’s vision: energy levels of large quantum systems can bemodelled by eigenvalues
of large randommatrices (e.g. by Wigner matrices)

Definition [Wigner matrix]: N × N Hermitian randommatrixW = W∗

• Independent identically distributed entries up to Hermitian symmetrywab = wba

• normalization: Ewab = 0 E |wab|2 = 1
N

−2 2

ρ(x) =
√

4−x2
2π

N−1

semicircular density of states ρ; Bulk level spacing∼ N−1

1 2 3

Nρ(λi)
[
λi+1 − λi

]
32x2
π2 e−4x2/π

Histogram of rescaled gaps and Wigner surmise

Wigner’s revolutionary observation: the gap statistics is very robust, it depends only on the
symmetry class (hermitian or symmetric), independent of the distribution.

Formulated as the Wigner-Dyson-Mehta conjecture in 60’s, proven around 2010.
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Eigenstate Thermalisation Hypothesis for Wigner matrices

Extension of Wigner’s vision to Quantum Chaos: Randommatrices model chaotic quantum
systems, hence QUE is expected to hold for Wigner matrices with optimal speed.

Formulated as the Eigenstate Thermalisation Hypothesis by (Deutsch 1991).

We proved it:

Theorem (Cipolloni., E., Schröder 2020)
For the orthonormal eigenvectors ui of an N × NWigner matrixW and for any bounded
deterministic observable (matrix) A

max
i,j

∣∣∣〈ui, Auj〉 − δij〈A〉
∣∣∣ . Nε

√
N
,

with very high probability, where 〈A〉 := 1
N Tr A.

Eigenbasis {ui} is asymptotically orthogonal to {Auj} for 〈A〉 = 0

As if ui and Auj were independently distributed `2-bounded
N-vectors.

Two basic methods in randommatrix theory:

Resolvent method and Dyson Brownian Motion (DBM)

Auiuj
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Comparison with previous results

max
i,j

∣∣∣〈ui, Auj〉 − δij〈A〉
∣∣∣ ≤ Nε

√
N
, with high prob.

Previous results:

• A = |q〉〈q| rank-1 observable= complete delocalization of evectors, |〈ui, q〉| . N−1/2

[Erdős et al. (2009), Knowles-Yin (2013), Bloemendal et al. (2014)][Resolvent method]

• 〈ui, Aui〉 → 〈A〉 in probability for each ui [Bourgade-Yau (2017)] [DBM]

• Simultaneously in i and j [in the bulk] — proven only for Wigner matrices with large
(almostO(1)) Gaussian component [Bourgade-Yau-Yin (2020)] [DBM]

Novelties of our result: [Resolvent method]

• Optimal N−1/2 speed of convergence. In physics: Eigenstate Thermalisation Hypothesis

• Limit is controlled in very high probability, and thus simultaneous in i, j.

• Holds uniformly in the entire spectrum (bulk, edge, intermediate regimes)

These are LLN-type results. Next: What about CLT for
√
N
[
〈ui, Aui〉 − 〈A〉

]
?
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Averaged CLT for overlaps

CLT (central limit theorem) for
√
N
[
〈ui, Aui〉 − 〈A〉

]
can be asked in two senses.

First, we proved CLT after averaging in the index i

Theorem (Cipolloni, E., Schröder 2020)
For any bounded deterministic matrix A, i0 ∈ [δN, (1− δ)N] (i.e. bulk) and for any K ≥ Nε

1
√
2K

∑
|i−i0|≤K

√
N
[
〈ui, Aui〉 − 〈A〉

]
m
= N

(
0, 〈̊ÅA∗〉

)
+O(N−ε′ )

in the sense of moments, where Å := A− 〈A〉 is the traceless part of A.

Similar result holds at the edge with a variance
√

2
3 〈̊ÅA∗〉.

=⇒ Indication that 〈ui, Åui〉, 〈uj, Åuj〉 are asymptotically independent for i 6= j.

This CLT is a special case of our general functional CLT: 〈f (W)A〉 ≈ N for any fn. of theWigner
matrix W; unlike usual tracial CLT in randommatrices, this involves eigenvectors as well!

Averaged CLT uses resolvent method.

Second, CLT for each 〈ui, Aui〉without averaging?
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=⇒ Indication that 〈ui, Åui〉, 〈uj, Åuj〉 are asymptotically independent for i 6= j.

This CLT is a special case of our general functional CLT: 〈f (W)A〉 ≈ N for any fn. of theWigner
matrix W; unlike usual tracial CLT in randommatrices, this involves eigenvectors as well!

Averaged CLT uses resolvent method.

Second, CLT for each 〈ui, Aui〉without averaging?

8



Averaged CLT for overlaps

CLT (central limit theorem) for
√
N
[
〈ui, Aui〉 − 〈A〉

]
can be asked in two senses.

First, we proved CLT after averaging in the index i

Theorem (Cipolloni, E., Schröder 2020)
For any bounded deterministic matrix A, i0 ∈ [δN, (1− δ)N] (i.e. bulk) and for any K ≥ Nε

1
√
2K

∑
|i−i0|≤K

√
N
[
〈ui, Aui〉 − 〈A〉

]
m
= N

(
0, 〈̊ÅA∗〉
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CLT for individual overlaps

Using the spectral decomposition A =
∑

k ak |qk〉〈qk |, our ETH proves∣∣∣〈ui, Auj〉 − δij〈A〉
∣∣∣ = ∣∣∣ 1

N

∑
k

ak
(
N〈ui, qk〉〈qk , uj〉 − δij

)∣∣∣ ≤ Nε

√
N
, w.h.p.

Key message: The fluctuations of 〈ui, qk〉〈qk , uj〉 for different k’s are so strongly
asymptotically independent that their average follow the CLT-like 1/

√
N scaling. CLT??

We proved the corresponding CLT for full rank observables:

Theorem (Cipolloni, E., Schröder 2021)
For the bulk eigenvectors ui of an N × NWigner matrixW and for any bounded
deterministic hermitian observable (matrix) Awith 〈̊A2〉 ≥ c it holds:√

N
2 〈̊A2〉

[
〈ui, Aui〉 − 〈A〉

]
→ N (0, 1)

in the sense of moments, where Å := A− 〈A〉 is the traceless part of A.

To prove this theoremwe need DBMmethods.
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Comparison with previous/related results

√
N

2 〈̊A2〉
[
〈ui, Aui〉 − 〈A〉

]
→ N (0, 1), Å := A− 〈A〉 .

Previous results:

• Rank 1: N|〈ui, q〉|2 is asymptotically (squared) Gaussian [Bourgade-Yau (2017)] [DBM]

• Finite rank: Joint (squared) Gaussianity for finitely many u’s and q’s [Marcinek-Yau
(2020)] [DBM]

Related independent result:

Gaussianity of 〈ui, Åui〉 for the special case A =
∑

j∈I |qj〉〈qj|with Nε ≤ |I| ≤ N1−ε and qj
orthonormal, i.e. A is low rank. [Benigni-Lopatto (2021)] [DBM]
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Proof of ETH (Resolvent method)



Spectrally averaged overlaps⇒ Resolvents

For traceless observables, 〈A〉 = 0, define the averaged overlap

Λ2 := max
i0,j0

1
N2ε

∑
|i−i0|<Nε

∑
|j−j0|<Nε

N|〈ui, Auj〉|2

Recall: we expect | 〈ui, Auj〉 | . N−1/2 for the eigenvector overlaps. (ETH)

By spectral decomposition with the resolvent G(z) := (W − z)−1,〈
=G(E + iη) A=G(E′ + iη′) A

〉
=

1
N2

∑
ij

N|〈ui, Auj〉|2
η

|λi − E|2 + η2
η′

|λj − E′|2 + (η′)2

By eigenvalue rigidity (λi ≈ γi , the i-th quantile of ρsc)
1
N

∑
i

η

|λi − E|2 + η2
≈
∫

η

|x − E|2 + η2
ρsc(x) dx =: ρ(E + iη)

in the regime η � (Nρ)−1 ∼ level spacing, so we have

Λ2 ∼ sup
E,E′∈[−2,2]

(ρρ′)−1〈=G(E + iη) A=G(E′ + iη′) A
〉
,

GOAL: 〈G A G A〉 . 1=⇒ This would give ETH.
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in the regime η � (Nρ)−1 ∼ level spacing, so we have

Λ2 ∼ sup
E,E′∈[−2,2]

(ρρ′)−1〈=G(E + iη) A=G(E′ + iη′) A
〉
,

GOAL: 〈G A G A〉 . 1=⇒ This would give ETH.
11



What is a local law? Deterministic approximation of random resolvents

For a Wigner matrixW we have the norm bound

‖G(z)‖ =

∥∥∥∥ 1
W − E − iη

∥∥∥∥ ≤
1
η
. (1)

The bound in (1) is deterministic. Can we get a better control on G(z) using the randomness?

Local law for single G:

〈G(z)〉 = m(z) +O
(

1
Nη

)
, m(z) :=

1
2π

∫ 2

−2

√
4− x2

x − z
dx = O(1)

with very high probability. Why are local laws useful?

For η � N−1 the local law gives info about eigenvalues ofW on scale η around E:

1
N

∑
i

η

(λi − E)2 + η2
= 〈=G〉 ≈ =m η

N−1

=⇒ Rigidity of eigenvalues:

|λi − γi| ≤
Nε

N
,

with high probability, where γi is the i-th quantile of the semicircular law (deterministic)
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G as amatrix

How does G(z) behave as a matrix? What do we have for 〈GA〉, i.e. when G is tested against
deterministic matrices A?

Decomposing the deterministic matrix into tracial and traceless parts: A = 〈A〉+ Å,

〈GA〉 = m〈A〉︸ ︷︷ ︸
deterministic

+〈A〉 〈G−m〉︸ ︷︷ ︸
∼(Nη)−1

+ 〈G̊A〉︸︷︷︸
∼(N√η)−1

,

with η = =z.

• For the deterministic termm ∼ 1 (tracial local law) [E-Schlein-Yau-Yin (2010)]

• Nη 〈G−m〉 is a normal rv (optimality tracial local law) [He-Knowles (2017)].

• The traceless part 〈G̊A〉 is much smaller.

N√η〈G̊A〉 is Gaussian (optimality traceless local law) [Cipolloni, E. Schröder (2020)].

Effective gain of size√η thanks to 〈A〉 = 0.
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Multi-G local laws with traceless observables

Single-G local law: 〈G〉 ≈ m. What approximates GG?

〈GG〉 6≈ m2. The truth is:∣∣∣〈GG〉 − m2

1−m2

∣∣∣ . 1
Nη2

.

With deterministic matrices in between

〈GAGB〉 ≈ m2 〈AB〉+
m4

1−m2 〈A〉 〈B〉 .

Two-G local law with traceless A∣∣∣〈GAGA〉 −m2〈A2〉
∣∣∣ . 1

Nη
, 〈A〉 = 0.

(proven (Nη)−1/2, optimal error: work in progress)

Effective gain of size (√η)2 thanks to twice 〈A〉 = 0. Expect a general pattern
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Proof of local law: Resolvent method

UsingWG = zG+ I and its renormalizationWG := WG+ 〈G〉G, we have

〈=G〉 − =m ∼ 〈WG〉 .
1
N
〈GG∗〉

=
〈=G〉
Nη

last step: Ward identity

Ward identity reduces the number of G’s, truncates the potentially dangerous hierarchy.

With deterministic traceless A, 〈A〉 = 0:

〈=GA〉 ∼ 〈WGA〉 .
1
N

[
〈GAG∗A〉︸ ︷︷ ︸

≤???

〈GG∗〉︸ ︷︷ ︸
≤1/η

+ 〈GAAG∗〉︸ ︷︷ ︸
≤1/η

]1/2
+ . . .

Continue:

〈GAG∗A〉 ∼
〈
=G A=G A

〉
. 〈A2〉〈=G〉2 +

1
N

[
〈GAG∗AGAG∗A〉︸ ︷︷ ︸

≤???

〈GG∗〉︸ ︷︷ ︸
≤1/η

]1/2
+ . . .

Truncation? Morally

〈GAG∗AGAG∗A〉 ≤
1
η

〈
=G A=G A

〉2
Technically: via averaged overlap Λ and high moment bound onWGAGA:

E |〈WGAGA〉|p =
∑

N−power〈GAGG∗AA∗GGAG∗ . . .〉〈GG∗AA∗GAGAG∗ . . .〉 . . .

Total number of A is p, but only the colored ones are effective, where Λ . 1 can be helpful.

Mechanism: Whenever an effective A is lost, we also have fewer G—- they balance out.
Combinatorics needs delicate bookkeeping by Feynman diagrams –main technical work.
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Proof of Λ . 1

Need: two-G local law with traceless A.

Λ2 ∼ 〈GAGA〉 . 1+ 〈WGAGA〉

Secondmoment calculation:

EΛ4 . 1+ E |〈WGAGA〉|2 ≤ 1+
1
N2 E 〈GAGAGAGA〉︸ ︷︷ ︸

.NΛ4

〈GG〉︸︷︷︸
.1/η

+ . . . ≤ 1+
EΛ4

Nη

so Gronwall gives EΛ4 . 1. Here we used

〈GAGAGAGA〉 =
1
N

∑
ijkl

〈ui, Auj〉〈uj, Auk〉〈uk , Aul〉〈ul, Aui〉
(λi − z)(λj − z)(λk − z)(λl − z)

≤ NΛ4
( 1
N

∑
i
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Proof of Gaussian fluctuation (via DBM)



DBM for eigenvectors

GOAL: Let ui be the eigenvectors of a Wigner matrixW , then

E

[√
N

2 〈̊A2〉
〈ui, Åui〉

]n
→ (n− 1)!!1(n even), Å = A− 〈A〉 .

We do it dynamically:

dWt =
dB̂t√
N
, W0 = W. (2)

The flow (2) adds a Gaussian component of size
√
t toW0.

Need only t ∼ N−1+ε. This Gaussian component can later be removed by simple
perturbation theory known as Green function comparison theorem (GFT).

The flow (2) induces the Dyson Brownian Motion (DBM) for eigenvalues and eigenvectors:

dλi(t) =
dBii(t)√

N
+

1
N

∑
j 6=i

1
λi(t)− λj(t)

dt

dui(t) =
1

√
N

∑
j 6=i

dBij(t)
λi(t)− λj(t)

uj(t)−
1
2N

∑
j 6=i

ui(t)
(λi(t)− λj(t))

dt.
(3)
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Very heuristic sketch of the proof I

• Starting from the DBMwe write a system of diff. eq. for the n-th moments of the
overlaps, e.g.

E
[
|〈ui, Åui〉|2 |〈uj, Åuj〉|4

∣∣∣λ], n = 6.

• The flow for diagonal overlaps 〈ui, Åui〉 depends on off-diagonal overlaps 〈ui, Åuj〉.
• Closed equation for a certain lin. combination of overlaps ft [Bourgade-Yau-Yin (2020)]:

∂t ft = L(t)ft . (4)

Example for n = 2:

ft = E
[
2|〈ui, Åuj〉|2 + 〈ui, Åui〉 〈uj, Åuj〉

∣∣∣λ].
More precisely, ft = ft(i, j) is a function of ”two-particle configurations” on Z.

• Here

L(t) =
n∑

r=1

Lr(t),

is a generator of Markov process on n particles.
Lr acts on the location index of the r-th particle; it has a kernel

1
N(λi − λj)2

∼
N

|i − j|2
.

Note that this is the discretisation of the
√
−∆ = |p| operator in 1d

=⇒ (4) is a (discrete) heat equation with fractional Laplacian

18
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Very heuristic sketch of the proof II

• Want: heat kernel ”e−L(t)” averages in all directions.
Why averages? Because they can be understood by local laws (like Λ)!

• Heat kernels are very hard to grasp in this setup. (Homogenisation)
• Heuristically:

L(t) ≈
n∑

r=1

|pr |, |pr | :=
√

−∆r ,

i.e. L(t) (=infinitesimally the heat kernel) averages only in one coordinate direction.
One direction is not enough, local laws require averaging in ALL directions.

• To get more averaging: ReplaceL(t) =
∑

r |pr | by the regularised product

1
η

n∏
i=1

(
1− e−η|pr |

) (
∼ ηn−1

n∏
r=1

|pr | morally

)

with η ∼ N−1 =⇒ Average in any direction.
The replacement is possible on the level of Dirichlet form, D(f ) := 〈f ,Lf 〉.

• After replacement, technically we rely on
(i) the energy method for DBM [Marcinek-Yau (2020)] analysing

∂t‖ft‖22 = −2Dt(ft) ≤ 0.

(ii) local laws for 〈GAGA...〉with 〈A〉 = 0 [Cipolloni, E., Schröder (2021)].
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Summary

We proved:

• Eigenstate Thermalisation Hypothesis for Wigner matrices:
eigenvector overlaps with deterministic A are. N−1/2.

• Gaussian fluctuations for eigenvector overlaps.

Main technical steps:

• Dramatically improved local law for traceless observables.
• Closing themulti-G local law hierarchy with Λ.
• Diagrammatic expansion to extract 〈A〉 = 0 optimally.
• Energy estimates for multi indexed DBM.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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